CS 373: Combinatorial Algorithms, Fall 2002
Homework 2 (due Thursday, September 26, 2002 at 11:59:59 p.m.)

Name:
Net ID: Alias: UG

Name:

Net ID: Alias: UG

Name:
Net ID: Alias: UG

Homeworks may be done in teams of up to three people. Each team turns in just one solution,
and every member of a team gets the same grade. Since graduate students are required to solve
problems that are worth extra credit for other students, Grad students may not be on the
same team as undergraduates.

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes above.
Please also tell us whether you are an undergraduate or 1-unit grad student by circling U or G,
respectively. Staple this sheet to the top of your homework. NOTE: You must use different
sheet(s) of paper for each problem assigned.

Required Problems

1. For each of the following problems, the input is a set of n nuts and n bolts. For each bolt,
there is exactly one nut of the same size. Direct comparisons between nuts or between bolts
are not allowed, but you can compare a nut and a bolt in constant time.

(a) Describe and analyze a deterministic algorithm to find the largest bolt. Ezactly how
many comparisons does your algorithm perform in the worst case? [Hint: This is very
easy.|

(b) Describe and analyze a randomized algorithm to find the largest bolt. What is the ezact
expected number of comparisons performed by your algorithm?

(c) Describe and analyze an algorithm to find the largest and smallest bolts. Your algo-
rithm can be either deterministic or randomized. What is the ezact worst-case expected
number of comparisons performed by your algorithm? [Hint: Running part (a) twice is
definitely not the most efficient algorithm.]

In each case, to receive full credit, you need to describe the most efficient algorithm
possible.

CS 373 Homework 2 (due 9/26/2002) Fall 2002

2. Consider the following algorithm:

SLOWSHUFFLE(A[1..n]) :

fori+ 1ton
Bli] «Null

fori < 1ton
index + Random(1,n)
while Blindex] # Null

index + Random(1,n)

Blindex] + A[i]

fori+ 1ton
Ali] < BJi]

Suppose that Random(4,7) will return a random number between ¢ and j inclusive in con-
stant time. SLOWSHUFFLE will shuffle the input array into a random order such that every
permutation is equally likely.

(a) What is the expected running time of the above algorithm. Justify your answer and give
a tight asymptotic bound.

(b) Describe an algorithm that randomly shuffles an n-element array, so that every permu-
tation is equally likely, in O(n) time.

3. Suppose we are given an undirected graph G = (V, E) together with two distinguished vertices
s and t. An s-t min-cut is a set of edges that once removed from the graph, will disconnect
s from t. We want to find such a set with the minimum cardinality(The smallest number of
edges). In other words, we want to find the smallest set of edges that will seperate s and ¢

To do this we repeat the following step |V| — 2 times: Uniformly at random, pick an edge
from the set E which contains all edges in the graph excluding those that directly connects
vertices s and t. Merge the two vertices that is connected by this randomly selected edge.
If as a result there are several edges between some pair of vertices, retain them all. Edges
that are between the two merged vertices are removed so that there are never any self-loops.
We refer to this process of merging the two end-points of an edge into a single vertex as the
contraction of that edge. Notice with each contraction the number of vertices of G decreases
by one.

As this algorithm proceeds, the vertex s may get merged with a new vertex as the result
of an edge being contracted. We call this vertex the s-vertex. Similarly, we have a t-vertex.
During the contraction algorithm, we ensure that we never contract an edge between the
s-vertex and the t-vertex.

CS 373 Homework 2 (due 9/26/2002) Fall 2002

edge (S,B)

G\ a Contraction of

1 7 Contraction of
s.B \@/) “edgeCTA) ~ (SB) (rAC

(a) Give an example of a graph in which the probability that this algorithm finds an s-t
min-cut is exponentially small(O(1/a™)). Justify your answers.
(Hint: Think multigraphs)

(b) Give an example of a graph such that there are O(2") number of s-t min-cuts. Justify
your answers.

4. Describe a modification of treaps that supports the following operations, each in O(logn)
expected time:
o INSERT(z): Insert a new element z into the data structure.
e DELETE(z): Delete an element x from the data structure.

e COMPUTERANK(z): Return the number of elements in the data structure less than or
equal to x.

o FINDBYRANK(r): Return the kth smallest element in the data structure.

Describe and analyze the algorithms that implement each of these operations. [Hint: Don’t
reinvent the wheel!]

CS 373 Homework 2 (due 9/26/2002) Fall 2002

5. A meldable priority queue stores a set of keys from some totally ordered universe (such as the
integers) and supports the following operations:

¢ MAKEQUEUE: Return a new priority queue storing the empty set.
e FINDMIN(Q): Return the smallest element stored in @ (if any).

e DELETEMIN(Q): Delete the smallest element stored in @ (if any).
o INSERT(Q, x): Insert element x into Q.

e MELD(Q1,Q2): Return a new priority queue containing all the elements stored in
and Q2. The component priority queues are destroyed.

o DECREASEKEY(Q, z,y): Replace an element z of @ with a smaller key y. (If y > z, the
operation fails.) The input is a pointer directly to the node in @ storing z.

e DELETE(Q, z): Delete an element z € Q. The input is a pointer directly to the node in
Q storing x.

A simple way to implement this data structure is to use a heap-ordered binary tree, where
each node stores an element, a pointer to its left child, a pointer to its right child, and a
pointer to its parent. MELD(Q1,Q2) can be implemented with the following randomized
algorithm.

e If either one of the queues is empty, return the other one.

e If the root of ()1 is smaller than the root of QJ2, then recursively MELD Q2 with either
right(Q1) or left(Q1), each with probability 1/2.

e Similarly, if the root of Q)2 is smaller than the root of @)1, then recursively MELD Q3
with a randomly chosen child of Q.

(a) Prove that for any heap-ordered trees Q1 and @2, the expected running time of MELD(Q1, Q2)
is O(log n), where n = |Q1|+|Q2|. [Hint: How long is a random path in an n-node binary
tree, if each left/right choice is made with equal probability?] For extra credit, prove
that the running time is O(logn) with high probability.

(b) Show that each of the operations DELETEMIN, INSERT, DECREASEKEY, and DELETE
can be implemented with one call to MELD and O(1) additional time. (This implies that
every operation takes O(logn) with high probability.)

6. [This problem is required only for graduate students taking CS 873 for a full unit; anyone else
can submit a solution for extra credit.]

The following randomized algorithm selects the rth smallest element in an unsorted array
A[l,..,n]. For example, to find the smallest element, you would call RANDOMSELECT(A4, 1);
to find the median element, you would call RANDOMSELECT(A, [n/2]). Recall from lecture
that PARTITION splits the array into three parts by comparing the pivot element A[p] to every
other element of the array, using n — 1 comparisons altogether, and returns the new index of
the pivot element.

CS 373 Homework 2 (due 9/26/2002) Fall 2002

RANDOMSELECT(A[l..n],7) :
p < RAaNDOM(1,n)
k < PARTITION(A[1..n],p)

ifr<k

return RANDOMSELECT(A[1..k — 1],7)
elseif r > k

return RANDOMSELECT(A[k + 1..n],7 — k)
else

return A[k]

(a) State a recurrence for the expected running time of RANDOMSELECT, as a function of
both n and 7.

(b) What is the ezact probability that RANDOMSELECT compares the ith smallest and jth
smallest elements in the input array? The correct answer is a simple function of i, 7,
and r. [Hint: Check your answer by trying a few small examples.]

(c) Show that for any n and r, the expected running time of RANDOMSELECT is ©(n). You
can use either the recurrence from part (a) or the probabilities from part (b). For extra
credit, find the ezact expected number of comparisons, as a function of n and r.

(d) What is the expected number of times that RANDOMSELECT calls itself recursively?

CS 373 Homework 2 (due 9/26/2002) Fall 2002

Practice Problems

1. Death knocks on your door one cold blustery morning and challenges you to a game. Death
knows that you are an algorithms student, so instead of the traditional game of chess, Death
presents you with a complete binary tree with 4" leaves, each colored either black or white.
There is a token at the root of the tree. To play the game, you and Death will take turns
moving the token from its current node to one of its children. The game will end after 2n
moves, when the token lands on a leaf. If the final leaf is black, you die; if it’s white, you will
live forever. You move first, so Death gets the last turn.

You can decide whether it’s worth playing or not as follows. Imagine that the nodes at even
levels (where it’s your turn) are OR gates, the nodes at odd levels (where it’s Death’s turn)
are and gates. Each gate gets its input from its children and passes its output to its parent.
White and black stand for TRUE and FALSE. If the output at the top of the tree is TRUE,
then you can win and live forever! If the output at the top of the tree is FALSE, you should
challenge Death to a game of Twister instead.

(a) Describe and analyze a deterministic algorithm to determine whether or not you can
win. [Hint: This is easy!]

(b) Unfortunately, Death won’t let you even look at every node in the tree. Describe a
randomized algorithm that determines whether you can win in ©(3") expected time.
[Hint: Consider the case n =1.]

O
(M) (M)
(V) (V) (V) (V)
VNN B B OB N O
WOWOOOWOOOOLWOOOGG

2. WHat is the ezact number of nodes in a skip list storing n keys, not counting the sentinel
nodes at the beginning and end of each level? Justify your answer.

3. Suppose we are given two sorted arrays A[l..n] and B[1l..n| and an integer k. Describe an
algorithm to find the kth smallest element in the union of A and B. (For example, if k =1,
your algorithm should return the smallest element of A U B; if £ = n, our algorithm should
return the median of AU B.) You can assume that the arrays contain no duplicates. Your
algorithm should be able to run in O(logn) time. [Hint: First try to solve the special case

k=mn.]

