CS 473G: Combinatorial Algorithms, Fall 2005

Homework 3
Due Tuesday, October 18, 2005, at midnight

Name:
Net ID: Alias:
Name:
Net ID: Alias:
Name:
Net ID: Alias:

Starting with Homework 1, homeworks may be done in teams of up to three people. Each team
turns in just one solution, and every member of a team gets the same grade.

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes above.
Staple this sheet to the top of your homework.

1. Consider the following greedy approximation algorithm to find a vertex cover in a graph:

GREEDY VERTEXCOVER(G):
C—o
while G has at least one edge
v «— vertex in G with maximum degree
G—G\v
C—Cuv

return C

In class we proved that the approximation ratio of this algorithm is O(logn); your task is to
prove a matching lower bound. Specifically, prove that for any integer n, there is a graph G
with n vertices such that GREEDYVERTEXCOVER(G) returns a vertex cover that is Q(logn)
times larger than optimal.

2. Prove that for any constant k and any graph coloring algorithm A, there is a graph G such
that A(G) > OPT(G) + k, where A(G) is the number of colors generated by algorithm A
for graph G, and OPT(G) is the optimal number of colors for G.

[Note: This does not contradict the possibility of a constant factor approximation algorithm.|

CS 473G Homework 3 (due October 18, 2005) Fall 2005

3. Let R be a set of rectangles in the plane, with horizontal and vertical edges. A stabbing set
for R is a set of points S such that every rectangle in R contains at least one point in S. The
rectangle stabbing problem asks, given a set R of rectangles, for the smallest stabbing set S.

(a) Prove that the rectangle stabbing problem is NP-hard.

(b) Describe and analyze an efficient approximation algorithm for the rectangle stabbing
problem. Give bounds on the approximation ratio of your algorithm.

4. Consider the following approximation scheme for coloring a graph G.

TREECOLOR(G):
T < any spanning tree of G
Color the tree T" with two colors
c—2

for each edge (u,v) € G\T
T —TU{(u,v)}

if color(u) = color(v) {(Try recoloring w with an existing color))
fori«—1toc
if no neighbor of v in T" has color 4
color(u) «— 1

if color(u) = color(v) {(Try recoloring v with an existing color))
fori«—1toc
if no neighbor of v in T" has color ¢
color(v) «— i

if color(u) = color(v) {(Give up and use a new color))
c—c+1
color(u) «— ¢

return c

(a) Prove that this algorithm correctly colors any bipartite graph.

(b) Prove an upper bound C' on the number of colors used by this algorithm. Give a sample
graph and run that requires C' colors.

(¢) Does this algorithm approximate the minimum number of colors up to a constant factor?
In other words, is there a constant « such that TREECOLOR(G) < a - OPT(G) for any
graph G?7 Justify your answer.

CS 473G Homework 3 (due October 18, 2005) Fall 2005

5. In the bin packing problem, we are given a set of n items, each with weight between 0 and 1,
and we are asked to load the items into as few bins as possible, such that the total weight in
each bin is at most 1. It’s not hard to show that this problem is NP-Hard; this question asks
you to analyze a few common approximation algorithms. In each case, the input is an array
W1 ..n] of weights, and the output is the number of bins used.

FIRSTFIT(W]1 .. n]):
b—0

NExXTFIT(W][1..n)):
b—0
Total[0] «— oo

fori<— 1lton
j < 1; found «— FALSE

while j < b and found = FALSE
if Totallj] +W(i] <1
Totallj] <« Total[j] + Wi

fori<—1ton
if Total[b] + Wi] > 1

b—b+1
Total[b] — WTi] ‘ found «— TRUE
je—Jg+1
else

Total[b] < Total[b] + Wi if found = FALSE

return b b—b+1
. Total[b] = Wi
return b

(a) Prove that NEXTFIT uses at most twice the optimal number of bins.
(b) Prove that FIRSTFIT uses at most twice the optimal number of bins.

(c) Prove that if the weight array W is initially sorted in decreasing order, then FIRSTFIT
uses at most (4 - OPT + 1)/3 bins, where OPT is the optimal number of bins. The
following facts may be useful (but you need to prove them if your proof uses them):

e In the packing computed by FIRSTFIT, every item with weight more than 1/3 is
placed in one of the first OPT bins.

e FIRSTFIT places at most OPT — 1 items outside the first OPT bins.

