CS 473G: Combinatorial Algorithms, Fall 2005

Homework 4
Due Thursday, October 27, 2005, at midnight

Name:
Net ID: Alias:
Name:
Net ID: Alias:
Name:
Net ID: Alias:
Name:
Net ID: Alias:

Homeworks may be done in teams of up to three people. Each team turns in just one solution;
every member of a team gets the same grade.

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes above.
Staple this sheet to the top of your solution to problem 1.

If you are an I2CS student, print “(I2CS)” next to your name. Teams that include
both on-campus and I12CS students can have up to four members. Any team containing
both on-campus and I2CS students automatically receives 3 points of extra credit.

For the rest of the semester, unless specifically stated otherwise, you
may assume that the function RANDOM(m) returns an integer chosen
uniformly at random from the set {1,2,,...,m} in O(1) time. For
example, a fair coin flip is obtained by calling RANDOM(2).

1. Consider the following randomized algorithm for choosing the largest bolt. Draw a bolt
uniformly at random from the set of n bolts, and draw a nut uniformly at random from the
set of n nuts. If the bolt is smaller than the nut, discard the bolt, draw a new bolt uniformly
at random from the unchosen bolts, and repeat. Otherwise, discard the nut, draw a new nut
uniformly at random from the unchosen nuts, and repeat. Stop either when every nut has
been discarded, or every bolt except the one in your hand has been discarded.

What is the ezact expected number of nut-bolt tests performed by this algorithm? Prove
your answer is correct. [Hint: What is the expected number of unchosen nuts and bolts when
the algorithm terminates?]

CS 473G Homework 4 (due October 26, 2005) Fall 2005

2. A meldable priority queue stores a set of keys from some totally-ordered universe (such as the
integers) and supports the following operations:
e MAKEQUEUE: Return a new priority queue containing the empty set.
e FINDMIN(®): Return the smallest element of @ (if any).
e DELETEMIN(Q®): Remove the smallest element in @ (if any).
e INSERT(Q,x): Insert element x into @, if it is not already there.

e DECREASEKEY(Q, z,y): Replace an element z € @ with a smaller key y. (If y > x, the
operation fails.) The input is a pointer directly to the node in @) containing x.

e DELETE(Q, z): Delete the element x € Q). The input is a pointer directly to the node
in @) containing .

e MELD(Q1,@2): Return a new priority queue containing all the elements of Q1 and Qo;
this operation destroys (1 and s.

A simple way to implement such a data structure is to use a heap-ordered binary tree, where
each node stores a key, along with pointers to its parent and two children. MELD can be
implemented using the following randomized algorithm:

MELD(Q1, @)
if @1 is empty return Qo
if @2 is empty return @4
if key(Q1) > key(Q2)
swap (1 < Q2
with probability 1/2
left(@Q1) — MELD(left(Q1), Q2)

else
right(Q1) < MELD(right(Q1), Q2)

return Q1

(a) Prove that for any heap-ordered binary trees 1 and Q2 (not just those constructed by
the operations listed above), the expected running time of MELD(Q1,Q2) is O(logn),
where n = |Q1] + |Q2|. [Hint: How long is a random root-to-leaf path in an n-node
binary tree if each left/right choice is made with equal probability?]

(b) Prove that MELD(Q1,Q2) runs in O(logn) time with high probability.

(c) Show that each of the other meldable priority queue operations cab be implemented with
at most one call to MELD and O(1) additional time. (This implies that every operation
takes O(logn) time with high probability.)

CS 473G Homework 4 (due October 26, 2005) Fall 2005

3. Let M[1..n][1..n] be an n X n matrix in which every row and every column is sorted. Such
an array is called totally monotone. No two elements of M are equal.

(a) Describe and analyze an algorithm to solve the following problem in O(n) time: Given
indices 14, 7,4, 7' as input, compute the number of elements of M smaller than M]i][j]
and larger than M[i'][5'].

(b) Describe and analyze an algorithm to solve the following problem in O(n) time: Given
indices 1, 7,7, j’ as input, return an element of M chosen uniformly at random from the
elements smaller than M|[i][j] and larger than M[i'][j']. Assume the requested range is
always non-empty.

(¢) Describe and analyze a randomized algorithm to compute the median element of M in
O(nlogn) expected time.

4. Let X[1..n] be an array of n distinct real numbers, and let N[1..n] be an array of indices
with the following property: If X[i] is the largest element of X, then X[N[i]] is the smallest
element of X; otherwise, X[N[i]] is the smallest element of X that is larger than XT[i].

For example:
i1 2 3 4 5 6 7 8 9

X[i][83 54 16 31 45 99 78 62 27
N[i|[6 8 9 5 2 3 1 7 4

Describe and analyze a randomized algorithm that determines whether a given number x
appears in the array X in O(y/n) expected time. Your algorithm may not modify the
arrays X and Next.

5. A majority tree is a complete ternary tree with depth n, where every leaf is labeled either 0
or 1. The wvalue of a leaf is its label; the value of any internal node is the majority of the
values of its three children. Consider the problem of computing the value of the root of a
majority tree, given the sequence of 3" leaf labels as input. For example, if n = 2 and the
leaves are labeled 0,0,1,1,0,1,1,1,0,0, the root has value 0.

A majority tree with depth n = 2.

(a) Prove that any deterministic algorithm that computes the value of the root of a majority
tree must examine every leaf. [Hint: Consider the special case n = 1. Recurse.]

(b) Describe and analyze a randomized algorithm that computes the value of the root in
worst-case expected time O(c™) for some constant ¢ < 3. [Hint: Consider the special
case n = 1. Recurse.]

CS 473G Homework 4 (due October 26, 2005) Fall 2005

*6. [Extra credit] In the usual theoretical presentation of treaps, the priorities are random real
numbers chosen uniformly from the interval [0, 1], but in practice, computers only have access
to random bits. This problem asks you to analyze a modification of treaps that takes this
limitation into account.

Suppose the priority of a node v is abstractly represented as an infinite sequence m,[1 .. oo] of
random bits, which is interpreted as the rational number

oo
priority(v) = Z i) - 275
i=1

However, only a finite number £, of these bits are actually known at any given time. When a
node v is first created, none of the priority bits are known: ¢, = 0. We generate (or ‘reveal’)
new random bits only when they are necessary to compare priorities. The following algorithm
compares the priorities of any two nodes in O(1) expected time:

LARGERPRIORITY (v, w):
for i < 1 to o0
ifi>4,
b, — i; my[i] < RANDOMBIT

if i >4,

by — i; myli] — RANDOMBIT
if 7y, [1] > mow[i]

return v
else if 7, [1] < 7y [i]

return w

Suppose we insert n items one at a time into an initially empty treap. Let L =) ¢,
denote the total number of random bits generated by calls to LARGERPRIORITY during these
insertions.

(a) Prove that E[L] = ©(n).
(b) Prove that E[(,] = O(1) for any node v. [Hint: This is equivalent to part (a). Why?]
(c) Prove that E[lyo0t] = O(logn). [Hint: Why doesn’t this contradict part (b)?]

