CS 473U: Undergraduate Algorithms, Fall 2006
Homework 0

Due Friday, September 1, 2006 at noon in 3229 Siebel Center

Name:
Net ID: Alias:

I understand the Homework Instructions and FAQ.

e Neatly print your full name, your NetID, and an alias of your choice in the boxes above, and
submit this page with your solutions. We will list homework and exam grades on the course
web site by alias. For privacy reasons, your alias should not resemble your name, your NetID,
your university ID number, or (God forbid) your Social Security number. Please use the same
alias for every homework and exam.

Federal law forbids us from publishing your grades, even anonymously, without your explicit
permission. By providing an alias, you grant us permission to list your grades on the
course web site; if you do not provide an alias, your grades will not be listed.

e Please carefully read the Homework Instructions and FAQ on the course web page, and then
check the box above. This page describes what we expect in your homework solutions—start
each numbered problem on a new sheet of paper, write your name and NetID on every page,
don’t turn in source code, analyze and prove everything, use good English and good logic, and
so on—as well as policies on grading standards, regrading, and plagiarism. See especially
the policies regarding the magic phrases “I don’t know” and “and so on”. If you have
any questions, post them to the course newsgroup or ask in lecture.

e This homework tests your familiarity with prerequisite material—basic data structures, big-
Oh notation, recurrences, discrete probability, and most importantly, induction—to help you
identify gaps in your knowledge. You are responsible for filling those gaps on your own.
Each numbered problem is worth 10 points; not all subproblems have equal weight.

1 2131 4|5 | 6" | Total

Score
Grader

CS 473U Homework 0 (due September 1, 2006) Fall 2006

Please put your answers to problems 1 and 2 on the same page.

1. Sort the functions listed below from asymptotically smallest to asymptotically largest, indi-
cating ties if there are any. Do not turn in proofs, but you should probably do them anyway,
just for practice.

To simplify your answers, write f(n) < g(n) to mean f() =o(g ()), and write f(n) = g(n)
to mean f(n) = O(g(n)). For example the functions n?, n, (3),n* could be sorted either as
n<n?=(}) <norasn < () =n*<nd

lgn Inn NLD n nlgn n? 2" n

pl+1/lgn 1gl000 oVign (\/i)lgn Ig\/in nVv? (1+%)n 1,1/1000

1/n

H, Hp o 2 Hon F, F,n IgF, Fign

In case you've forgotten:

lgn =logyn # Inn = log, n

lg3n = (Ign)® # lglglgn.

The harmonic numbers: H, =>"" | 1/i ~Inn+ 0.577215...

The Fibonacci numbers: Fy =0, Fy =1, F,, = F,,_1 + F,,_o foralln > 2

2. Solve the following recurrences. State tight asymptotic bounds for each function in the form
©(f(n)) for some recognizable function f(n). Proofs are not required; just give us the list of
answers. Don’t turn in proofs, but you should do them anyway, just for practice. Assume
reasonable but nontrivial base cases. If your solution requires specific base cases, state
them. Extra credit will be awarded for more exact solutions.

(@) A(n) =2A(n/4)+ /n
(b) B(n) =3B(n/3)+n/lgn

2C(n —1)
C(n—2)

(d Dn)=D(n—-1)+1/n
(e) E(n)=E(n/2)+ D(n)

0 F<n>=4F([”‘ﬂ+{ n J>+6<";5)_42n1g7n+m+lglgw

2 log,. n lgnlglglgn
(g G(n)=2G(n—1)—G(n—2)+n

(© C(n) = [Hint: This is easy!]

(h) H(n) =2H(n/2) —2H(n/4) + 2"
@) I(n)=1(n/2)+1I(n/4)+1(n/6)+1(n/12)+n

*(@) J(n) =/n-J(2y/n) +n
[Hint: First solve the secondary recurrence j(n) = 1+ j(2y/n).]

CS 473U Homework 0 (due September 1, 2006) Fall 2006

3. The nth Fibonacci binary tree F,, is defined recursively as follows:

e Fj is a single root node with no children.

e For all n > 2, F, is obtained from F,,_; by adding a right child to every leaf and adding
a left child to every node that has only one child.

Bt

The first six Fibonacci binary trees. In each tree F,,, the subtree of gray nodes is F_1.

(a) Prove that the number of leaves in F,, is precisely the nth Fibonacci number: Fy = 0,
Fi=1,and F, = F,,_1 + F,,_s forall n > 2.

(b) How many nodes does F,, have? For full credit, give an exact, closed-form answer in
terms of Fibonacci numbers, and prove your answer is correct.

(c) Prove that the left subtree of F,, is a copy of F,,_s.

4. Describe and analyze a data structure that stores set of n records, each with a numerical key
and a numerical priority, such that the following operation can be performed quickly:

RANGETOP(a, 2) : return the highest-priority record whose key is between a and z.

For example, if the (key, priority) pairs are
(3,1), (4,9), (9,2), (6,3), (5,8), (7,5), (1,4), (0,7),

then RANGETOP(2, 8) would return the record with key 4 and priority 9 (the second record in
the list).

You may assume that no two records have equal keys or equal priorities, and that no record
has a key equal to a or z. Analyze both the size of your data structure and the running time
of your RANGETOP algorithm. For full credit, your data structure must be as small as possible
and your RANGETOP algorithm must be as fast as possible.

[Hint: How would you compute the number of keys between a and z? How would you solve
the problem if you knew that a is always —oco?]

CS 473U Homework 0 (due September 1, 2006) Fall 2006

5.

6.

Penn and Teller agree to play the following game. Penn shuffles a standard deck! of playing
cards so that every permutation is equally likely. Then Teller draws cards from the deck, one
at a time without replacement, until he draws the three of clubs (3&), at which point the
remaining undrawn cards instantly burst into flames.

The first time Teller draws a card from the deck, he gives it to Penn. From then on, until
the game ends, whenever Teller draws a card whose value is smaller than the last card he
gave to Penn, he gives the new card to Penn.? To make the rules unambiguous, they agree
beforehand that A =1, J =11, Q = 12, and K = 13.

(a) What is the expected number of cards that Teller draws?
(b) What is the expected maximum value among the cards Teller gives to Penn?
(c) What is the expected minimum value among the cards Teller gives to Penn?

(d) What is the expected number of cards that Teller gives to Penn?

Full credit will be given only for exact answers (with correct proofs, of course).

[Extra credit]®

Lazy binary is a variant of standard binary notation for representing natural numbers where
we allow each “bit” to take on one of three values: 0, 1, or 2. Lazy binary notation is defined
inductively as follows.

e The lazy binary representation of zero is 0.

e Given the lazy binary representation of any non-negative integer n, we can construct the
lazy binary representation of n 4 1 as follows:

(a) increment the rightmost digit;

(b) if any digit is equal to 2, replace the rightmost 2 with 0 and increment the digit
immediately to its left.

Here are the first several natural numbers in lazy binary notation:

0, 1, 10, 11, 20, 101, 110, 111, 120, 201, 210, 1011, 1020, 1101, 1110, 1111, 1120,
1201, 1210, 2011, 2020, 2101, 2110, 10111, 10120, 10201, 10210, 11011, 11020, 11101,
11110, 11111, 11120, 11201, 11210, 12011, 12020, 12101, 12110, 20111, 20120, 20201,
20210, 21011, 21020, 21101, 21110, 101111, 101120, 101201, 101210, 102011, 102020,
102101, 102110, . ..

(a) Prove that in any lazy binary number, between any two 2s there is at least one 0, and
between two 0Os there is at least one 2.

(b) Prove that for any natural number N, the sum of the digits of the lazy binary represen-
tation of N is exactly |lg(N + 1)].

'In a standard deck of 52 cards, each card has a suit in the set {#,0,&%,{} and a value in the set
{A,2,3,4,5,6,7,8,9,10,J,Q, K}, and every possible suit-value pair appears in the deck exactly once. Actually, to
make the game more interesting, Penn and Teller normally use razor-sharp ninja throwing cards.

2Specifically, he hurls them from the opposite side of the stage directly into the back of Penn’s right hand.

3The “I don’t know” rule does not apply to extra credit problems. There is no such thing as “partial extra credit”.

CS 473U: Undergraduate Algorithms, Fall 2006
Homework 1

Due Tuesday, September 12, 2006 in 3229 Siebel Center

Starting with this homework, groups of up to three students can submit or present a
single joint solution. If your group is submitting a written solution, please remember to
print the names, NetIDs, and aliases of every group member on every page. Please
remember to submit separate, individually stapled solutions to each of the problems.

. Recall from lecture that a subsequence of a sequence A consists of a (not necessarily contigu-
ous) collection of elements of A, arranged in the same order as they appear in A. If B is a
subsequence of A, then A is a supersequence of B.

(a) Describe and analyze a simple recursive algorithm to compute, given two sequences A
and B, the length of the longest common subsequence of A and B. For example, given
the strings ALGORITHM and ALTRUISTIC, your algorithm would return 5, the length of
the longest common subsequence ALRIT.

(b) Describe and analyze a simple recursive algorithm to compute, given two sequences A
and B, the length of a shortest common supersequence of A and B. For example, given
the strings ALGORITHM and ALTRUISTIC, your algorithm would return 14, the length of

(c) Let |A| denote the length of sequence A. For any two sequences A and B, let les(A, B)
denote the length of the longest common subsequence of A and B, and let scs(A, B)
denote the length of the shortest common supersequence of A and B.

Prove that |A| + |B| = les(A, B) +scs(A, B) for all sequences A and B. [Hint: There
is a simple non-inductive proof.]

In parts (a) and (b), we are not looking for the most efficient algorithms, but for algorithms
with simple and correct recursive structure.

. You are a contestant on a game show, and it is your turn to compete in the following game.
You are presented with an m x n grid of boxes, each containing a unique number. It costs
$100 to open a box. Your goal is to find a box whose number is larger than its neighbors in
the grid (above, below, left, and right). If you spend less money than your opponents, you
win a week-long trip for two to Las Vegas and a year’s supply of Rice-A-Roni™, to which you
are hopelessly addicted.

(a) Suppose m = 1. Describe an algorithm that finds a number that is bigger than any of its
neighbors. How many boxes does your algorithm open in the worst case?

(b) Suppose m = n. Describe an algorithm that finds a number that is bigger than any of its
neighbors. How many boxes does your algorithm open in the worst case?

*(c) [Extra credit]! Prove that your solution to part (b) is asymptotically optimal.

IThe “I don’t know” rule does not apply to extra credit problems. There is no such thing as “partial extra credit”.

CS 473U Homework 1 (due September 12, 2006) Fall 2006

3. A kd-tree is a rooted binary tree with three types of nodes: horizontal, vertical, and leaf. Each
vertical node has a left child and a right child; each horizontal node has a high child and a low
child. The non-leaf node types alternate: non-leaf children of vertical nodes are horizontal
and vice versa. Each non-leaf node v stores a real number p, called its pivot value. Each node
v has an associated region R(v), defined recursively as follows:

e R(root) is the entire plane.

e If v is is a horizontal node, the horizontal line y = p, partitions R(v) into R(high(v))
and R(low(v)) in the obvious way.

e If v is is a vertical node, the vertical line x+ = p, partitions R(v) into R(left(v)) and
R(right(v)) in the obvious way:.

Thus, each region R(v) is an axis-aligned rectangle, possibly with one or more sides at infinity.
If v is a leaf, we call R(v) a leaf box.

4 \ \ \

The first four levels of a typical kd-tree.

Suppose T is a perfectly balanced kd-tree with n leaves (and thus with depth exactly lgn).

(a) Consider the horizontal line y = ¢, where ¢ # p, for all nodes v in T'. Exactly how many
leaf boxes of T does this line intersect? [Hint: The parity of the root node matters.]
Prove your answer is correct. A correct ©(-) bound is worth significant partial credit.

(b) Describe and analyze an efficient algorithm to compute, given T and an arbitrary hori-
zontal line ¢, the number of leaf boxes of T that lie entirely above /.

CS 473U: Undergraduate Algorithms, Fall 2006
Homework 2

Due Tuesday, September 19, 2006 in 3229 Siebel Center
Remember to turn in in separate, individually stapled solutions to each of the problems.

1. You are given an m x n matrix M in which each entry is a 0 or 1. A solid block is a rectangular
subset of M in which each entry is 1. Give a correct efficent algorithm to find a solid block in
M with maximum area.

1 1 0 1 1
0/ 1 1 1|0
111 1 1|1
1 1 0 1 1
An algorithm that runs in ©(n¢) time will earn 19 — 3¢ points.

2. You are a bus driver with a soda fountain machine in the back and a bus full of very hyper
students, who are drinking more soda as they ride along the highway. Your goal is to drop the
students off as quickly as possible. More specifically, every minute that a student is on your
bus, he drinks another ounce of soda. Your goal is to drop the students off quickly, so that in
total they drink as little soda as possible.

You know how many students will get off of the bus at each exit. Your bus begins partway
along the highway (probably not at either end), and moves at a constant rate. You must drive
the bus along the highway- however you may drive forward to one exit then backward to
an exit in the other direction, switching as often as you like (you can stop the bus, drop off
students, and turn around instantaneously).

Give an efficient algorithm to drop the students off so that they drink as little soda as possible.
The input to the algorithm should be: the bus route (a list of the exits, together with the travel
time between successive exits), the number of students you will drop off at each exit, and the
current location of your bus (you may assume it is at an exit).

3. Suppose we want to display a paragraph of text on a computer screen. The text consists of
n words, where the ith word is p; pixels wide. We want to break the paragraph into several
lines, each exactly P pixels long. Depending on which words we put on each line, we will
need to insert different amounts of white space between the words. The paragraph should be
fully justified, meaning that the first word on each line starts at its leftmost pixel, and except
for the last line, the last character on each line ends at its rightmost pixel. There must be at
least one pixel of whitespace between any two words on the same line.

Define the slop of a paragraph layout as the sum over all lines, except the last, of the cube
of the number of extra white-space pixels in each line (not counting the one pixel required
between every adjacent pair of words). Specifically, if a line contains words i through j, then
the amount of extra white space on that line is P — j + i — Y, _, P,. Describe a dynamic
programming algorithm to print the paragraph with minimum slop.

CS 473U: Undergraduate Algorithms, Fall 2006
Homework 3
Due Wednesday, October 4, 2006 in 3229 Siebel Center

Remember to turn in separate, individually stapled solutions to each of the problems.

. Consider a perfect tree of height h, where every non-leaf node has 3 children. (Therefore,
each of the 3" leaves is at distance h from the root.) Every leaf has a boolean value associated
with it - either O or 1. Every internal node gets the boolean value assigned to the majority
of its children. Given the values assigned to the leaves, we want to find an algorithm that
computes the value (0 or 1) of the root.

It is not hard to find a (deterministic) algorithm that looks at every leaf and correctly deter-
mines the value of the root, but this takes O(3") time. Describe and analyze a randomized
algorithm that, on average, looks at asymptotically fewer leaves. That is, the expected num-
ber of leaves your algorithm examines should be o(3").

. We define a meldable heap to be a binary tree of elements, each of which has a priority, such
that the priority of any node is less than the priority of its parent. (Note that the heap does
not have to be balanced, and that the element with greatest priority is the root.) We also
define the priority of a heap to be the priority of its root.

The meld operation takes as input two (meldable) heaps and returns a single meldable heap
H that contains all the elements of both input heaps. We define meld as follows:

e Let H; be the input heap with greater priority, and H» the input heap with lower priority.
(That is, the priority of root(H;) is greater than the priority of root(Hs).) Let Hy, be the
left subtree of root(H;) and Hp be the right subtree of root(H).

e We set root(H) = root(Hy).

e We now flip a coin that comes up either “Left” or “Right” with equal probability.

- If it comes up “Left”, we set the left subtree of root(H) to be Hy, and the right
subtree of root(H) to be meld(Hpg, Hy) (defined recursively).

— If the coin comes up “Right”, we set the right subtree of root(H) to be Hp, and the
left subtree of root(H) to be meld(Hy,, H2).

e As a base case, melding any heap H; with an empty heap gives H;.

(a) Analyze the expected running time of meld(H,, Hy) if H, is a (meldable) heap with n
elements, and H, is a (meldable) heap with m elements.

(b) Describe how to perform each of the following operations using only melds, and give
the running time of each.
e DeleteMax(H), which deletes the element with greatest priority.
e Insert(H,x), which inserts the element x into the heap H.

e Delete(H, z), which - given a pointer to element = in heap H - returns the heap with
z deleted.

CS 473U Homework 3 (due October 4, 2006) Fall 2006

3. Randomized Selection. Given an (unsorted) array of n distinct elements and an integer k,
SELECTION is the problem of finding the kth smallest element in the array. One easy solution
is to sort the array in increasing order, and then look up the kth entry, but this takes ©(n log n)
time. The randomized algorithm below attempts to do better, at least on average.

QuickSelect(Array A, n, k)
pivot «+— Random(1, n)
S—{x|xeAx< Apivot]}
s — 5]
L—{x|xe€ A x> Alpivot]}
if(k=s+1)

return Alpivot]
else if (k < s)

return QuickSelect(S, s, k)
else

return QuickSelect(L,n — (s + 1),k — (s + 1))

Here we assume that Random(a, b) returns an integer chosen uniformly at random from a to b
(inclusive of @ and b). The pivot position is randomly chosen; S is the set of elements smaller
than the pivot element, and L the set of elements larger than the pivot. The sets S and L are
found by comparing every other element of A to the pivot. We partition the elements into
these two ‘halves’, and recurse on the appropriate half.

(a) Write a recurrence relation for the expected running time of QuickSelect.
(b) Given any two elements z,y € A, what is the probability that = and y will be compared?
(c) Either from part (a) or part (b), find the expected running time of QuickSelect.

4. [Extra Credit]: In the previous problem, we found a ©(n) algorithm for selecting the kth
smallest element, but the constant hidden in the O(-) notation is somewhat large. It is easy
to find the smallest element using at most n comparisons; we would like to be able to extend
this to larger k. Can you find a randomized algorithm that uses n + O (k log k logn)! expected
comparisons? (Note that there is no constant multiplying the n.)

Hint: While scanning through a random permutation of n elements, how many times does
the smallest element seen so far change? (See HBS 0.) How many times does the kth smallest
element so far change?

'There is an algorithm that uses n + ©(k log(n/k) comparisons, but this is even harder.

2

CS 473U: Undergraduate Algorithms, Fall 2006
Homework 4
Due Tuesday, October 10, 2006 in 3229 Siebel Center

Remember to submit separate, individually stapled solutions to each of the problems.

. Chicago has many tall buildings, but only some of them have a clear view of Lake Michigan.
Suppose we are given an array A[l..n] that stores the height of n buildings on a city block,
indexed from west to east. Building ¢ has a good view of Lake Michigan if every building to
the east of 7 is shorter than i. We present an algorithm that computes which buildings have
a good view of Lake Michigan. Use the taxation method of amortized analysis to bound the
amortized time spent in each iteration of the for loop. What is the total runtime?

GOODVIEW(A[1..n]):
Initialize a stack S
fori=1ton
while (S not empty and A[i] > A[S.top])
Pop(S)
PUSH(S, 7)
return S

. Design and analyze a simple data structure that maintains a list of integers and supports the
following operations.

(a) CREATE(): creates and returns a new list L

(b) PusH(L,x): appends x to the end of L

(c) Pop(L): deletes the last entry of L and returns it
(d) Lookup(L, k): returns the kth entry of L

Your solution may use these primitive data structures: arrays, balanced binary search trees,
heaps, queues, single or doubly linked lists, and stacks. If your algorithm uses anything
fancier, you must give an explicit implementation. Your data structure should support all
operations in amortized constant time. In addition, your data structure should support
Lookup() in worst-case O(1) time. At all times, your data structure should use space which
is linear in the number of objects it stores.

. Consider a computer game in which players must navigate through a field of landmines,
which are represented as points in the plane. The computer creates new landmines which
the players must avoid. A player may ask the computer how many landmines are contained
in any simple polygonal region; it is your job to design an algorithm which answers these
questions efficiently.

You have access to an efficient static data structure which supports the following operations.

CS 473U Homework 4 (due October 10, 2006) Fall 2006

e CREATES({pi,p2,...,pn}): creates a new data structure S containing the points {p1,...,pn}.
It has a worst-case running time of 7'(n). Assume that 7'(n)/n > T(n — 1)/(n — 1), so
that the average processing time of elements does not decrease as n grows.

e DUMPS(S): destroys S and returns the set of points that S stored. It has a worst-case
running time of O(n), where n is the number of points in S.

e QUERYS(S, R): returns the number of points in S that are contained in the region R. It
has a worst-case running time of)(n), where n is the number of points stored in S.

Unfortunately, the data structure does not support point insertion, which is required in your
application. Using the given static data structure, design and analyze a dynamic data struc-
ture that supports the following operations.

(a) CREATED(): creates a new data structure D containing no points. It should have a
worst-case constant running time.

(b) INSERTD(D, p): inserts p into D. It should run in amortized O(logn) - T'(n)/n time.

(c) QUERYD(D, R): returns the number of points in D that are contained in the region R. It
should have a worst-case running time of O(logn) - Q(n).

CS 473U: Undergraduate Algorithms, Fall 2006
Homework 5

Due Tuesday, October 24, 2006 in 3229 Siebel Center
Remember to turn in in separate, individually stapled solutions to each of the problems.

1. Makefiles:

In order to facilitate recompiling programs from multiple source files when only a small
number of files have been updated, there is a UNIX utility called ‘make’ that only recompiles
those files that were changed after the most recent compilation, and any intermediate files in
the compilation that depend on those that were changed. A Makefile is typically composed of
a list of source files that must be compiled. Each of these source files is dependent on some
of the other files that must be compiled. Thus a source file must be recompiled if a file on
which it depends is changed.

Assuming you have a list of which files have been recently changed, as well as a list for
each source file of the files on which it depends, design and analyze an efficient algorithm to
recompile only the necessary files. DO NOT worry about the details of parsing a Makefile.

2. Consider a graph G, with n vertices. Show that if any two of the following properties hold
for G, then the third property must also hold.
e (5 is connected.
e (G is acyclic.

e G hasn — 1 edges.

3. The weight of a spanning tree is the sum of the weights on the edges of the tree. Given a
graph, G, describe an efficient algorithm (the most efficient one you can) to find the & lightest
(with least weight) spanning trees of G.

Analyze the running time of your algorithm. Be sure to prove your algorithm is correct.

CS 473U: Undergraduate Algorithms, Fall 2006
Homework 6

Due Wednesday, November 8, 2006 in 3229 Siebel Center

Remember to turn in separate, individually stapled solutions to each of the problems.

. Dijkstra’s algorithm can be used to determine shortest paths on graphs with some negative
edge weights (as long as there are no negative cycles), but the worst-case running time is
much worse than the O(E+V log V) it takes when the edge weights are all positive. Construct
an infinite family of graphs - with negative edge weights - for which the asymptotic running
time of Dijkstra’s algorithm is Q(2/V1).

. It’s a cold and rainy night, and you have to get home from Siebel Center. Your car has broken
down, and it’s too windy to walk, which means you have to take a bus. To make matters
worse, there is no bus that goes directly from Siebel Center to your apartment, so you have
to change buses some number of times on your way home. Since it’s cold outside, you want
to spend as little time as possible waiting in bus shelters.

From a computer in Siebel Center, you can access an online copy of the MTD bus schedule,
which lists bus routes and the arrival time of every bus at each stop on its route. Describe an
algorithm which, given the schedule, finds a way for you to get home that minimizes the time
you spend at bus shelters (the amount of time you spend on the bus doesn’t matter). Since
Siebel Center is warm and the nearest bus stop is right outside, you can assume that you wait
inside Siebel until the first bus you want to take arrives outside. Analyze the efficiency of
your algorithm and prove that it is correct.

. The Floyd-Warshall all-pairs shortest path algorithm computes, for each u,v € V, the shortest
path from u to v. However, if the graph has negative cycles, the algorithm fails. Describe a
modified version of the algorithm (with the same asymptotic time complexity) that correctly
returns shortest-path distances, even if the graph contains negative cycles. That is, if there is
a path from u to some negative cycle, and a path from that cycle to v, the algorithm should
output dist(u,v) = —oo. For any other pair u, v, the algorithm should output the length of
the shortest directed path from u to v.

CS 473U: Undergraduate Algorithms, Fall 2006
Homework 6

Due at 4 p.m. on Friday, November 17, 2006 in 3229 Siebel Center

Remember to turn in separate, individually stapled solutions to each of the problems.

1. Given an undirected graph G(V, E), with three vertices u,v,w € V, you want to know
whether there exists a path from « to w via v. (That is, the path from « to w must use v
as an intermediate vertex.) Describe an efficient algorithm to solve this problem.

2. Ad-hoc Networks, made up of cheap, low-powered wireless devices, are often used on battle-
fields, in regions that have recently suffered from natural disasters, and in other situtations
where people might want to monitor conditions in hard-to-reach areas. The idea is that a
large collection of the wireless devices could be dropped into the area from an airplane (for
instance), and then they could be configured into an efficiently functioning network.

Since the devices are cheap and low-powered, they frequently fail, and we would like our
networks to be reliable. If a device detects that it is likely to fail, it should transmit the
information it has to some other device (called a backup) within range of it. The range is
limited; we assume that there is a distance d such that two devices can communicate if and
only if they are within distance d of each other. To improve reliability, we don’t want a device
to transmit information to a neighbor that has already failed, and so we require each device v
to have at least k£ backup devices that it could potentially contact, all of which must be within
d meters of it. We call this the backup set of v. Also, we do not want any device to be in the
backup set of too many other devices; if it were, and it failed, a large fraction of our network
would be affected.

The input to our problem is a collection of n devices, and for each pair u, v of devices, the
distance between u and v. We are also given the distance d that determines the range of a
device, and parameters b and k. Describe an algorithm that determines if, for each device, we
can find a backup set of size k, while also requiring that no device appears in the backup set
of more than b other devices.

CS 473U Homework 7 (due November 17, 2006) Fall 2006

3. UPDATED: Given a piece of text 7" and a pattern P (the ‘search string’), an algorithm for the
string-matching problem either finds the first occurrence of P in T, or reports that there is
none. Modify the Knuth-Morris-Pratt (KMP) algorithm so that it solves the string-matching
problem, even if the pattern contains the wildcards ‘?” and “’. Here, *?’ represents any single
character of the text, and “*’ represents any substring of the text (including the empty sub-
string). For example, the pattern “A?B*?A” matches the text “ABACBCABBCCACBA” starting
in position 3 (in three different ways), and position 7 (in two ways). For this input, your
algorithm would need to return ‘3.

UPDATE: You may assume that the pattern you are trying to match containst at most 3 blocks
of question marks; the usage of “*’ wildcards is stll unrestricted. Here, a block refers to a

of question marks; A?B?C?A?C contains 4 blocks of question marks.

4. In the two-dimensional pattern-matching problem, you are given an m x n matrix M and a
p X q pattern P. You wish to find all positions (¢, j) in M such that the the submatrix of M
between rows ¢ and ¢ + p — 1 and between columns j and j + ¢ — 1 is identical to P. (That is,
the p x ¢ sub-matrix of M below and to the right of position (4, j) should be identical to P.)
Describe and analyze an efficient algorithm to solve this problem.!

INote that the normal string-matching problem is the special case of the 2-dimensional problem where m = p = 1.

CS 473U: Undergraduate Algorithms, Fall 2006
Homework 8
Due Wednesday, December 6, 2006 in 3229 Siebel Center

Remember to submit separate, individually stapled solutions to each of the problems.

1. Given an array A[l..n] of n > 2 distinct integers, we wish to find the second largest element
using as few comparisons as possible.

(a) Give an algorithm which finds the second largest element and uses at most n + [lgn]| — 2
comparisons in the worst case.

*(b) Prove that every algorithm which finds the second largest element uses at least n +
[lgn] — 2 comparisons in the worst case.

2. Let R be a set of rectangles in the plane. For each point p in the plane, we say that the
rectangle depth of p is the number of rectangles in R that contain p.

(a) (Step 1: Algorithm Design) Design and analyze a polynomial-time algorithm which,
given R, computes the maximum rectangle depth.

(b) (Step 2: ???) Describe and analyze a polynomial-time reduction from the maximum
rectangle depth problem to the maximum clique problem.

(c) (Step 3: Profit!) In 2000, the Clay Mathematics Institute described the Millennium
Problems: seven challenging open problems which are central to ongoing mathematical
research. The Clay Institute established seven prizes, each worth one million dollars, to
be awarded to anyone who solves a Millennium problem. One of these problems is the
P = NP question. In (a), we developed a polynomial-time algorithm for the maximum
rectangle depth problem. In (b), we found a reduction from this problem to an NP-
complete problem. We know from class that if we find a polynomial-time algorithm for
any NP-complete problem, then we have shown P = NP Why hasn’t Jeff used (a) and
(b) to show P = NP and become a millionaire?

3. Let GG be a complete graph with integer edge weights. If C' is a cycle in GG, we say that the cost
of C' is the sum of the weights of edges in C'. Given G, the traveling salesman problem (TSP)
asks us to compute a Hamiltonian cycle of minimum cost. Given G, the traveling salesman
cost problem (TSCP) asks us to compute the cost of a minimum cost Hamiltonian cycle. Given
G and an integer k, the traveling salesman decision problem (TSDP) asks us to decide if there
is a Hamiltonian cycle in G of cost at most k.

(a) Describe and analyze a polynomial-time reduction from TSP to TSCP
(b) Describe and analyze a polynomial-time reduction from TSCP to TSDP

(c) Describe and analyze a polynomial-time reduction from TSDP to TSP

CS 473U Homework 8 Fall 2006

(d) What can you conclude about the relative computational difficulty of TSBE TSCB and
TSDP?

4. Let G be a graph. A set S of vertices of G is a dominating set if every vertex in G is either in
S or adjacent to a vertex in S. Show that, given GG and an integer k, deciding if G contains a
dominating set of size at most k is NP-complete.

CS473ug Head Banging Session #1 8/29/06 - 8/31/06

1. Probability

(a) m people have checked their hats with a hat clerk. The clerk is somewhat absent-minded and
returns the hats uniformly at random (with no regard for whether each hat is returned to its
owner). On average, how many people will get back their own hats?

(b) Let S be a uniformly random permutation of {1,2,...,n—1,n}. As we move from the left to the
right of the permutation, let X denote the smallest number seen so far. On average, how many
different values will X take?

2. A tournament is a directed graph where each pair of distinct vertices u,v has either the edge uv or
the edge vu (but not both). A Hamiltonian path is a (directed) path that visits each vertex of the
(di)graph. Prove that every tournament has a Hamiltonian path.

3. Describe and analyze a data structure that stores a set of n records, each with a numerical key, such
that the following operation can be performed quickly:
Foo(a): return the sum of the records with keys at least as large as a.

For example, if the keys are:

349658710

then Foo(2) would return 42, since 3,4, 5,6,7,8,9 are all larger than 2 and 3+4+5+6+7+8+9 = 42.

You may assume that no two records have equal keys, and that no record has a key equal to a. Analyze
both the size of your data structure and the running time of your Foo algorithm. Your data structure
must be as small as possible and your Foo algorithm must be as fast as possible.

CS473ug Head Banging Session #2 9/05/06 - 9/07/06

1. The Acme Company is planning a company party. In planning the party, each employee is assigned a
fun value (a positive real number). The goal of the party planners is to maximize the total fun value
(sum of the individual fun values) of the employees invited to the party. However, the planners are not
allowed to invite both an employee and his direct boss. Given a tree containing the boss/underling
structure of Acme, find the invitation list with the highest allowable fun value.

2. An inversion in an array A is a pair ¢, such that ¢ < j and A[i] > A[j]. (In an n-element array, the
number of inversions is between 0 and (g))

Find an efficient algorithm to count the number of inversions in an n-element array.

3. A tromino is a geometric shape made from three squares joined along complete edges. There are only
two possible trominoes: the three component squares may be joined in a line or an L-shape.

(a) Show that it is possible to cover all but one square of a 64 x 64 checkerboard using L-shape
trominoes. (In your covering, each tromino should cover three squares and no square should be
covered more than once.)

(b) Show that you can leave any single square uncovered.

(¢) Can you cover all but one square of a 64 x 64 checkerboard using line trominoes? If so, which
squares can you leave uncovered?

CS473ug Head Banging Session #2 9/12/06 - 9/14/06

1. Moving on a Checkerboard

Suppose that you are given an n x n checkerboard and a checker. You must move the checker from the
bottom edge of the board to the top edge of the board according to the following rule. At each step
you may move the checker to one of three squares:

1) the square immediately above

2) the square that is one up and one to the left (but only if the checker is not already in the leftmost
column)

3) the square that is one up and one to the right (but only if the checker is not already in the
rightmost column)

Each time you move from square x to square y, you receive p(x,y) dollars. You are given a list of the
values p(z,y) for each pair (x,y) for which a move from x to y is legal. Do not assume that p(z,y) is
positive.

Give an algorithm that figures out the set of moves that will move the checker from somewhere along
the bottom edge to somewhere along the top edge while gathering as many dollars as possible. You
algorithm is free to pick any square along the bottom edge as a starting point and any square along the
top edge as a destination in order to maximize the number of dollars gathered along the way. What is
the running time of your algorithm?

2. Maximizing Profit

You are given lists of values hi, hs, ...,y and l1,1ls,...,l;. For each ¢ you can choose j; = h;, j; = I,
or j; = 0; the only catch is that if j; = h; then j;—; must be 0 (except for i = 1). Your goal is to
maximize Ele Ji-

Give an efficient algorithm that returns the maximum possible value of Zle Ji-

3. Maximum alternating subsequence

An alternating sequence is a sequence aq, as, ... such that no three consecutive terms of the sequence
satisfy a; > a;41 > @42 O a; < 441 < Qiq0.

Given a sequence, efficiently find the longest alternating subsequence it contains. What is the running
time of your algorithm?

CS473ug Head Banging Session #3 9/19/06 - 9/21/06

1. Championship Showdown

What excitement! The Champaign Spinners and the Urbana Dreamweavers have advanced to meet
each other in the World Series of Basketweaving! The World Champions will be decided by a best
of 2n — 1 series of head-to-head weaving matches, and the first to win n matches will take home the
coveted Golden Basket (for example, a best-of-7 series requires four match wins, but we will keep the
generalized case). We know that for any given match there is a constant probability p that Champaign
will win, and a subsequent probability ¢ = 1 — p that Urbana will win.

Let P(i,j) be the probability that Champaign will win the series given that they still need i more
victories, whereas Urbana needs j more victories for the championship. P(0,j) = 1, 1 < j < n,
because Champaign needs no more victories to win. P(7,0) = 0, 1 < ¢ < n, as Champaign cannot
possibly win if Urbana already has. P(0,0) is meaningless. Champaign wins any particular match
with probability p and loses with probability ¢, so

for any ¢ > 1 and j > 1.

Create and analyze an O(n?)-time dynamic programming algorithm that takes the parameters n, p,
and ¢ and returns the probability that Champaign will win the series (that is, calculate P(n,n)).

2. Making Change

Suppose you are a simple shopkeeper living in a country with n different types of coins, with values
1=¢[1] < ¢]2] < -+ < ¢[n]. (In the U.S., for example, n = 6 and the values are 1, 5,10, 25,50, and
100 cents.) Your beloved benevolent dictator, El Generalissimo, has decreed that whenever you give a
customer change, you must use the smallest possible number of coins, so as not to wear out the image
of El Generalissimo lovingly engraved on each coin by servants of the Royal Treasury.

Describe and analyze a dynamic programming algorithm to determine, given a target amount A and
a sorted array c[l..n] of coin values, the smallest number of coins needed to make A cents in change.
You can assume that c[1] = 1, so that it is possible to make change for any amount A.

3. Knapsack

You are a thief, who is trying to choose the best collection of treasure (some subset of the n treasures,
numbered 1 through n) to steal. The weight of item ¢ is w; € IN and the profit is p; € IR. Let C € IN
be the maximum weight that your knapsack can hold. Your goal is to choose a subset of elements
S C{1,2,...,n} that maximizes your total profit P(S) =), ¢ pi, subject to the constraint that the
sum of the weights W (S) = >, g w; is not more than C.

Give an algorithm that runs in time O(Cn).

CS473ug Head Banging Session #4 9/27/06 - 9/28/06

1. Randomized Edge Cuts
We will randomly partition the vertex set of a graph G into two sets S and T'. The algorithm is to flip
a coin for each vertex and with probability 1/2, put it in S; otherwise put it in 7.
(a) Show that the expected number of edges with one endpoint in S and the other endpoint in T is
exactly half the edges in G.
(b) Now say the edges have weights. What can you say about the sum of the weights of the edges
with one endpoint in S and the other endpoint in 77
2. Skip Lists

A skip list is built in layers. The bottom layer is an ordinary sorted linked list. Each higher layer acts
as an “express lane” for the lists below, where an element in layer ¢ appears in layer ¢ + 1 with some
fixed probability p.

1
1---—- 4---6
1---3-4---6-----9

1-2-3-4-5-6-7-8-9-10

(a) What is the probability a node reaches height h.

(b) What is the probability any node is above clogn (for some fixed value of ¢)?
Compute the value explicitly when p =1/2 and ¢ = 4.

(c) To search for an entry z, scan the top layer until you find the last entry y that is less than or
equal to z. If y < x, drop down one layer and in this new layer (beginning at y) find the last
entry that is less than or equal to . Repeat this process (dropping down a layer, then finding the
last entry less than or equal to x) until you either find x or reach the bottom layer and confirm
that x is not in the skip list. What is the expected search time?

(d) Describe an efficient method for insertion. What is the expected insertion time?

3. Clock Solitaire

In a standard deck of 52 cards, put 4 face-down in each of the 12 ‘hour’ positions around a clock, and
4 face-down in a pile in the center. Turn up a card from the center, and look at the number on it.
If it’s number x, place the card face-up next to the face-down pile for x, and turn up the next card
in the face-down pile for z (that is, the face-down pile corresponding to hour x). You win if, for each
Ace < z < Queen, all four cards of value x are turned face-up before all four Kings (the center cards)
are turned face-up.

What is the probability that you win a game of Clock Solitaire?

CS473ug Head Banging Session #b5 10/03/06 - 10/05/06

1. Simulating Queues with Stacks

A queue is a first-in-first-out data structure. It supports two operations push and pop. Push adds a
new item to the back of the queue, while pop removes the first item from the front of the queue. A
stack is a last-in-first-out data structure. It also supports push and pop. As with a queue, push adds
a new item to the back of the queue. However, pop removes the last item from the back of the queue
(the one most recently added).

Show how you can simulate a queue by using two stacks. Any sequence of pushes and pops should run
in amortized constant time.

2. Multistacks

A multistack consists of an infinite series of stacks Sy, S1,59,..., where the ith stack S; can hold up
to 3 elements. Whenever a user attempts to push an element onto any full stack S;, we first move
all the elements in S; to stack S;;1 to make room. But if S;y; is already full, we first move all its
members to S;4+2, and so on. To clarify, a user can only push elements onto Sy. All other pushes and
pops happen in order to make space to push onto Sy. Moving a single element from one stack to the

next takes O(1) time.

> $>P >
N L1 L

Figure 1. Making room for one new element in a multistack.

DS [T T T T T T T T TTTTTT]
[]

:

(a) In the worst case, how long does it take to push one more element onto a multistack containing
n elements?

(b) Prove that the amortized cost of a push operation is O(logn), where n is the maximum number
of elements in the multistack.

3. Powerhungry function costs

A sequence of n operations is performed on a data structure. The ith operation costs ¢ if 7 is an exact
power of 2, and 1 otherwise. Determine the amortized cost of the operation.

CS473ug Head Banging Session #6 10/10/06 - 10/12/06

1. Representation of Integers

(a) Prove that any positive integer can be written as the sum of distinct nonconsecutive Fibonacci
numbers—if F;, appears in the sum, then neither F, 1 nor F,,_; will. For example: 42 = Fy + Fg,
25 =Fg+ Fy+ F5, 17T =F; + F, + F5.

(b) Prove that any integer (positive, negative, or zero) can be written in the form Y, £3’, where the
exponents i are distinct non-negative integers. For example 42 = 3% —33—-32-31, 25 = 3331430,
17 =3% - 32 - 30,

2. Minimal Dominating Set

Suppose you are given a rooted tree T (not necessarily binary). You want to label each node in T
with an integer 0 or 1, such that every node either has the label 1 or is adjacent to a node with the
label 1 (or both). The cost of a labeling is the number of nodes with label 1. Describe and analyze an
algorithm to compute the minimum cost of any labeling of the given tree T

3. Names in Boxes

The names of 100 prisoners are placed in 100 wooden boxes, one name to a box, and the boxes are lined
up on a table in a room. One by one, the prisoners are led into the room; each may look in at most
50 boxes, but must leave the room exactly as he found it and is permitted no further communication
with the others.

The prisoners have a chance to plot their strategy in advance, and they are going to need it, because
unless every single prisoner finds his own name all will subsequently be executed. Find a strategy for
them which has probability of success exceeding 30%. You may assume that the names are distributed
in the boxes uniformly at random.

(a) Calculate the probability of success if each prisoner picks 50 boxes uniformly at random.

*(b) Consider the following strategy.
The prisoners number themselves 1 to 100. Prisoner ¢ begins by looking in box . There he finds
the name of prisoner j. If j # 4, he continues by looking in box j. As long as prisoner i has not
found his name, he continues by looking in the box corresponding to the last name he found.
Describe the set of permutations of names in boxes for which this strategy will succeed.

*(c) Count the number of permutations for which the strategy above succeeds. Use this sum to

calculate the probability of success. You may find it useful to do this calculation for general n,
then set n = 100 at the end.

(d) We assumed that the names were distributed in the boxes uniformly at random. Explain how the
prisoners could augment their strategy to make this assumption unnecessary.

CS473ug Head Banging Session #7 10/17/06 - 10/19/06

1. Dynamic MSTs

Suppose that you already have a minimum spanning tree (MST) in a graph. Now one of the edge
weights changes. Give an efficient algorithm to find an MST in the new graph.

2. Minimum Bottleneck Trees

In a graph G, for any pair of vertices u, v, let bottleneck(u,v) be the maximum over all paths p; from
u to v of the minimum-weight edge along p;. Construct a spanning tree T' of G such that for each pair
of vertices, their bottleneck in G is the same as their bottleneck in T

One way to think about it is to imagine the vertices of the graph as islands, and the edges as bridges.
Each bridge has a maximum weight it can support. If a truck is carrying stuff from v to v, how much
can the truck carry? We don’t care what route the truck takes; the point is that the smallest-weight
edge on the route will determine the load.

3. Eulerian Tours

<

An Eulerian tour is a “walk along edges of a graph” (in which successive edges must have a common
endpoint) that uses each edge exactly once and ends at the vertex where it starts. A graph is called
Eulerian if it has an Eulerian tour.

Prove that a connected graph is Eulerian iff each vertex has even degree.

CS473ug Head Banging Session #8 10/24/06 - 10/26/06

1. Alien Abduction

Mulder and Scully have computed, for every road in the United States, the exact probability that
someone driving on that road won’t be abducted by aliens. Agent Mulder needs to drive from Langley,
Virginia to Area 51, Nevada. What route should he take so that he has the least chance of being
abducted?

More formally, you are given a directed graph G = (V, E), where every edge e has an independent
safety probability p(e). The safety of a path is the product of the safety probabilities of its edges.
Design and analyze an algorithm to determine the safest path from a given start vertex s to a given
target vertex t.

2. The Only SSSP Algorithm
In the lecture notes, Jeff mentions that all SSSP algorithms are special cases of the following generic
SSSP algorithm. Each vertex v in the graph stores two values, which describe a tentative shortest path
from s to v.
e dist(v) is the length of the tentative shortest s ~» v path.
e pred(v) is the predecessor of v in the shortest s ~» v path.

We call an edge tense if dist(u) + w(u — v) < dist(v). Our generic algorithm repeatedly finds a tense
edge in the graph and relazes it:

Relax(u — v):
dist(v) « dist(u) + w(u — v)
pred(v) « u

If there are no tense edges, our algorithm is finished, and we have our desired shortest path tree. The
correctness of the relaxation algorithm follows directly from three simple claims. The first of these is
below. Prove it.

e When the algorithm halts, if dist(v) # oo, then dist(v) is the total weight of the predecessor chain
ending at v:
§— - — (pred(pred(v)) — pred(v) — v.

3. Can’t find a Cut-edge

A cut-edge is an edge which when deleted disconnects the graph. Prove or disprove the following.
Every 3-regular graph has no cut-edge. (A common approach is induction.)

CS473ug Head Banging Session #9 11/1/06 - 11/2/06

1. Max-Flow with vertex capacities

In a standard s — ¢ Maximum-Flow Problem, we assume edges have capacities, and there is no limit
on how much flow is allowed to pass through a node. In this problem, we consider the variant of
Maximum-Flow and Minimum-Cut problems with node capacities.

More specifically, each node, n;, has a capacity ¢;. The edges have unlimited capacity. Show how you
can model this problem as a standard Max-flow problem (where the weights are on the edges).

2. Emergency evacuation

Due to large-scale flooding in a region, paramedics have identified a set of n injured people distributed
across the region who need to be reushed to hospitals. There are k hospitals in the region, and each of
the n people needs to be brought to a hospital that is within a half-hour’s driving time of their current
location.

At the same time, we don’t want to overload any hospital by sending too many patients its way. We’d
like to distribute the people so that each hospital receives at most [n/k] people.

Show how to model this problem as a Max-flow problem.

3. Tracking a Hacker

A computer network (with each edge weight 1) is designed to carry traffic from a source s to a
destination t. Recently, a computer hacker destroyed some of the edges in the graph. Normally, the
maximum s — ¢t flow in G is k. Unfortunately, there is currently no path from s to ¢. Fortunately, the
sysadmins know that the hacker destroyed at most k edges of the graph.

The sysadmins are trying to diagnose which of the nodes of the graph are no longer reachable. They
would like to avoid testing each node. They are using a monitoring tool with the following behavior.
If you use the command ping(v), for a given node v, it will tell you whether there is currently a path
from s to v (so ping(t) will return False but ping(s) will return True).

Give an algorithm that accomplishes this task using only O(klogn) pings. (You may assume that any
algorithm you wish to run on the original network (before the hacker destroyed edges) runs for free,
since you have a model of that network on your computer.)

CS473ug Head Banging Session #10 11/07/06 - 11/09/06

1. Updating a maximum flow

Suppose you are given a directed graph G = (V, E), with a positive integer capacity c. on each edge
e, a designated source s € V', and a designated sink ¢ € V. You are also given a maximum s — ¢t flow
in G, defined by a flow value f, on each edge e. The flow {f.} is acyclic: There is no cycle in G on
which all edges carry positive flow.

Now suppose we pick a specific edge e* € E and reduce its capacity by 1 unit. Show how to find a
maximum flow in the resulting capacitated graph in time O(m + n), where m is the number of edges
in G and n is the number of nodes.

2. Cooking Schedule

You live in a cooperative apartment with n other people. The co-op needs to schedule cooks for the
next n days, so that each person cooks one day and each day there is one cook. In addition, each
member of the co-op has a list of days they are available to cook (and is unavailable to cook on the
other days).

Because of your superior CS473 skills, the co-op selects you to come up with a schedule for cooking,
so that everyone cooks on a day they are available.

(a) Describe a bipartite graph G so that G has a perfect matching if and only if there is a feasible
schedule for the co-op.

(b) A friend of yours tried to help you out by coming up with a cooking schedule. Unfortunately,
when you look at the schedule he created, you notice a big problem. n — 2 of the people are
scheduled for different nights on which they are available: no problem there. But the remaining
two people are assigned to cook on the same night (and no one is assigned to the last night).

You want to fix your friend’s mistake, but without having to recompute everything from scratch.
Show that it’s possible, using his “almost correct” schedule to decide in O(n?) time whether there
exists a feasible schedule.

3. Disjoint paths in a digraph

Let G = (V, E) be a directed graph, and suppose that for each node v, the number of edges into v is
equal to the number of edges out of v. That is, for all v,

{(u,0) : (u,0) € B} = [{(v,w) : (v,w) € E}|.

Let x,y be two nodes of G, and suppose that there exist k¥ mutually edge-disjoint paths from z to y.
Under these conditions, does it follow that there exist k£ mutually edge-disjoint paths from y to z. Give
a proof or a counterexample with explanation.

CS473ug Head Banging Session #11 11/14/06 - 11/16/06

1. String matching: an example

(a) Build a finite automata to search for the string “bababoon”.
(b) Use the automata from part (a) to build the prefix function for Knuth-Morris-Pratt.

(c) Use the automata or the prefix function to search for “bababoon” in the string “babybaboon-
buysbananasforotherbabybababoons”.

2. Cooking Schedule Strikes Back

You live in a cooperative apartment with n other people. The co-op needs to schedule cooks for the
next 5n days, so that each person cooks five days and each day there is one cook. In addition, each
member of the co-op has a list of days they are available to cook (and is unavailable to cook on the
other days).

Because of your success at headbanging last week, the co-op again asks you to compose a cooking
schedule. Unfortunately, you realize that no such schedule is possible Give a schedule for the cooking
so that no one has to cook on more than 2 days that they claim to be unavailable.

3. String matching on Trees

You are given a rooted tree T (not necessarily binary), in which each node has a character. You are
also given a pattern P = pyps---p;. Search for the string as a subtree. In other words, search for a
subtree in which p; is on a child of the node containing p; 1 for each 2 <17 <.

CS473ug Head Banging Session #12 11/28/06 - 11/30/06

1. Self-reductions
In each case below assume that you are given a black box which can answer the decision version of the
indicated problem. Use a polynomial number of calls to the black box to construct the desired set.
(a) Independent set: Given a graph G and an integer k, does G have a subset of k vertices that are
pairwise nonadjacent?

(b) Subset sum: Given a multiset (elements can appear more than once) X = {x1,z2,..., 25} of
positive integers, and a positive integer S does there exist a subset of X with sum exactly S?

2. Lower Bounds

Give adversary arguments to prove the indicated lower bounds for the following problems:

(a) Searching in a sorted array takes at least 1+ |lgy n| queries.

(b) Let M be an n x n array of real values that is increasing in both rows and columns. Prove that
searching for a value requires at least n queries.

3. k-coloring

Show that we can solve the problem of constructing a k-coloring of a graph by using a polynomial
number of calls to a black box that determines whether a graph has such a k-coloring. (Hint: Try
reducing via an intermediate problem that asks whether a partial coloring of a graph can be extended
to a proper k-coloring.)

CS473ug Head Banging Session #13 12/05/06 - 12/07/06

1. NP-hardness Proofs: Restriction
Prove that each of the following problems is NP-hard. In each part, find a special case of the given
problem that is equivalent to a known NP-hard problem.

(a) Longest Path
Given a graph G and a positive integer k, does G contain a path with k or more edges?

(b) Partition into Hamiltonian Subgraphs
Given a graph G and a positive integer k, can the vertices of G be partitioned into at most k
disjoint sets such that the graph induced by each set has a Hamiltonian cycle?

(c) Set Packing
Given a collection of finite sets C' and a positive integer k, does C contain k disjoint sets?

(d) Largest Common Subgraph
Given two graphs G7 and G5 and a positive integer k, does there exist a graph G3 such that G3
is a subgraph of both G; and G2 and G3 has at least k edges?

2. Domino Line
You are given an unusual set of dominoes; each domino has a number on each end, but the numbers
may be arbitarily large and some numbers appear on many dominoes, while other numbers only appear
on a few dominoes. Your goal is to form a line using all the dominoes so that adjacent dominoes have
the same number on their adjacent halves. Either give an efficient algorithm to solve the problem or
show that it is NP-hard.

3. Set Splitting
Given a finite set S and a collection of subsets C' is there a partition of S into two sets S; and S5 such
that no subset in C' is contained entirely in S; or S2? Show that the problem is NP-hard. (Hint: use
NAE-3SAT, which is similar to 3SAT except that a satisfying assingment does not allow all 3 variables
in a clause to be true.)

CS 473U Midterm 1 Questions (September 26, 2006) Fall 2006

You have 120 minutes to answer four of these five questions.

Write your answers in the separate answer booklet.

1. Multiple Choice.

Each of the questions on this page has one of the following five answers:

A: O(1) B: ©(logn) C: O(n) D: ©(nlogn) E: ©(n?)

Choose the correct answer for each question. Each correct answer is worth +1 point; each
incorrect answer is worth —% point; each “I don’t know” is worth —1& point. Your score will
be rounded to the nearest non-negative integer. You do not need to justify your answers; just
write the correct letter in the box.

(a) Whatis > + "2
n 5

(b) Whatis > s
1
=1

(c) What is E i?
n
i=1

(d) How many bits are required to represent the nth Fibonacci number in binary?
(e) What is the solution to the recurrence T'(n) = 27'(n/4) + ©(n)?

(f) What is the solution to the recurrence T'(n) = 167'(n/4) + O(n)?

(g) What is the solution to the recurrence T'(n) = T'(n — 1) + 1/n??

(h) What is the worst-case time to search for an item in a binary search tree?

(i) What is the worst-case running time of quicksort?

(j) What is the running time of the fastest possible algorithm to solve Sudoku puzzles?
A Sudoku puzzle consists of a 9 x 9 grid of squares, partitioned into nine 3 x 3 sub-grids;
some of the squares contain digits between 1 and 9. The goal of the puzzle is to enter
digits into the blank squares, so that each digit between 1 and 9 appears exactly once in
each row, each column, and each 3 x 3 sub-grid. The initial conditions guarantee that
the solution is unique.

2 4
7 5
1 9
6 4 2
8 5
9 3 7
1 4
3 8
5 6

A Sudoku puzzle. Don’t try to solve this during the exam!

CS 473U Midterm 1 Questions (September 26, 2006) Fall 2006

2. Oh, no! You have been appointed as the gift czar for Giggle, Inc.’s annual mandatory holiday
party! The president of the company, who is certifiably insane, has declared that every Giggle
employee must receive one of three gifts: (1) an all-expenses-paid six-week vacation any-
where in the world, (2) an all-the-pancakes-you-can-eat breakfast for two at Jumping Jack
Flash’s Flapjack Stack Shack, or (3) a burning paper bag full of dog poop. Corporate regu-
lations prohibit any employee from receiving the same gift as his/her direct supervisor. Any
employee who receives a better gift than his/her direct supervisor will almost certainly be
fired in a fit of jealousy. How do you decide what gifts everyone gets if you want to minimize
the number of people that get fired?

More formally, suppose you are given a rooted tree T, representing the company hierarchy.
You want to label each node in 7" with an integer 1, 2, or 3, such that every node has a different
label from its parent.. The cost of an labeling is the number of nodes that have smaller labels
than their parents. Describe and analyze an algorithm to compute the minimum cost of
any labeling of the given tree 7. (Your algorithm does not have to compute the actual best
labeling—just its cost.)

A tree labeling with cost 9. Bold nodes have smaller labels than their parents.
This is not the optimal labeling for this tree.

3. Suppose you are given an array A[l..n] of n distinct integers, sorted in increasing order.
Describe and analyze an algorithm to determine whether there is an index i such that A[i] = 1,
in o(n) time. [Hint: Yes, that’s little-oh of n. What can you say about the sequence A[i] —i?]

4. Describe and analyze a polynomial-time algorithm to compute the length of the longest com-
mon subsequence of two strings A[1..m] and BJ[1 .. n|. For example, given the strings DYNAMIC’
and ‘PROGRAMMING’, your algorithm would return the number 3, because the longest common
subsequence of those two strings is ‘AMI’. You must give a complete, self-contained solution;
don’t just refer to HW1.

CS 473U Midterm 1 Questions (September 26, 2006) Fall 2006

5. Recall that the Tower of Hanoi puzzle consists of three pegs and n disks of different sizes.
Initially, all the disks are on one peg, stacked in order by size, with the largest disk on the
bottom and the smallest disk on top. In a single move, you can transfer the highest disk on
any peg to a different peg, except that you may never place a larger disk on top of a smaller
one. The goal is to move all the disks onto one other peg.

Now suppose the pegs are arranged in a row, and you are forbidden to transfer a disk directly
between the left and right pegs in a single move; every move must involve the middle peg.
How many moves suffice to transfer all n disks from the left peg to the right peg under this
restriction? Prove your answer is correct.

For full credit, give an exact upper bound. A correct upper bound using O(+) notation (with a
proof of correctness) is worth 7 points.

= A LN EN

The first nine moves in a restricted Towers of Hanoi solution.

CS 473U Midterm 2 Questions (October 31, 2006) Fall 2006

1. On an overnight camping trip in Sunnydale National Park, you are woken from a restless

sleep by a scream. As you crawl out of your tent to investigate, a terrified park ranger runs
out of the woods, covered in blood and clutching a crumpled piece of paper to his chest. As he
reaches your tent, he gasps, “Get out...while...you...”, thrusts the paper into your hands,
and falls to the ground. Checking his pulse, you discover that the ranger is stone dead.

You look down at the paper and recognize a map of the park, drawn as an undirected graph,
where vertices represent landmarks in the park, and edges represent trails between those
landmarks. (Trails start and end at landmarks and do not cross.) You recognize one of the
vertices as your current location; several vertices on the boundary of the map are labeled
EXIT.

On closer examination, you notice that someone (perhaps the poor dead park ranger) has
written a real number between 0 and 1 next to each vertex and each edge. A scrawled
note on the back of the map indicates that a number next to an edge is the probability of
encountering a vampire along the corresponding trail, and a number next to a vertex is the
probability of encountering a vampire at the corresponding landmark. (Vampires can’t stand
each other’s company, so you’ll never see more than one vampire on the same trail or at the
same landmark.) The note warns you that stepping off the marked trails will result in a slow
and painful death.

You glance down at the corpse at your feet. Yes, his death certainly looked painful. Wait, was
that a twitch? Are his teeth getting longer? After driving a tent stake through the undead
ranger’s heart, you wisely decide to leave the park immediately.

Describe and analyze an efficient algorithm to find a path from your current location to an
arbitrary EXIT node, such that the total expected number of vampires encountered along the
path is as small as possible. Be sure to account for both the vertex probabilities and the edge
probabilities!

. Consider the following solution for the union-find problem, called union-by-weight. Each set
leader = stores the number of elements of its set in the field weight(Z). Whenever we UNION
two sets, the leader of the smaller set becomes a new child of the leader of the larger set
(breaking ties arbitrarily).

MAKESET(1): e)
parent(z) — 7 « FIND(y)
weight(z) « 1 if weight(z) > weight (%)
: parent(y) «— T
%zﬂ # parent(z) else HASHLT) = elghe() i)
x « parent(z) parent(T) — 7
return x weight(T) « weight(T) + weight(7)

Prove that if we use union-by-weight, the worst-case running time of FIND is O(logn).

CS 473U Midterm 2 Questions (October 31, 2006) Fall 2006

3. Prove or disprove' each of the following statements.

(a) Let G be an arbitrary undirected graph with arbitrary distinct weights on the edges. The
minimum spanning tree of GG includes the lightest edge in every cycle in G.

(b) Let G be an arbitrary undirected graph with arbitrary distinct weights on the edges. The
minimum spanning tree of G excludes the heaviest edge in every cycle in G.

4. In Homework 2, you were asked to analyze the following algorithm to find the kth smallest
element from an unsorted array. (The algorithm is presented here in iterative form, rather
than the recursive form you saw in the homework, but it’s exactly the same algorithm.)

QUICKSELECT(A[1..n], k):
1—1;5n
while i < j
r < PARTITION(A[¢ .. j], RANDOM(4, 5))
ifr==%
return Alr]
elseif r > k
je—r—1
else
te—r+1

The algorithm relies on two subroutines. RANDOM(3, j) returns an integer chosen uniformly
at random from the range [i .. j]. PARTITION(A[: .. j], p) partitions the subarray Ai..j| using
the pivot value A[p] and returns the new index of the pivot value in the partitioned array.

What is the exact expected number of iterations of the main loop when k£ = 1? Prove your
answer is correct. A correct O(-) bound (with proof) is worth 7 points. You may assume that
the input array A[] contains n distinct integers.

5. Find the following spanning trees for the weighted graph shown below.

(a) A breadth-first spanning tree rooted at s.
(b) A depth-first spanning tree rooted at s.
(c) A shortest-path tree rooted at s.

(d) A minimum spanning tree.

You do not need to justify your answers; just clearly indicate the edges of each spanning tree.
Yes, one of the edges has negative weight.

'But not both! If you give us both a proof and a disproof for the same statement, you will get no credit, even if one of
your arguments is correct.

CS 473U Final Exam Questions (December 15, 2006) Fall 2006

1. A double-Hamiltonian circuit in an undirected graph G is a closed walk that visits every vertex
in G exactly twice, possibly by traversing some edges more than once. Prove that it is NP-hard
to determine whether a given undirected graph contains a double-Hamiltonian circuit.

2. Suppose you are running a web site that is visited by the same set of people every day. Each
visitor claims membership in one or more demographic groups; for example, a visitor might
describe himself as male, 31-40 years old, a resident of Illinois, an academic, a blogger, a Joss
Whedon fan', and a Sports Racer.? Your site is supported by advertisers. Each advertiser has
told you which demographic groups should see its ads and how many of its ads you must
show each day. Altogether, there are n visitors, k demographic groups, and m advertisers.

Describe an efficient algorithm to determine, given all the data described in the previous
paragraph, whether you can show each visitor exactly one ad per day, so that every advertiser
has its desired number of ads displayed, and every ad is seen by someone in an appropriate
demographic group.

3. Describe and analyze a data structure to support the following operations on an array X|[1 .. n]
as quickly as possible. Initially, X[i] = 0 for all 7.

e Given an index 7 such that X[i;] = 0, set X[i] to 1.
e Given an index 7, return X [i].

e Given an index i, return the smallest index j > ¢ such that X[j] = 0, or report that no
such index exists.

For full credit, the first two operations should run in worst-case constant time, and the amor-
tized cost of the third operation should be as small as possible. [Hint: Use a modified union-
find data structure.]

4. The next time you are at a party, one of the guests will suggest everyone play a round of Three-
Way Mumbledypeg, a game of skill and dexterity that requires three teams and a knife. The
official Rules of Three-Way Mumbledypeg (fixed during the Holy Roman Three-Way Mum-
bledypeg Council in 1625) require that (1) each team must have at least one person, (2) any
two people on the same team must know each other, and (3) everyone watching the game
must be on one of the three teams. Of course, it will be a really fun party; nobody will want
to leave. There will be several pairs of people at the party who don’t know each other. The
host of the party, having heard thrilling tales of your prowess in all things algorithmic, will
hand you a list of which pairs of partygoers know each other and ask you to choose the teams,
while he sharpens the knife.

Either describe and analyze a polynomial time algorithm to determine whether the party-
goers can be split into three legal Three-Way Mumbledypeg teams, or prove that the problem
is NP-hard.

'Har har har! Mine is an evil laugh! Now die!
2It’s Ride the Fire Eagle Danger Day!

CS 473U Final Exam Questions (December 15, 2006) Fall 2006

5. Suppose you are given a stack of n pancakes of different sizes. You want to sort the pancakes
so that smaller pancakes are on top of larger pancakes. The only operation you can perform
is a flip—insert a spatula under the top k pancakes, for some integer k& between 1 and n, and
flip them all over.

= =

Flipping the top three pancakes.

(a) Describe an efficient algorithm to sort an arbitrary stack of n pancakes. Exactly how
many flips does your algorithm perform in the worst case? (For full credit, your al-
gorithm should perform as few flips as possible; an optimal () bound is worth three
points.)

(b) Now suppose one side of each pancake is burned. Exactly how many flips do you need
to sort the pancakes and have the burned side of every pancake on the bottom? (For full
credit, your algorithm should perform as few flips as possible; an optimal ©() bound is
worth three points.)

6. Describe and analyze an efficient algorithm to find the length of the longest substring that
appears both forward and backward in an input string 7'[1 .. n]. The forward and backward
substrings must not overlap. Here are several examples:

e Given the input string ALGORITHM, your algorithm should return 0.

e Given the input string RECURSION, your algorithm should return 1, for the substring R.

e Given the input string REDIVIDE, your algorithm should return 3, for the substring EDI.
(The forward and backward substrings must not overlap!)

Given the input string DYNAMICPROGRAMMINGMANYTIMES, your algorithm should
return 4, for the substring YNAM.

For full credit, your algorithm should run in O(n?) time.

7. A double-Eulerian circuit in an undirected graph G is a closed walk that traverses every edge
in G exactly twice. Describe and analyze a polynomial-time algorithm to determine whether
a given undirected graph contains a double-Eulerian circuit.

	hw0.pdf
	hw1.pdf
	hw2.pdf
	hw3.pdf
	hw4.pdf
	hw5.pdf
	hw6.pdf
	hw7.pdf
	hw8.pdf
	hbs0.pdf
	hbs1.pdf
	hbs2.pdf
	hbs3.pdf
	hbs4.pdf
	hbs5.pdf
	hbs6.pdf
	hbs7.pdf
	hbs8.pdf
	hbs9.pdf
	hbs10.pdf
	hbs11.pdf
	hbs12.pdf
	hbs13.pdf
	mt1.pdf
	mt2.pdf
	final.pdf

