CS 573: Graduate Algorithms, Fall 2008
Homework 0

Due in class at 12:30pm, Wednesday, September 3, 2008

Name:
Net ID: Alias:

I understand the course policies.

e Each student must submit their own solutions for this homework. For all future homeworks,
groups of up to three students may submit a single, common solution.

e Neatly print your full name, your NetID, and an alias of your choice in the boxes above, and staple
this page to the front of your homework solutions. We will list homework and exam grades on the
course web site by alias.

Federal privacy law and university policy forbid us from publishing your grades, even anonymously,
without your explicit written permission. By providing an alias, you grant us permission to list
your grades on the course web site. If you do not provide an alias, your grades will not be
listed. For privacy reasons, your alias should not resemble your name, your NetID, your university
ID number, or (God forbid) your Social Security number.

e Please carefully read the course policies linked from the course web site. If you have any questions,
please ask during lecture or office hours, or post your question to the course newsgroup. Once you
understand the policies, please check the box at the top of this page. In particular:

- You may use any source at your disposal—paper, electronic, or human—but you must write
your solutions in your own words, and you must cite every source that you use.

— Unless explicitly stated otherwise, every homework problem requires a proof.
— Answering “I don’t know” to any homework or exam problem is worth 25% partial credit.

— Algorithms or proofs containing phrases like “and so on” or “repeat this for all n”, instead of
an explicit loop, recursion, or induction, will receive O points.

e This homework tests your familiarity with prerequisite material—big-Oh notation, elementary
algorithms and data structures, recurrences, discrete probability, graphs, and most importantly,
induction—to help you identify gaps in your background knowledge. You are responsible for
filling those gaps. The early chapters of any algorithms textbook should be sufficient review, but
you may also want consult your favorite discrete mathematics and data structures textbooks. If
you need help, please ask in office hours and/or on the course newsgroup.

CS 573 Homework 0 (due September 3, 2008) Fall 2008

1. (a) [5 pts] Solve the following recurrences. State tight asymptotic bounds for each function in
the form ©(f (n)) for some recognizable function f(n). Assume reasonable but nontrivial
base cases. If your solution requires a particular base case, say so.

A(n) =4A(n/8) + vn
B(n) =B(n/3)+2B(n/4)+B(n/6)+n
C(n)=6C(n—1)—9C(n—2)

D(n) = n/33}<a<)§n/3 (D(k)+D(n—k)+n)

E(n) = (E(vn)*-n

(b) [5 pts] Sort the functions in the box from asymptotically smallest to asymptotically largest,
indicating ties if there are any. Do not turn in proofs—just a sorted list of 16 functions—but
you should do them anyway;, just for practice. We use the notation lgn = log, n.

n lgn vn 3"
lgn 1g+v/n 3vn V3

Blgn lg(S”) Blgﬁ 3 Ign

V38n 1g(3V) 1gv/3T 4/1g(3M)

2. Describe and analyze a data structure that stores set of n records, each with a numerical key and a
numerical priority, such that the following operation can be performed quickly:

e RaNGEToOP(a,z) : return the highest-priority record whose key is between a and z.

For example, if the (key, priority) pairs are
(3,1), (4,9), (9,2), (6,3), (5,8), (7,5), (1,10), (0,7),

then RaNGEToP(2, 8) would return the record with key 4 and priority 9 (the second in the list).

Analyze both the size of your data structure and the running time of your RANGEToP algorithm.
For full credit, your space and time bounds must both be as small as possible. You may assume
that no two records have equal keys or equal priorities, and that no record has a or z as its key.
[Hint: How would you compute the number of keys between a and z? How would you solve the
problem if you knew that a is always —oo?]

CS 573 Homework 0 (due September 3, 2008) Fall 2008

3. A Hamiltonian path in G is a path that visits every vertex of G exactly once. In this problem, you
are asked to prove that two classes of graphs always contain a Hamiltonian path.

(a) [5 pts] A tournament is a directed graph with exactly one edge between each pair of vertices.
(Think of the nodes in a round-robin tournament, where edges represent games, and each
edge points from the loser to the winner.) Prove that every tournament contains a directed
Hamiltonian path.

(b) [5 pts] Let d be an arbitrary non-negative integer. The d-dimensional hypercube is the graph
defined as follows. There are 2¢ vertices, each labeled with a different string of d bits. Two
vertices are joined by an edge if and only if their labels differ in exactly one bit. Prove that
the d-dimensional hypercube contains a Hamiltonian path.

Hamiltonian paths in a 6-node tournament and a 3-dimensional hypercube.

4. Penn and Teller agree to play the following game. Penn shuffles a standard decl<E| of playing
cards so that every permutation is equally likely. Then Teller draws cards from the deck, one at a
time without replacement, until he draws the three of clubs (3é&), at which point the remaining
undrawn cards instantly burst into flames.

The first time Teller draws a card from the deck, he gives it to Penn. From then on, until the
game ends, whenever Teller draws a card whose value is smaller than the last card he gave to
Penn, he gives the new card to PennE] To make the rules unambiguous, they agree beforehand
that A=1,J=11,Q=12,and K =13.

(a) What is the expected number of cards that Teller draws?
(b) What is the expected maximum value among the cards Teller gives to Penn?
(c) What is the expected minimum value among the cards Teller gives to Penn?

(d) What is the expected number of cards that Teller gives to Penn?

Full credit will be given only for exact answers (with correct proofs, of course). [Hint: Let 13 =n.]

'In a standard deck of playing cards, each card has a value in the set {4,2,3,4,5,6,7,8,9,10,J,Q,K} and a suit in the
set {#, 0, &, {}; each of the 52 possible suit-value pairs appears in the deck exactly once. Actually, to make the game more
interesting, Penn and Teller normally use razor-sharp ninja throwing cards.

2Specifically, he hurls them from the opposite side of the stage directly into the back of Penn’s right hand. Ouch!

CS 573 Homework 0 (due September 3, 2008) Fall 2008
5. (a) The Fibonacci numbers F, are defined by the recurrence F, = F,,_; + F,_,, with base cases
Fy =0 and F; = 1. Here are the first several Fibonacci numbers:
Fo | Fy | Fy | Fs | F4|Fs|Fe|Fy | Fg | Fo | Fig
O]1|1|2]3[5]8]13|21[34|55
Prove that any non-negative integer can be written as the sum of distinct, non-consecutive
Fibonacci numbers. That is, if the Fibonacci number F; appears in the sum, it appears exactly
once, and its neighbors F;_; and F;,; do not appear at all. For example:
17:F7+F4+F2, 42:F9+F6, 54:F9+F7+F5+F3+F1
(b) The Fibonacci sequence can be extended backward to negative indices by rearranging the
defining recurrence: F, = F,,, — F,;,. Here are the first several negative-index Fibonacci
numbers:
F_yo|Foo| Fg |Fg|Fg|Fs|F4|Fs|Fy|F,
—55[34|-21|13|-8] 5 |-3]2|-1]1
Prove that F_, = —F,, if and only if n is even.
(c) Prove that any integer—positive, negative, or zero—can be written as the sum of distinct,

non-consecutive Fibonacci numbers with negative indices. For example:

17:F_7+F_5+F_2, —42:F_10+F_7, 54=F_9+F_7+F_5+F_3+F_1.

[Hint: Zero is both non-negative and even. Don’t use weak induction!]

CS 573: Graduate Algorithms, Fall 2008
Homework 1

Due at 11:59:59pm, Wednesday, September 17, 2008

For this and all future homeworks, groups of up to three students may submit a single,
common solution. Please neatly print (or typeset) the full name, NetID, and alias (if any) of
every group member on the first page of your submission.

1. Two graphs are said to be isomorphic if one can be transformed into the other just by relabeling the
vertices. For example, the graphs shown below are isomorphic; the left graph can be transformed
into the right graph by the relabeling (1, 2,3,4,5,6,7) — (c, g, b,e,a, f,d).

Two isomorphic graphs.

Consider the following related decision problems:

e GrAPHISOMORPHISM: Given two graphs G and H, determine whether G and H are isomorphic.

e EVENGRAPHISOMORPHISM: Given two graphs G and H, such that every vertex in G and H has
even degree, determine whether G and H are isomorphic.

e SUBGRAPHISOMORPHISM: Given two graphs G and H, determine whether G is isomorphic to a
subgraph of H.

(a) Describe a polynomial-time reduction from EVENGRAPHISOMORPHISM t0 GRAPHISOMORPHISM.
(b) Describe a polynomial-time reduction from GRAPHISOMORPHISM to EVENGRAPHISOMORPHISM.
(c) Describe a polynomial-time reduction from GRAPHISOMORPHISM t0 SUBGRAPHISOMORPHISM.
(d) Prove that SuBGrRAPHISOMORPHISM is NP-complete.

(e) What can you conclude about the NP-hardness of GRAPHIsOMORPHIsSM? Justify your answer.

[Hint: These are all easy!]

2. (a) A tonian path in a graph G is a path that goes through at least half of the vertices of G. Show
that determining whether a graph has a tonian path is NP-complete.

(b) A tonian cycle in a graph G is a cycle that goes through at least half of the vertices of G. Show
that determining whether a graph has a tonian cycle is NP-complete. [Hint: Use part (a).]

3. The following variant of 3SaT is called either ExacT3SAT or 11N3SAT, depending on who you ask.

Given a boolean formula in conjunctive normal form with 3 literals per clause, is there
an assignment that makes exactly one literal in each clause TRUE?

Prove that this problem is NP-complete.

CS 573 Homework 2 (due September 17, 2008) Fall 2008

4. Suppose you are given a magic black box that can solve the MAaxCLIQUE problem in polynomial
time. That is, given an arbitrary graph G as input, the magic black box computes the number of
vertices in the largest complete subgraph of G. Describe and analyze a polynomial-time algorithm
that computes, given an arbitrary graph G, a complete subgraph of G of maximum size, using this
magic black box as a subroutine.

5. A boolean formula in exclusive-or conjunctive normal form (XCNF) is a conjunction (AND) of
several clauses, each of which is the exclusive-or of several literals. The XCNF-SAT problem asks
whether a given XCNF boolean formula is satisfiable. Either describe a polynomial-time algorithm
for XCNF-SAT or prove that it is NP-complete.

*6. [Extra credit] Describe and analyze an algorithm to solve 3SAT in O(¢" poly(n)) time, where
¢ = (1+ v5)/2 ~ 1.618034. [Hint: Prove that in each recursive call, either you have just
eliminated a pure literal, or the formula has a clause with at most two literals. What recurrence
leads to this running time?]

%In class, I asserted that Gaussian elimination was probably discovered by Gauss, in violation of Stigler’s Law of Eponymy.
In fact, a method very similar to Gaussian elimination appears in the Chinese treatise Nine Chapters on the Mathematical
Art, believed to have been finalized before 100AD, although some material may predate emperor Qin Shi Huang’s infamous
‘burning of the books and burial of the scholars’ in 213BC. The great Chinese mathematician Liu Hui, in his 3rd-century
commentary on Nine Chapters, compares two variants of the method and counts the number of arithmetic operations used by
each, with the explicit goal of find the more efficient method. This is arguably the earliest recorded analysis of any algorithm.

CS 573: Graduate Algorithms, Fall 2008
Homework 2

Due at 11:59:59pm, Wednesday, October 1, 2008

e For this and all future homeworks, groups of up to three students may submit a single, common
solution. Please neatly print (or typeset) the full name, NetID, and alias (if any) of every group
member on the first page of your submission.

e We will use the following point breakdown to grade dynamic programming algorithms: 60% for a
correct recurrence (including base cases), 20% for correct running time analysis of the memoized
recurrence, 10% for correctly transforming the memoized recursion into an iterative algorithm.

o A greedy algorithm must be accompanied by a proof of correctness in order to receive any credit.

1. (a) LetX[1..m] and Y[1..n] be two arbitrary arrays of numbers. A common supersequence
of X and Y is another sequence that contains both X and Y as subsequences. Describe and
analyze an efficient algorithm to compute the function scs(X,Y), which gives the length of
the shortest common supersequence of X and Y.

(b) Call a sequence X[1..n] of numbers oscillating if X[i] < X[i + 1] for all even i, and
X[i] > X[i+ 1] for all odd i. Describe and analyze an efficient algorithm to compute the
function los(X), which gives the length of the longest oscillating subsequence of an arbitrary
array X of integers.

(c) Call a sequence X[1..n] of numbers accelerating if 2- X [i] < X[i — 1] +X[i+ 1] for all i.
Describe and analyze an efficient algorithm to compute the function Ixs(X), which gives the
length of the longest accelerating subsequence of an arbitrary array X of integers.

2. A palindrome is a string that reads the same forwards and backwards, like x, pop, noon, redivider,
or amanaplanacatahamayakayamahatacanalpanama. Any string can be broken into sequence of
palindromes. For example, the string bubbaseesabanana (‘Bubba sees a banana.”) can be broken
into palindromes in several different ways; for example:

bub + baseesab + anana
b+u+bb+a+sees+aba+nan+a
b+u+bb+a+sees+a+ b+ anana
b+u+b+b+a+s+et+e+s+a+b+a+n+a+n+a

Describe and analyze an efficient algorithm to find the smallest number of palindromes that make
up a given input string. For example, given the input string bubbaseesabanana, your algorithm
would return the integer 3.

3. Describe and analyze an algorithm to solve the traveling salesman problem in O(2" poly(n)) time.
Given an undirected n-vertex graph G with weighted edges, your algorithm should return the
weight of the lightest Hamiltonian cycle in G, or co if G has no Hamiltonian cycles. [Hint: The
obvious recursive algorithm takes O(n!) time.]

CS 573 Homework 2 (due October 1, 2008) Fall 2008

4. Ribonucleic acid (RNA) molecules are long chains of millions of nucleotides or bases of four
different types: adenine (A), cytosine (C), guanine (G), and uracil (U). The sequence of an RNA
molecule is a string b[1..n], where each character b[i] € {A, C,G, U} corresponds to a base. In
addition to the chemical bonds between adjacent bases in the sequence, hydrogen bonds can form
between certain pairs of bases. The set of bonded base pairs is called the secondary structure of the
RNA molecule.

We say that two base pairs (i, j) and (i’,j") withi < jand i’ < j’ overlap ifi <i’ < j < j or
i’ <i<j’ < j. In practice, most base pairs are non-overlapping. Overlapping base pairs create
so-called pseudoknots in the secondary structure, which are essential for some RNA functions, but
are more difficult to predict.

Suppose we want to predict the best possible secondary structure for a given RNA sequence.
We will adopt a drastically simplified model of secondary structure:

e Each base can be paired with at most one other base.
e Only A-U pairs and C-G pairs can bond.

e Pairs of the form (i,i+ 1) and (i,i + 2) cannot bond.
e Overlapping base pairs cannot bond.

The last restriction allows us to visualize RNA secondary structure as a sort of fat tree.

SCaUT
L. S
G UG
A A
U SCod Py
?U ~ U*C, / NG’l‘U\A .
L e
U-A-C-U-C-A-U g oAy
e« A=C=U=C= A= - 4 H
A b6 A B b A VU b
{GeT T A-A-U-G-U e
SU Lok R uU:
RN Al i C. U’
\“ A,‘- Pl Sl -
o A= U
))
G=C
) []
U=A
] (]
U=A
REEVARIEELED ~ s,
“A Al
’ [
A Ut
U us
‘.\\: G-G* "'.'

Example RNA secondary structure with 21 base pairs, indicated by heavy red lines.
Gaps are indicated by dotted curves. This structure has score 2% 422 4+ 82 4+ 12 4+ 72 4+ 4% 4+ 72 = 187

(a) Describe and analyze an algorithm that computes the maximum possible number of base
pairs in a secondary structure for a given RNA sequence.

(b) A gap in a secondary structure is a maximal substring of unpaired bases. Large gaps lead to
chemical instabilities, so secondary structures with smaller gaps are more likely. To account
for this preference, let’s define the score of a secondary structure to be the sum of the squares
of the gap lengthsE] Describe and analyze an algorithm that computes the minimum possible
score of a secondary structure for a given RNA sequence.

IThis score function has absolutely no connection to reality; I just made it up. Real RNA structure prediction requires much
more complicated scoring functions.

CS 573 Homework 2 (due October 1, 2008) Fall 2008

5. A subtree of a (rooted, ordered) binary tree T consists of a node and all its descendants. Design
and analyze an efficient algorithm to compute the largest common subtree of two given binary
trees T; and T,; this is the largest subtree of T; that is isomorphic to a subtree in T,. The contents
of the nodes are irrelevant; we are only interested in matching the underlying combinatorial
structure.

Two binary trees, with their largest common subtree emphasized

*6. [Extra credit] Let D[1..n] be an array of digits, each an integer between 0 and 9. A digital
subsequence of D is an sequence of positive integers composed in the usual way from disjoint
substrings of D. For example, 3,4,5,6,23,38,62,64,83,279 is an increasing digital subsequence
of the first several digits of n:

)[4} [5}o.[e}

The length of a digital subsequence is the number of integers it contains, not the number of digits;
the previous example has length 10.

2,3,4,3,8,,4,/6,2|6,4},3,3,] 8,3

>

2,7,9\

Describe and analyze an efficient algorithm to compute the longest increasing digital subse-
quence of D. [Hint: Be careful about your computational assumptions. How long does it take to
compare two k-digit numbers?]

CS 573: Graduate Algorithms, Fall 2008
Homework 3

Due at 11:59:59pm, Wednesday, October 22, 2008

Groups of up to three students may submit a single, common solution. Please neatly print (or
typeset) the full name, NetID, and the HWO alias (if any) of every group member on the first page
of your submission.

. Consider an n x n grid, some of whose cells are marked. A monotone path through the grid starts
at the top-left cell, moves only right or down at each step, and ends at the bottom-right cell. We
want to compute the minimum number of monotone paths that cover all marked cells. The input
to our problem is an array M[1..n,1..n] of booleans, where M[i, j] = Truk if and only if cell
(i,j) is marked.

One of your friends suggests the following greedy strategy:

e Find (somehow) one “good” path 7 that covers the maximum number of marked cells.
e Unmark the cells covered by 7.

o If any cells are still marked, recursively cover them.

Does this greedy strategy always compute an optimal solution? If yes, give a proof. If no, give a
counterexample.

!i U_H:: !i u_j:: u_j:: mH mH

_HN .

q':lﬂ y *Thﬂ‘ B

Greedily covering the marked cells in a grid with four monotone paths.

. Let X be a set of n intervals on the real line. A subset of intervals Y C X is called a tiling path if
the intervals in Y cover the intervals in X, that is, any real value that is contained in some interval
in X is also contained in some interval in Y. The size of a tiling path is just the number of intervals.

Describe and analyze an algorithm to compute the smallest tiling path of X as quickly as
possible. Assume that your input consists of two arrays X;[1..n] and Xz[1..n], representing the
left and right endpoints of the intervals in X. If you use a greedy algorithm, you must prove that it
is correct.

A set of intervals. The seven shaded intervals form a tiling path.

CS 573 Homework 3 (due October 22, 2008) Fall 2008

3. Given a graph G with edge weights and an integer k, suppose we wish to partition the vertices of
G into k subsets S1, S, ..., S, so that the sum of the weights of the edges that cross the partition
(i.e., that have endpoints in different subsets) is as large as possible.

(a) Describe an efficient (1 — 1/k)-approximation algorithm for this problem. [Hint: Solve the
special case k = 2 first.]

(b) Now suppose we wish to minimize the sum of the weights of edges that do not cross the
partition. What approximation ratio does your algorithm from part (a) achieve for this new
problem? Justify your answer.

4. Consider the following heuristic for constructing a vertex cover of a connected graph G: Return
the set of all non-leaf nodes of any depth-first spanning tree. (Recall that a depth-first spanning
tree is a rooted tree; the root is not considered a leaf, even if it has only one neighbor in the tree.)

(a) Prove that this heuristic returns a vertex cover of G.
(b) Prove that this heuristic returns a 2-approximation to the minimum vertex cover of G.

(c) Prove that for any ¢ > 0, there is a graph for which this heuristic returns a vertex cover of
size at least (2 —¢)-OPT.

5. Consider the following greedy approximation algorithm to find a vertex cover in a graph:

GREEDYVERTEXCOVER(G):
C—0o
while G has at least one edge
v « vertex in G with maximum degree
G—G\v
C—Cuv
return C

In class we proved that the approximation ratio of this algorithm is O(logn); your task is to prove
a matching lower bound. Specifically, for any positive integer n, describe an n-vertex graph G
such that GREEDYVERTEXCOVER(G) returns a vertex cover that is Q(logn) times larger than optimal.
[Hint: H,, = Q(logn).]

*6. [Extra credit] Consider the greedy algorithm for metric TSP: Start at an arbitrary vertex u, and at
each step, travel to the closest unvisited vertex.

(a) Prove that this greedy algorithm is an O(logn)-approximation algorithm, where n is the
number of vertices. [Hint: Show that the kth least expensive edge in the tour output by the
greedy algorithm has weight at most OPT/(n —k +1); try k =1 and k = 2 first.]

*(b) Prove that the greedy algorithm for metric TSP is no better than an O(logn)-approximation.
That is, describe an infinite family of weighted graphs that satisfy the triangle inequality,
such that the greedy algorithm returns a cycle whose length is Q(logn) times the optimal
TSP tour.

CS 573: Graduate Algorithms, Fall 2008
Homework 4

Due at 11:59:59pm, Wednesday, October 31, 2008

e Groups of up to three students may submit a single, common solution. Please neatly print (or
typeset) the full name, NetID, and the HWO alias (if any) of every group member on the first page
of your submission.

e Unless a problem explicitly states otherwise, you can assume the existence of a function Ranpom(k),
which returns an integer uniformly distributed in the range {1,2,...,k} in O(1) time; the argu-
ment k must be a positive integer. For example, Ranpom(2) simulates a fair coin flip, and
Ranpom(1) always returns 1.

1. Death knocks on your door one cold blustery morning and challenges you to a game. Death knows
that you are an algorithms student, so instead of the traditional game of chess, Death presents you
with a complete binary tree with 4" leaves, each colored either black or white. There is a token at
the root of the tree. To play the game, you and Death will take turns moving the token from its
current node to one of its children. The game will end after 2n moves, when the token lands on a
leaf. If the final leaf is black, you die; if it’s white, you will live forever. You move first, so Death
gets the last turn.

You can decide whether it’s worth playing or not as follows. Imagine that the nodes at even
levels (where it’s your turn) are Or gates, the nodes at odd levels (where it’s Death’s turn) are
AND gates. Each gate gets its input from its children and passes its output to its parent. White and
black leaves stand represent TRUE and FALSE inputs, respectively. If the output at the top of the
tree is TRUE, then you can win and live forever! If the output at the top of the tree is FALSE, you
should challenge Death to a game of Twister instead.

(a) Describe and analyze a deterministic algorithm to determine whether or not you can win.
[Hint: This is easy!]

(b) Unfortunately, Death won’t let you even look at every node in the tree. Describe and analyze
a randomigzed algorithm that determines whether you can win in O(3™) expected time. [Hint:
Consider the casen=1.]

(c) [Extra credit] Describe and analyze a randomized algorithm that determines whether you
can win in O(c") expected time, for some constant ¢ < 3. [Hint: You may not need to change
your algorithm at all.]

CS 573 Homework 4 (due October 31, 2008) Fall 2008

2. Consider the following randomized algorithm for choosing the largest bolt. Draw a bolt uniformly
at random from the set of n bolts, and draw a nut uniformly at random from the set of n nuts.
If the bolt is smaller than the nut, discard the bolt, draw a new bolt uniformly at random from
the unchosen bolts, and repeat. Otherwise, discard the nut, draw a new nut uniformly at random
from the unchosen nuts, and repeat. Stop either when every nut has been discarded, or every bolt
except the one in your hand has been discarded.

What is the exact expected number of nut-bolt tests performed by this algorithm? Prove your
answer is correct. [Hint: What is the expected number of unchosen nuts and bolts when the
algorithm terminates?]

3. (a) Prove that the expected number of proper descendants of any node in a treap is exactly equal
to the expected depth of that node.

(b) Why doesn’t the Chernoff-bound argument for depth imply that, with high probability, every
node in a treap has O(logn) descendants? The conclusion is obviously bogus—every n-node
treap has one node with exactly n descendants!—but what is the flaw in the argument?

(c) What is the expected number of leaves in an n-node treap? [Hint: What is the probability
that in an n-node treap, the node with kth smallest search key is a leaf?]

4. The following randomized algorithm, sometimes called “one-armed quicksort”, selects the rth
smallest element in an unsorted array A[1..n]. For example, to find the smallest element,
you would call RANDOMSELECT(A, 1); to find the median element, you would call RANDOM-
SELECT(A, | n/2]). The subroutine PARTITION(A[1..n], p) splits the array into three parts by compar-
ing the pivot element A[p] to every other element of the array, using n — 1 comparisons altogether,
and returns the new index of the pivot element.

RANDOMSELECT(A[1..n],r):
k < ParTITION(A[1..n], RanpOM(n))
ifr<k
return RANDOMSELECT(A[1..k —1],7)
elseif r > k
return RaNnpoMSELECT(A[k+1..n],r — k)
else
return A[k]

(a) State a recurrence for the expected running time of RANDOMSELECT, as a function of n and r.

(b) What is the exact probability that RANDOMSELECT compares the ith smallest and jth smallest
elements in the input array? The correct answer is a simple function of i, j, and r. [Hint:
Check your answer by trying a few small examples.]

(c) Show that for any n and r, the expected running time of RANDOMSELECT is ©(n). You can use
either the recurrence from part (a) or the probabilities from part (b).

*(d) [Extra Credit] Find the exact expected number of comparisons executed by RANDOMSELECT,
as a function of n and r.

CS 573

Homework 4 (due October 31, 2008) Fall 2008

5. A meldable priority queue stores a set of keys from some totally-ordered universe (such as the
integers) and supports the following operations:

MAaKEQUEUE: Return a new priority queue containing the empty set.
FINDMIN(Q): Return the smallest element of Q (if any).
DELETEMIN(Q): Remove the smallest element in Q (if any).
INSERT(Q, x): Insert element x into Q, if it is not already there.

DECREASEKEY(Q, x, y): Replace an element x € Q with a smaller key y. (If y > x, the
operation fails.) The input is a pointer directly to the node in Q containing x.

DELETE(Q, x): Delete the element x € Q. The input is a pointer directly to the node in Q
containing x.

MELD(Q1,Q2): Return a new priority queue containing all the elements of Q; and Q,; this
operation destroys Q; and Q.

A simple way to implement such a data structure is to use a heap-ordered binary tree, where
each node stores a key, along with pointers to its parent and two children. MELD can be imple-
mented using the following randomized algorithm:

(a)

(b)

(©

MELD(Q4,Q5):
if Q; is empty return Q,
if Q, is empty return Q,
if key(Q1) > key(Qz)
swap Q; <= Q,
with probability 1/2
left(Qq) <« MELD(left(Q4),Q,)

else
right(Q;) « MELD(right(Q;),Q5)

return Qq

Prove that for any heap-ordered binary trees Q; and Q, (not just those constructed by the
operations listed above), the expected running time of MELD(Q4,Q,) is O(logn), where n is
the total number of nodes in both trees. [Hint: How long is a random root-to-leaf path in an
n-node binary tree if each left/right choice is made with equal probability?]

Prove that MELD(Q;,Q,) runs in O(logn) time with high probability. [Hint: You don’t need
Chernoff bounds, but you might use the identity (C:) <(ce)*.]

Show that each of the other meldable priority queue operations can be implemented with at
most one call to MELD and O(1) additional time. (This implies that every operation takes
O(logn) time with high probability.)

CS 573 Homework 4 (due October 31, 2008) Fall 2008

*6. [Extra credit] In the usual theoretical presentation of treaps, the priorities are random real
numbers chosen uniformly from the interval [0, 1], but in practice, computers only have access to
random bits. This problem asks you to analyze a modification of treaps that takes this limitation
into account.

Suppose the priority of a node v is abstractly represented as an infinite sequence 7, [1..00] of
random bits, which is interpreted as the rational number

priority(v) = Z m,[i]-27%
i=1

However, only a finite number £, of these bits are actually known at any given time. When a
node v is first created, none of the priority bits are known: £, = 0. We generate (or ‘reveal’)
new random bits only when they are necessary to compare priorities. The following algorithm
compares the priorities of any two nodes in O(1) expected time:

LARGERPRIORITY(V, w):
fori < 1to oo
ifi>{(,
£, < 1i; m,[i] < RANDOMBIT

ifi>{(,

¢, —i; m,[i] < RANDOMBIT
if ,[i] > =, [i]

return v
else if =, [i] <« [i]

return w

Suppose we insert n items one at a time into an initially empty treap. Let L =) {, denote
the total number of random bits generated by calls to LARGERPRIORITY during these insertions.

(a) Prove that E[L] = ©(n).
(b) Prove that E[{,] = ©(1) for any node v. [Hint: This is equivalent to part (a). Why?]
(c) Prove that E[{,,..] = ©(logn). [Hint: Why doesn’t this contradict part (b)?]

CS 573: Graduate Algorithms, Fall 2008
Homework 5

Due at 11:59:59pm, Wednesday, November 19, 2008

Groups of up to three students may submit a single, common solution. Please neatly print (or
typeset) the full name, NetID, and the HWO alias (if any) of every group member on the first page
of your submission.

. Recall the following problem from Homework 3: You are given an n x n grid, some of whose cells
are marked; the grid is represented by an array M [1..n,1..n] of booleans, where M[i, j] = TRUE
if and only if cell (i, j) is marked. A monotone path through the grid starts at the top-left cell,
moves only right or down at each step, and ends at the bottom-right cell.

Describe and analyze an efficient algorithm to compute the smallest set of monotone paths
that covers every marked cell.

i

_HN .

q':lﬂ y *Thﬂ‘ B

Greedily covering the marked cells in a grid with four monotone paths.

!i u_j:: u_j:: mH mH

. Suppose we are given a directed graph G = (V, E), two vertices s an t, and a capacity function
c: V—IR"T. Aflow f is feasible if the total flow into every vertex v is at most c(v):

Zf(u—w) <c(v) for every vertex v.
u

Describe and analyze an efficient algorithm to compute a feasible flow of maximum value.

. Suppose we are given an array A[1..m][1..n] of non-negative real numbers. We want to round A
to an integer matrix, by replacing each entry x in A with either |x] or [x], without changing the
sum of entries in any row or column of A. For example:

1.2 34 24 1 4
39 40 21| — |4 4
7.9 1.6 0.5 8 1

= NN

Describe an efficient algorithm that either rounds A in this fashion, or reports correctly that no
such rounding is possible.

CS 573 Homework 5 (due November 19, 2008) Fall 2008

4. Ad-hoc networks are made up of cheap, low-powered wireless devices. In principleE], these networks

6.

can be used on battlefields, in regions that have recently suffered from natural disasters, and
in other situations where people might want to monitor conditions in hard-to-reach areas. The
idea is that a large collection of cheap, simple devices could be dropped into the area from an
airplane (for instance), and then they would somehow automatically configure themselves into an
efficiently functioning wireless network.

The devices can communication only within a limited range. We assume all the devices are
identical; there is a distance D such that two devices can communicate if and only if the distance
between them is at most D.

We would like our ad-hoc network to be reliable, but because the devices are cheap and
low-powered, they frequently fail. If a device detects that it is likely to fail, it should transmit
the information it has to some other backup device within its communication range. To improve
reliability, we require each device x to have k potential backup devices, all within distance D
of x; we call these k devices the backup set of x. Also, we do not want any device to be in the
backup set of too many other devices; otherwise, a single failure might affect a large fraction of
the network.

So suppose we are given the communication radius D, parameters b and k, and an array
d[1..n,1..n] of distances, where d[i, j] is the distance between device i and device j. Describe
an algorithm that either computes a backup set of size k for each of the n devices, such that that
no device appears in more than b backup sets, or reports (correctly) that no good collection of
backup sets exists.

. Let G = (V, E) be a directed graph where for each vertex v, the in-degree and out-degree of v are

equal. Let u and v be two vertices G, and suppose G contains k edge-disjoint paths from u to v.
Under these conditions, must G also contain k edge-disjoint paths from v to u? Give a proof or a
counterexample with explanation.

[Extra credit] A rooted tree is a directed acyclic graph, in which every vertex has exactly one
incoming edge, except for the root, which has no incoming edges. Equivalently, a rooted tree
consists of a root vertex, which has edges pointing to the roots of zero or more smaller rooted
trees. Describe a polynomial-time algorithm to compute, given two rooted trees A and B, the
largest common rooted subtree of A and B.

[Hint: Let LCS(u,v) denote the largest common subtree whose root in A is u and whose
root in B is v. Your algorithm should compute LCS(u,v) for all vertices u and v using dynamic
programming. This would be easy if every vertex had O(1) children, and still straightforward if the
children of each node were ordered from left to right and the common subtree had to respect that
ordering. But for unordered trees with large degree, you need another trick to combine recursive
subproblems efficiently. Don’t waste your time trying to reduce the polynomial running time.]

'but not really in practice

CS 573: Graduate Algorithms, Fall 2008
Homework 6

Practice only

e This homework is only for practice; do not submit solutions. At least one (sub)problem (or
something very similar) will appear on the final exam.

1. An integer program is a linear program with the additional constraint that the variables must take
only integer values.

(a) Prove that deciding whether an integer program has a feasible solution is NP-complete.

(b) Prove that finding the optimal solution to an integer program is NP-hard.

[Hint: Almost any NP-hard decision problem can be formulated as an integer program. Pick your
favorite.]

2. Describe precisely how to dualize a linear program written in general form:
d
maximize Z CjX;

subject to Zaijxj <b; foreachi=1..p

Zaijsz b; foreachi=p+1..p+gq
d
Zaijszbi foreachi=p+q+1..n

Keep the number of dual variables as small as possible. The dual of the dual of any linear
program should be syntactically identical to the original linear program.

3. Suppose you have a subroutine that can solve linear programs in polynomial time, but only if they
are both feasible and bounded. Describe an algorithm that solves arbitrary linear programs in
polynomial time, using this subroutine as a black box. Your algorithm should return an optimal
solution if one exists; if no optimum exists, your algorithm should report that the input instance
is UNBOUNDED or INFEASIBLE, whichever is appropriate. [Hint: Add one constraint to guarantee
boundedness; add one variable to guarantee feasibility.]

CS 573 Homework 6 (practice only) Fall 2008

4. Suppose you are given a set P of n points in some high-dimensional space R?, each labeled either
black or white. A linear classifier is a d-dimensional vector ¢ with the following properties:

e If p is a black point, then p - ¢ > 0.
e If p is a while point, then p - ¢ < 0.

Describe an efficient algorithm to find a linear classifier for the given data points, or correctly
report that none exists. [Hint: This is almost trivial, but not quite.]

Lots more linear programming problems can be found at http://www.ee.ucla.edu/ee236a/homework/
problems.pdf. Enjoy!

http://www.ee.ucla.edu/ee236a/homework/problems.pdf
http://www.ee.ucla.edu/ee236a/homework/problems.pdf

CS 573 Midterm 1 Questions (October 6, 2008) Fall 2008

You have 120 minutes to answer all five questions.
Write your answers in the separate answer booklet.
Please turn in your question sheet and your cheat sheet with your answers.

1. You and your eight-year-old nephew Elmo decide to play a simple card game. At the beginning of
the game, several cards are dealt face up in a long row. Then you and Elmo take turns removing
either the leftmost or rightmost card from the row, until all the cards are gone. Each card is worth
a different number of points. The player that collects the most points wins the game.

Like most eight-year-olds who haven’t studied algorithms, Elmo follows the obvious greedy
strategy every time he plays: Elmo always takes the card with the higher point value. Your task
is to find a strategy that will beat Elmo whenever possible. (It might seem mean to beat up on a
little kid like this, but Elmo absolutely hates it when grown-ups let him win.)

(a) Describe an initial sequence of cards that allows you to win against Elmo, no matter who
moves first, but only if you do not follow Elmo’s greedy strategy.

(b) Describe and analyze an algorithm to determine, given the initial sequence of cards, the
maximum number of points that you can collect playing against Elmo.

Here is a sample game, where both you and Elmo are using the greedy strategy. Elmo wins 8-7.
You cannot win this particular game, no matter what strategy you use.

Initial cards 2
Elmo takes the 3
You take the 2 |
Elmo takes the 4
You take the 5
Elmo takes the 1

N
e N S
LT 1 L1 |G
™| W

i S G G Y

2. Prove that the following problem is NP-hard: Given an undirected graph G, find the longest path
in G whose length is a multiple of 5.

This graph has a path of length 10, but no path of length 15.

CS 573 Midterm 1 Questions (October 6, 2008) Fall 2008

3. Suppose you are given an array A[1..n] of integers. Describe and analyze an algorithm that finds
the largest sum of of elements in a contiguous subarray A[i .. j].

For example, if the array A contains the numbers [—6,12,—7,0,14,—7,5], your algorithm
should return the number 19:

|-6[12[-7]0[14|-7]5|
[—

19

4. A shuffle of two strings X and Y is formed by interspersing the characters into a new string, keeping
the characters of X and Y in the same order. For example, ‘bananaananas’ is a shuffle of ‘banana’
and ‘ananas’ in several different ways:

banana(_jmamjS bananaananas b(_jman‘,jan‘_jnaS

The strings ‘prodgyrnamammiincg’ and ‘dyprongarmammicing’ are both shuffles of ‘dynamic’ and

‘programming’:

prodgyrnamammiincg dyprongarmammicing

Given three strings A[1..m], B[1..n], and C[1..m + n], describe and analyze an algorithm to
determine whether C is a shuffle of A and B.

5. Suppose you are given two sorted arrays A[1..m] and B[1..n] and an integer k. Describe an
algorithm to find the kth smallest element in the union of A and B in ©(log(m + n)) time. For
example, given the input

A[1..8]1=1[0,1,6,9,12,13,18,20] B[1..5]=[2,5,8,17,19] k=6

your algorithm should return 8. You can assume that the arrays contain no duplicates. An
algorithm that works only in the special case n = m = k is worth 7 points.

[Hint: What can you learn from comparing one element of A to one element of B?]

CS 573 Midterm 2 Questions (November 5, 2008) Fall 2008

You have 120 minutes to answer all five questions.
Write your answers in the separate answer booklet.
Please turn in your question sheet and your cheat sheet with your answers.

1. Consider the following modification of the ‘dumb’ 2-approximation algorithm for minimum vertex

cover that we saw in class. The only change is that we output a set of edges instead of a set of
vertices.

APPROXMINMAXMATCHING(G):
M—g
while G has at least one edge
let (u,v) be any edge in G
remove u and v (and their incident edges) from G
add (u,v) to M
return M

(a) Prove that this algorithm computes a matching—no two edges in M share a common vertex.
(b) Prove that M is a maximal matching—M is not a proper subgraph of another matching in G.

(c) Prove that M contains at most twice as many edges as the smallest maximal matching in G.

The smallest maximal matching in a graph. A cycle and a star.

2. Consider the following heuristic for computing a small vertex cover of a graph.

e Assign a random priority to each vertex, chosen independently and uniformly from the real
interval [0, 1] (just like treaps).

e Mark every vertex that does not have larger priority than all of its neighbors.

For any graph G, let OPT(G) denote the size of the smallest vertex cover of G, and let M(G)
denote the number of nodes marked by this algorithm.

(a) Prove that the set of vertices marked by this heuristic is always a vertex cover.

(b) Suppose the input graph G is a cycle, that is, a connected graph where every vertex has
degree 2. What is the expected value of M(G)/OPT(G)? Prove your answer is correct.

(c) Suppose the input graph G is a star, that is, a tree with one central vertex of degree n — 1.
What is the expected value of M(G)/OPT(G)? Prove your answer is correct.

CS 573 Midterm 2 Questions (November 5, 2008) Fall 2008

3. Suppose we want to write an efficient function SHUFFLE(A[1..n]) that randomly permutes the
array A, so that each of the n! permutations is equally likely.

(a) Prove that the following SHUFFLE algorithm is not correct. [Hint: There is a two-line proof.]

SHUFFLE(A[1..n]):
fori=1ton
swap A[i] «— A[Ranpom(n)]

(b) Describe and analyze a correct SHUFFLE algorithm whose expected running time is O(n).
Your algorithm may call the function Ranpom(k), which returns an integer uniformly dis-
tributed in the range {1,2,...,k} in O(1) time. For example, Ranpom(2) simulates a fair coin
flip, and Ranpom(1) always returns 1.

4. Let ® be a legal input for 3SAT—a boolean formula in conjunctive normal form, with exactly three
literals in each clause. Recall that an assignment of boolean values to the variables in ® satisfies
a clause if at least one of its literals is TRUE. The maximum satisfiability problem, sometimes
called Max3Sart, asks for the maximum number of clauses that can be simultaneously satisfied
by a single assignment. Solving MaxSaT exactly is clearly also NP-hard; this problem asks about
approximation algorithms.

(a) Let MaxSat(®) denote the maximum number of clauses that can be simultaneously satisfied
by one variable assignment. Suppose we randomly assign each variable in ¢ to be TRUE or
FaLsE, each with equal probability. Prove that the expected number of satisfied clauses is at
least %MaxSat(tI)).

(b) Let MinUnsat(®) denote the minimum number of clauses that can be simultaneously unsatis-

fied by a single assignment. Prove that it is NP-hard to approximate MinUnsat(®) within a
100
factor of 1010,

5. Consider the following randomized algorithm for generating biased random bits. The subroutine
FaIRCoIN returns either O or 1 with equal probability; the random bits returned by FAIRCoIN are
mutually independent.

ONEINTHREE:
if FAIRCoIN = 0
return O
else
return 1 — ONEINTHREE

(a) Prove that ONEINTHREE returns 1 with probability 1/3.

(b) What is the exact expected number of times that this algorithm calls FATRCOIN? Prove your
answer is correct.

(c) Now suppose you are given a subroutine ONEINTHREE that generates a random bit that is
equal to 1 with probability 1/3. Describe a FAIRCOIN algorithm that returns either 0 or 1 with
equal probability, using ONEINTHREE as a subroutine. Your only source of randomness is
ONEINTHREE; in particular, you may not use the Ranpom function from problem

(d) What is the exact expected number of times that your FAIRCoIN algorithm calls ONEINTHREE?
Prove your answer is correct.

CS 573 Final Exam Questions (December 17, 2008) Fall 2008

You have 180 minutes to answer all seven questions.
Write your answers in the separate answer booklet.
You can keep everything except your answer booklet when you leave.

1. An integer program is a linear program with the additional constraint that the variables must
take only integer values. Prove that deciding whether an integer program has a feasible solution
is NP-complete. [Hint: Almost any NP-hard decision problem can be formulated as an integer
program. Pick your favorite.]

2. Recall that a priority search tree is a binary tree in which every node has both a search key and
a priority, arranged so that the tree is simultaneously a binary search tree for the keys and a
min-heap for the priorities. A heater is a priority search tree in which the priorities are given by
the user, and the search keys are distributed uniformly and independently at random in the real
interval [0, 1]. Intuitively, a heater is the ‘opposite’ of a treap.

The following problems consider an n-node heater T whose node priorities are the integers
from 1 to n. We identify nodes in T by their priorities; thus, ‘node 5’ means the node in T with
priority 5. The min-heap property implies that node 1 is the root of T. Finally, let i and j be
integerswith 1 <i <j <n.

(a) Prove that in a random permutation of the (i + 1)-element set {1,2,...,1, j}, elements i and
j are adjacent with probability 2/(i + 1).

(b) Prove that node i is an ancestor of node j with probability 2/(i + 1). [Hint: Use part (a)!]
(c) What is the probability that node i is a descendant of node j? [Hint: Don’t use part (a)!]
(d) What is the exact expected depth of node j?

3. The UIUC Faculty Senate has decided to convene a committee to determine whether Chief Illiniwek
should become the official maseet symbol of the University of Illinois Global Campus. Exactly
one faculty member must be chosen from each academic department to serve on this committee.
Some faculty members have appointments in multiple departments, but each committee member
will represent only one department. For example, if Prof. Blagojevich is affiliated with both the
Department of Corruption and the Department of Stupidity, and he is chosen as the Stupidity rep-
resentative, then someone else must represent Corruption. Finally, University policy requires that
any committee on virtual maseets symbols must contain the same number of assistant professors,
associate professors, and full professors. Fortunately, the number of departments is a multiple of 3.

Describe an efficient algorithm to select the membership of the Global Illiniwek Committee.
Your input is a list of all UIUC faculty members, their ranks (assistant, associate, or full), and their
departmental affiliation(s). There are n faculty members and 3k departments.

4. Let a(G) denote the number of vertices in the largest independent set in a graph G. Prove that
the following problem is NP-hard: Given a graph G, return any integer between a(G) — 31337
and a(G) +31337.

CS 573 Final Exam Questions (December 17, 2008) Fall 2008

5. Let G = (V,E) be a directed graph with capacities c: E — IR, a source vertex s, and a target
vertex t. Suppose someone hands you a function f : E — IR. Describe and analyze a fast algorithm
to determine whether f is a maximum (s, t)-flow in G.

6. For some strange reason, you decide to ride your bicycle 3688 miles from Urbana to Wasilla,
Alaska, to join in the annual Wasilla Mining Festival and Helicopter Wolf Hunt. The festival starts
exactly 32 days from now, so you need to bike an average of 109 miles each day. Because you are
a poor starving student, you can only afford to sleep at campgrounds, which are unfortunately not
spaced exactly 109 miles apart. So some days you will have to ride more than average, and other
days less, but you would like to keep the variation as small as possible. You settle on a formal
scoring system to help decide where to sleep; if you ride x miles in one day, your score for that
day is (109 — x)2. What is the minimum possible total score for all 32 days?

More generally, suppose you have D days to travel DP miles, there are n campgrounds along
your route, and your score for traveling x miles in one day is (x — P)?. You are given a sorted
array dist[1..n] of real numbers, where dist[i] is the distance from your starting location to the
ith campground; it may help to also set dist[0] = 0 and dist[n + 1] = DP. Describe and analyze a
fast algorithm to compute the minimum possible score for your trip. The running time of your
algorithm should depend on the integers D and n, but not on the real number P.

7. Describe and analyze efficient algorithms for the following problems.

(a) Given a set of n integers, does it contain elements a and b such that a + b = 0?

(b) Given a set of n integers, does it contain elements a, b, and ¢ such that a + b = ¢?

A GUIDE TO
UNDERSTANDING FLOW CHARTS

PRESENTED IN FLOW CHART FORM

HEY, I SHoup
TRY INSTALLING
| FreeBoD:

— Randall Munroe, xkcd, December 17, 2008 (http://xkcd.com/518/)

http://xkcd.com/518/

