CS/ECE 374 < Fall 2016

» Homework o &
Due Tuesday, August 30, 2016 at 8pm

¢ Each student must submit individual solutions for this homework. For all future
homeworks, groups of up to three students can submit joint solutions.

* Submit your solutions electronically on the course Gradescope site as PDF files.
Submit a separate PDF file for each numbered problem. If you plan to typeset your
solutions, please use the KIEX solution template on the course web site. If you must
submit scanned handwritten solutions, please use a black pen on blank white paper and a
high-quality scanner app (or an actual scanner, not just a phone camera).

* You are not required to sign up on Gradescope (or Piazza) with your real name and
your illinois.edu email address; you may use any email address and alias of your choice.
However, to give you credit for the homework, we need to know who Gradescope thinks
you are. Please fill out the web form linked from the course web page.

Some important course policies

* You may use any source at your disposal—paper, electronic, or human—but you must
cite every source that you use, and you must write everything yourself in your own words.
See the academic integrity policies on the course web site for more details.

e The answer “I don’t know” (and nothing else) is worth 25% partial credit on any required
problem or subproblem, on any homework or exam. We will accept synonyms like “No
idea” or “WTF” or “~\ (e_e) /™7, but you must write something.

* Avoid the Three Deadly Sins! Any homework or exam solution that breaks any of the
following rules will be given an automatic zero, unless the solution is otherwise perfect.
Yes, we really mean it. We're not trying to be scary or petty (Honest!), but we do want to
break a few common bad habits that seriously impede mastery of the course material.

— Always give complete solutions, not just examples.

— Always declare all your variables, in English. In particular, always describe the specific
problem your algorithm is supposed to solve.

— Never use weak induction.

See the course web site for more information.

If you have any questions about these policies,
please don’t hesitate to ask in class, in office hours, or on Piazza.
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1. The famous Czech professor Jifina Z. Dzunglova has a favorite 23-node binary tree, in
which each node is labeled with a unique letter of the alphabet. Preorder and inorder
traversals of the tree visit the nodes in the following order:

* Preorderr Y GEPVUBNXTIZLOFJAHRCDSMT
e Inorder:r PEUVBGXNIYFOIJLRHDCSAMZT

(a) List the nodes in Professor Dzunglova’s tree in post-order.

(b) Draw Professor Dzunglovd’s tree.

2. The complement w¢ of a string w € {0,1}* is obtained from w by replacing every 0
in w with a 1 and vice versa; for example, 111011000100° = 000100111011. The
complement function is formally defined as follows:

€ ifw=e¢
wei=<1-x° ifw=0x
0-x¢ ifw=1x

(a) Prove by induction that |w| = [w¢| for every string w.

(b) Prove by induction that (x ® y) = x * y€ for all strings x and y.

Your proofs must be formal and self-contained, and they must invoke the formal definitions
of length |w|, concatenation x * y, and complement w°. Do not appeal to intuition!

3. Recursively define a set L of strings over the alphabet {0, 1} as follows:

e The empty string ¢ is in L.
e For all strings x and y in L, the string Ox1y is also in L.
* For all strings x and y in L, the string 1x0y is also in L.

* These are the only strings in L.

Let #(a,w) denote the number of times symbol a appears in string w; for example,
#(0,01000110111001) = #(1,01000110111001) = 7.

(a) Prove that the string ©1000110111001 isin L.

(b) Prove by induction that every string in L has exactly the same number of 0s and 1s.
(You may assume without proof that #(a, xy) = #(a, x) + #(a, y) for any symbol a
and any strings x and y.)

(c) Prove by induction that L contains every string with the same number of 0s and 1s.
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Each homework assignment will include at least one solved problem, similar to the problems
assigned in that homework, together with the grading rubric we would apply if this problem
appeared on a homework or exam. These model solutions illustrate our recommendations for
structure, presentation, and level of detail in your homework solutions. Of course, the actual
content of your solutions won’t match the model solutions, because your problems are different!

Solved Problems

4. Recall that the reversal wR of a string w is defined recursively as follows:

€ ifw=¢e

xRea ifw=a-x

A palindrome is any string that is equal to its reversal, like AMANAPLANACANALPANAMA,
RACECAR, POOP, I, and the empty string.

(a) Give a recursive definition of a palindrome over the alphabet .

(b) Prove w = wR for every palindrome w (according to your recursive definition).

(c) Prove that every string w such that w = w® is a palindrome (according to your

recursive definition).

In parts (b) and (c), you may assume without proof that (x - y)® = yR « xR and (x®)? = x
for all strings x and y.

Solution:

(a) A string w € ¥* is a palindrome if and only if either
* w=g,or
* w = a for some symbol a € %, or
* w = axa for some symbol a € ¥ and some palindrome x € ¥*.

Rubric: 2 points = % for each base case + 1 for the recursive case. No credit for the
rest of the problem unless this is correct.

(b) Let w be an arbitrary palindrome.
Assume that x = x® for every palindrome x such that |x| < |w|.
There are three cases to consider (mirroring the three cases in the definition):
 If w= ¢, then w® = ¢ by definition, so w = w¥.
e If w= a for some symbol a € %, then w? = a by definition, so w = wk.
* Suppose w = axa for some symbol a € ¥ and some palindrome x € P. Then

wl=(a-x*a)R
=(xsa)lfea by definition of reversal
=alexReq You said we could assume this.
=a*xReq by definition of reversal
=ae°*x°*a by the inductive hypothesis
=w by assumption
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In all three cases, we conclude that w = wk.

Rubric: 4 points: standard induction rubric (scaled)

(c) Let w be an arbitrary string such that w = wk.

R

Assume that every string x such that |x| < |w| and x = x" is a palindrome.

There are three cases to consider (mirroring the definition of “palindrome”):

e If w=¢, then w is a palindrome by definition.
* If w=a for some symbol a € X, then w is a palindrome by definition.

* Otherwise, we have w = ax for some symbol a and some non-empty string x.
The definition of reversal implies that w® = (ax)? = xRa.
Because x is non-empty, its reversal x® is also non-empty.
Thus, x® = by for some symbol b and some string y.

It follows that wR = bya, and therefore w = (W*)R = (bya)R = ay®b.
[At this point, we need to prove that a = b and that y is a palindrome.]

Our assumption that w = w® implies that bya = ay®b.
The recursive definition of string equality immediately implies a = b.

Because a = b, we have w = ayRa and wR = aya.

The recursive definition of string equality implies y®a = ya.
It immediately follows that (y®a)R = (ya)R.
Known properties of reversal imply (yRa)R = a(y
It follows that ay® = ay, and therefore y = y~.
The inductive hypothesis now implies that y is a palindrome.

BR = ay and (ya)R = ayR.

We conclude that w is a palindrome by definition.

In all three cases, we conclude that w is a palindrome.

Rubric: 4 points: standard induction rubric (scaled).

* No penalty for jumping from aya = ayRa directly to y = yR.
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Rubric (induction): For problems worth 10 points:

+ 1 for explicitly considering an arbitrary object
+ 2 for a valid strong induction hypothesis

— Deadly Sin! Automatic zero for stating a weak induction hypothesis,
unless the rest of the proof is perfect.

+ 2 for explicit exhaustive case analysis

— No credit here if the case analysis omits an infinite number of objects. (For
example: all odd-length palindromes.)

— —1 if the case analysis omits an finite number of objects. (For example:
the empty string.)

— —1 for making the reader infer the case conditions. Spell them out!

— No penalty if cases overlap (for example:

+ 1 for cases that do not invoke the inductive hypothesis (“base cases”)
— No credit here if one or more “base cases” are missing.
+ 2 for correctly applying the stated inductive hypothesis

— No credit here for applying a different inductive hypothesis, even if that
different inductive hypothesis would be valid.

+ 2 for other details in cases that invoke the inductive hypothesis (“inductive
cases”)

— No credit here if one or more “inductive cases” are missing.
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» Homework 1 &
Due Tuesday, September 6, 2016 at 8pm

Starting with this homework, groups of up to three people can submit joint solutions. Each
problem should be submitted by exactly one person, and the beginning of the homework should
clearly state the Gradescope names and email addresses of each group member. In addition,
whoever submits the homework must tell Gradescope who their other group members are.

1. For each of the following languages over the alphabet {0, 1}, give a regular expression that
describes that language, and briefly argue why your expression is correct.

(a) All strings that end with the suffix 01010101.

(b) All strings except 111.

(c) All strings that contain the substring 010.

(d) All strings that contain the subsequence 010.

(e) All strings that do not contain the substring 010.

(f) All strings that do not contain the subsequence 010.

2. This problem considers two special classes of regular expressions.

* A regular expression R is plus-free if and only if it never uses the + operator.
* A regular expression R is top-plus if and only if either

- R s plus-free, or

— R=S+4T, where S and T are top-plus.

For example, 1((0*10)*1)*0Q is plus-free and (therefore) top-plus; 01*0 + 10*1 + ¢ is
top-plus but not plus-free, and 0(0 4+ 1)*(1 + ¢) is neither top-plus nor plus-free.

Recall that two regular expressions R and S are equivalent if they describe exactly the
same language: L(R) = L(S).

(a) Prove that for any top-plus regular expressions R and S, there is a top-plus regular
expression that is equivalent to RS. [Hint: Use the fact that (A+ B)(C + D) and
AC +AD + BC + BD are equivalent, for all regular expressions A, B, C, and D.]

(b) Prove that for any top-plus regular expression R, there is a plus-free regular expres-
sion S such that R* and S* are equivalent. [Hint: Use the fact that (A+B)* is equivalent
to (A*B*)*, for all regular expressions A and B.]

(c) Prove that for any regular expression, there is an equivalent top-plus regular expres-
sion.
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3. Let L be the set of all strings in {0, 1}* that contain exactly two occurrences of the substring
001.

(a) Describe a DFA that over the alphabet XX = {0, 1} that accepts the language L. Argue
that your machine accepts every string in L and nothing else, by explaining what
each state in your DFA means.

You may either draw the DFA or describe it formally, but the states Q, the start
state s, the accepting states A, and the transition function 6 must be clearly specified.

(b) Give a regular expression for L, and briefly argue that why expression is correct.
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Solved problem

4. C comments are the set of strings over alphabet 3} = {*, /,A, o, /} that form a proper
comment in the C program language and its descendants, like C++ and Java. Here .
represents the newline character, ¢ represents any other whitespace character (like
the space and tab characters), and A represents any non-whitespace character other
than * or /.0 There are two types of C comments:

* Line comments: Strings of the form //--- .

* Block comments: Strings of the form /*---* /.

Following the Cgg standard, we explicitly disallow nesting comments of the same type.
A line comment starts with // and ends at the first | after the opening //. A block
comment starts with /* and ends at the the first */ completely after the opening /*; in
particular, every block comment has at least two *s. For example, each of the following
strings is a valid C comment:

o [xkx%/
e /o] /°d
o« [*]]]oxodwn]
o« [xo/[odox/
On the other hand, none of the following strings is a valid C comments:
s /*/
« /o) ]odod
o [)xo/)xox[ox/

(a) Describe a DFA that accepts the set of all C comments.

(b) Describe a DFA that accepts the set of all strings composed entirely of blanks (¢),
newlines (J), and C comments.

You must explain in English how your DFAs work. Drawings or formal descriptions
without English explanations will receive no credit, even if they are correct.

OThe actual C commenting syntax is considerably more complex than described here, because of character and
string literals.

e The opening /* or // of a comment must not be inside a string literal (““--- “) or a (multi-)character literal

).

* The opening double-quote of a string literal must not be inside a character literal (’ "' ’) or a comment.

* The closing double-quote of a string literal must not be escaped (\")

* The opening single-quote of a character literal must not be inside a string literal (" ---

* The closing single-quote of a character literal must not be escaped (\ ’)

* A backslash escapes the next symbol if and only if it is not itself escaped (\\) or inside a comment.

’ ... ") or a comment.

For example, the string " /*\\\"*/"/*"/*\" /%" / is a valid string literal (representing the s-character string
/*\'""\ %/, which is itself a valid block comment!) followed immediately by a valid block comment. For this homework
question, just pretend that the characters ’, ", and \ don’t exist.

Commenting in C++ is even more complicated, thanks to the addition of raw string literals. Don’t ask.

Some C and C++ compilers do support nested block comments, in violation of the language specification. A few
other languages, like OCaml, explicitly allow nesting block comments.
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Solution:

(a) The following eight-state DFA recognizes the language of C comments. All missing
transitions lead to a hidden reject state.

P
(D)L~ e

/Aod *

*
*
Aod

The states are labeled mnemonically as follows:

* s — We have not read anything.

* / — We just read the initial /.

* // — We are reading a line comment.

* [ — We have read a complete line comment.

* /* — We are reading a block comment, and we did not just read a * after the
opening / .

e /** — We are reading a block comment, and we just read a * after the opening
/*.

* B — We have read a complete block comment.

(b) By merging the accepting states of the previous DFA with the start state and adding
white-space transitions at the start state, we obtain the following six-state DFA. Again,
all missing transitions lead to a hidden reject state.

/*Ao
od
.
—@
/ *x
*
* @ /Aod
Aod

The states are labeled mnemonically as follows:
* s — We are between comments.
e / — We just read the initial / of a comment.
* // — We are reading a line comment.
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* /* — We are reading a block comment, and we did not just read a * after the
opening / *.

e /** — We are reading a block comment, and we just read a * after the opening
/*. [ |

Rubric: 10 points = 5 for each part, using the standard DFA design rubric (scaled)

Rubric (DFA design): For problems worth 10 points:

* 2 points for an unambiguous description of a DFA, including the states set Q, the
start state s, the accepting states A, and the transition function &.

— For drawings: Use an arrow from nowhere to indicate s, and doubled
circles to indicate accepting states A. If A = &, say so explicitly. If your
drawing omits a reject state, say so explicitly. Draw neatly! If we can’t
read your solution, we can’t give you credit for it,.

— For text descriptions: You can describe the transition function either
using a 2d array, using mathematical notation, or using an algorithm.

— For product constructions: You must give a complete description of the
states and transition functions of the DFAs you are combining (as either
drawings or text), together with the accepting states of the product DFA.

* Homework only: 4 points for briefly and correctly explaining the purpose of
each state in English. This is how you justify that your DFA is correct.

— For product constructions, explaining the states in the factor DFAs is
enough.

— Deadly Sin: (“Declare your variables.”) No credit for the problem if the
English description is missing, even if the DFA is correct.

* 4 points for correctness. (8 points on exams, with all penalties doubled)

— —1 for a single mistake: a single misdirected transition, a single missing or
extra accept state, rejecting exactly one string that should be accepted, or
accepting exactly one string that should be accepted.

— —2 for incorrectly accepting/rejecting more than one but a finite number
of strings.

— —4 for incorrectly accepting/rejecting an infinite number of strings.

* DFA drawings with too many states may be penalized. DFA drawings with
significantly too many states may get no credit at all.

* Half credit for describing an NFA when the problem asks for a DFA.
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s Homework 2 &
Due Tuesday, September 13, 2016 at 8pm

1. A Moore machine is a variant of a finite-state automaton that produces output; Moore
machines are sometimes called finite-state transducers. For purposes of this problem, a
Moore machine formally consists of six components:

* A finite set X called the input alphabet
* A finite set I called the output alphabet
¢ A finite set Q whose elements are called states
e A start states € Q
¢ A transition function 6: Q X X2 - Q
* An output function w: Q —» T
More intuitively, a Moore machine is a graph with a special start vertex, where every node

(state) has one outgoing edge labeled with each symbol from the input alphabet, and each
node (state) is additionally labeled with a symbol from the output alphabet.

The Moore machine reads an input string w € %* one symbol at a time. For each
symbol, the machine changes its state according to the transition function 6, and then
outputs the symbol w(q), where q is the new state. Formally, we recursively define a
transducer function w*: Q x ©* — T'* as follows:

€ ifw=¢e

@(gw)= {w(S(q,a)) - w*(5(q,a),x) ifw=ax

Given input string w € %*, the machine outputs the string w*(w,s) € I'*. The output
language L°(M) of a Moore machine M is the set of all strings that the machine can
output:

L°(M) :={w*(s,w) | we =¥}

(a) Let M be an arbitrary Moore machine. Prove that L°(M) is a regular language.

(b) Let M be an arbitrary Moore machine whose input alphabet 3 and output alphabet I'
are identical. Prove that the language

L= (M)={weZ*| w=w*(s,w)}

is regular. L= (M) consists of all strings w such that M outputs w when given input w;
these are also called fixed points for the transducer function w™.

[Hint: These problems are easier than they look!]
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2. Prove that the following languages are not regular.

@ {we(0+1)" | [#(0,w)—#(1,w)| <5}

(b) Strings in (0 + 1)* in which the substrings 00 and 11 appear the same number of
times.

(o) {Ole” | n/mis an integer}

3. Let L be an arbitrary regular language.

(a) Prove that the language palin(L) := {w | wwR € L} is also regular.
(b) Prove that the language drome(L) := {w | wRw € L} is also regular.
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Solved problem

4. Let L be an arbitrary regular language. Prove that the language half(L) := {w |ww € L} is
also regular.

Solution: Let M = (%,Q,s,A, 5) be an arbitrary DFA that accepts L. We define a new NFA
M =(%,Q,s’,A’,8") with e-transitions that accepts half(L), as follows:

Q' =(@QxQxQu{s'}
s” is an explicit state in Q’
A'={(h,h,q)| h€Q and q € A}
5'(s’,e)={(s,h,h) | h e Q}
&'((p,h,9), @) = {(5(p,a),h, 5(q,))}

M’ reads its input string w and simulates M reading the input string ww. Specifically, M’
simultaneously simulates two copies of M, one reading the left half of ww starting at the
usual start state s, and the other reading the right half of ww starting at some intermediate
state h.

 The new start state s’ non-deterministically guesses the “halfway” state h = 5*(s, w)
without reading any input; this is the only non-determinism in M’.

 State (p, h, q) means the following:

The left copy of M (which started at state s) is now in state p.

The initial guess for the halfway state is h.
The right copy of M (which started at state h) is now in state g.

* M’ accepts if and only if the left copy of M ends at state h (so the initial non-
deterministic guess h = §*(s, w) was correct) and the right copy of M ends in an
accepting state. [ ]

Rubric: 5 points =
+ 1 for a formal, complete, and unambiguous description of a DFA or NFA
— No points for the rest of the problem if this is missing.
+ 3 for a correct NFA
— —1 for a single mistake in the description (for example a typo)
+ 1 for a brief English justification. We explicitly do not want a formal proof of
correctness, but we do want one or two sentences explaining how the NFA works.
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Due Tuesday, September 20, 2016 at 8pm

Groups of up to three people can submit joint solutions. Each problem should be submitted
by exactly one person, and the beginning of the homework should clearly state the Gradescope
names and email addresses of each group member. In addition, whoever submits the homework
must tell Gradescope who their other group members are.

1. For each of the following regular expressions, describe or draw two finite-state machines:

* An NFA that accepts the same language, obtained using Thompson’s recursive
algorithm
* An equivalent DFA, obtained using the incremental subset construction. For each

state in your DFA, identify the corresponding subset of states in your NFA. Your DFA
should have no unreachable states.

(@ (00+11)(0+1+¢)
(b) 1"+ (01)*+(001)*

2. Give context-free grammars for the following languages, and clearly explain how they work
and the role of each nonterminal. Grammars can be very difficult to understand; if the
grader does not understand how your construction is intended to generate the language,
then you will receive no credit.

(a) Inany string, a block (also called a run) is a maximal non-empty substring of identical
symbols. For example, the string 0111000011001 has six blocks: three blocks of
Os of lengths 1, 4, and 2, and three blocks of 1s of lengths 3, 2, and 1.

Let L be the set of all strings in {0, 1}* that contain two blocks of Os of equal
length. For example, L contains the strings 01101111 and 01001011100010 but
does not contain the strings 000110011011 and 00000000111.

(b) L={we{0,1}*|wis not a palindrome}.

3. Let L ={0'172F |k =i+ j}.

(a) Show that L is context-free by describing a grammar for L.

(b) Prove that your grammar G is correct. As usual, you need to prove both L € L(G)
and L(G) C L.
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Solved problem

4. Let L be the set of all strings over {0, 1}* with exactly twice as many Os as 1s.

(a) Describe a CFG for the language L.
[Hint: For any string u define A(u) = #(0,u) — 2#(1,u). Introduce intermediate
variables that derive strings with A(u) = 1 and A(u) = —1 and use them to define a
non-terminal that generates L.]

Solution: S — ¢ |SS|00S1|051S0|1S00 [ |

(b) Prove that your grammar G is correct. As usual, you need to prove both L € L(G)
and L(G) C L.
[Hint: Let u.; denote the prefix of u of length i. If A(u) = 1, what can you say about the
smallest i for which A(u<;) = 1? How does u split up at that position? If A(u) = —1,
what can you say about the smallest i such that A(u<;) =—1?]

Solution: (Hopefully you recognized this as a more advanced version of HWo
problem 3.) We separately prove L C L(G) and L(G) C L as follows:

Claim 1. L(G) C L, that is, every string in L(G) has exactly twice as many 0s as 1s.

Proof: As suggested by the hint, for any string u, let A(u) = #(0,u) —2#(1,u). We
need to prove that A(w) = 0 for every string w € L(G).

Let w be an arbitrary string in L(G), and consider an arbitrary derivation of w of
length k. Assume that A(x) = 0 for every string x € L(G) that can be derived with
fewer than k productions.0 There are five cases to consider, depending on the first
production in the derivation of w.

e If w=¢, then #(0,w) = #(1,w) = 0 by definition, so A(w) = 0.

* Suppose the derivation begins S ~ SS ~* w. Then w = xy for some strings
x,y € L(G), each of which can be derived with fewer than k productions. The
inductive hypothesis implies A(x) = A(y) = 0. It immediately follows that
A(w)=0.0

* Suppose the derivation begins S ~» 00S1 ~* w. Then w = 00x 1 for some string
x € L(G). The inductive hypothesis implies A(x) = 0. It immediately follows
that A(w) = 0.

* Suppose the derivation begins S ~» 1500 ~* w. Then w = 1x00 for some string
x € L(G). The inductive hypothesis implies A(x) = 0. It immediately follows
that A(w) = 0.

* Suppose the derivation begins S »» 05151 ~* w. Then w = Ox1y0 for some
strings x,y € L(G). The inductive hypothesis implies A(x) = A(y) = 0. It
immediately follows that A(w) = 0.

In all cases, we conclude that A(w) = 0, as required. O

DAlternatively: Consider the shortest derivation of w, and assume A(x) = O for every string x € L(G) such that
[x] < w].

DAlternatively: Suppose the shortest derivation of w begins S ~» SS ~* w. Then w = xy for some strings
x,y € L(G). Neither x or y can be empty, because otherwise we could shorten the derivation of w. Thus, x and y
are both shorter than w, so the induction hypothesis implies. . . . We need some way to deal with the decompositions
w=c¢*wand w=w * g, which are both consistent with the production S — SS, without falling into an infinite loop.
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Claim 2. L C L(G); thatis, G generates every binary string with exactly twice as many
Os as 1s.

Proof: As suggested by the hint, for any string u, let A(u) = #(0,u) —2#(1,u). For
any string u and any integer 0 < i < |ul, let u; denote the ith symbol in u, and let u;
denote the prefix of u of length i.

Let w be an arbitrary binary string with twice as many 0s as 1s. Assume that G
generates every binary string x that is shorter than w and has twice as many Os as 1s.
There are two cases to consider:

e If w=¢, then ¢ € L(G) because of the production S — ¢.
* Suppose w is non-empty. To simplify notation, let A; = A(w;) for every index i,
and observe that Ay = A}, = 0. There are several subcases to consider:

- Suppose A; = 0 for some index 0 < i < |w|. Then we can write w = xy,
where x and y are non-empty strings with A(x) = A(y) = 0. The induction
hypothesis implies that x, y € L(G), and thus the production rule S — SS
implies that w € L(G).

- Suppose A; > 0 for all 0 < i < |w|. Then w must begin with 00, since
otherwise A; = —2 or A, = —1, and the last symbol in w must be 1, since
otherwise Ay, _; = —1. Thus, we can write w = 00x1 for some binary
string x. We easily observe that A(x) = 0, so the induction hypothesis
implies x € L(G), and thus the production rule S — 00S1 implies w € L(G).

- Suppose A; < 0 for all 0 < i < |w|. A symmetric argument to the previous
case implies w = 1x00 for some binary string x with A(x) = 0. The induction
hypothesis implies x € L(G), and thus the production rule S — 1500 implies
w € L(G).

— Finally, suppose none of the previous cases applies: A; <0 and A; > 0 for
some indices i and j, but A; #0 for all 0 < i < |w|.

Let i be the smallest index such that A; < 0. Because A; either increases
by 1 or decreases by 2 when we increment j, for all indices 0 < j < |w|, we
must have A; > 01if j <iand A; <0if j >1.

In other words, there is a unique index i such that A;_; > 0and A; < 0. In
particular, we have A; >0 and A}, < 0. Thus, we can write w = 0x1y0
for some binary strings x and y, where |0x1| =1.

We easily observe that A(x) = A(y) = 0, so the inductive hypothesis
implies x,y € L(G), and thus the production rule S — 0S1S0 implies

w € L(G).
In all cases, we conclude that G generates w. O
Together, Claim 1 and Claim 2 imply L = L(G). |

Rubric: 10 points:
e part (a) = 4 points. As usual, this is not the only correct grammar.
* part (b) = 6 points = 3 points for C + 3 points for 2, each using the standard
induction template (scaled).
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+ Homework 4 &u
Due Tuesday, October 4, 2016 at 8pm

1. Consider the following restricted variant of the Tower of Hanoi puzzle. The pegs are
numbered 0, 1, and 2, and your task is to move a stack of n disks from peg 1 to peg 2.
However, you are forbidden to move any disk directly between peg 1 and peg 2; every move
must involve peg 0.

Describe an algorithm to solve this version of the puzzle in as few moves as possible.
Exactly how many moves does your algorithm make?

2. Consider the following cruel and unusual sorting algorithm.

CrUEL(A[1..1n]):

ifn>1
CrUEL(A[1..n/2])
CrUEL(A[n/2+1..n])
UnusuaL(A[1..n])

UnusuaL(A[1..n]):
ifn=2
ifA[1]> A[2]
swap A[1] «—> A[2]

((the only comparison!))

else
fori —1ton/4
swap Ali +n/4] <> Ali +n/2]

{(swap 2nd and 3rd quarters))

UnusuaL(A[1..n/2])
UnusUAL(A[n/2+1..n])
UnusuaL(A[n/4+1..3n/4])

{(recurse on left half))
{(recurse on right half))
((recurse on middle half))

Notice that the comparisons performed by the algorithm do not depend at all on the values
in the input array; such a sorting algorithm is called oblivious. Assume for this problem
that the input size n is always a power of 2.

@

Prove by induction that CRUEL correctly sorts any input array. [Hint: Consider an
array that contains n/4 1s, n/4 2s, n/4 3s, and n/4 4s. Why is this special case
enough? What does UnusuAL actually do?]

(b)
(o)
(d)

(e) What is the running time of CRUEL? Justify your answer.

Prove that CRUEL would not correctly sort if we removed the for-loop from UNUSUAL.
Prove that CRUEL would not correctly sort if we swapped the last two lines of UNUSUAL.

What is the running time of UnusuaL? Justify your answer.
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3. You are a visitor at a political convention (or perhaps a faculty meeting) with n delegates.
Each delegate is a member of exactly one political party. It is impossible to tell which
political party any delegate belongs to. In particular, you will be summarily ejected from
the convention if you ask. However, you can determine whether any pair of delegates
belong to the same party or not simply by introducing them to each other. Members of
the same party always greet each other with smiles and friendly handshakes; members of
different parties always greet each other with angry stares and insults.

(a) Suppose more than half of the delegates belong to the same political party. Describe
and analyze an efficient algorithm that identifies every member of this majority party.

(b) Now suppose precisely p political parties are present and one party has a plurality:
more delegates belong to that party than to any other party. Please present a procedure
to pick out the people from the plurality party as parsimoniously as possible.0 Do not
assume that p = O(1).

mDescribe and analyze an efficient algorithm that identifies every member of the plurality party.
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Solved Problem

4. Suppose we are given two sets of n points, one set {p;,ps,...,P,} on the line y =0 and
the other set {q1,qs,-..,q,} on the line y = 1. Consider the n line segments connecting
each point p; to the corresponding point q;. Describe and analyze a divide-and-conquer
algorithm to determine how many pairs of these line segments intersect, in O(nlogn) time.
See the example below.

A 9, 4, 9 9 A

p, P, P, P, PP, Py

Seven segments with endpoints on parallel lines, with 11 intersecting pairs.

Your input consists of two arrays P[1..n] and Q[1..n] of x-coordinates; you may
assume that all 2n of these numbers are distinct. No proof of correctness is necessary, but
you should justify the running time.

Solution: We begin by sorting the array P[1..n] and permuting the array Q[1..n] to
maintain correspondence between endpoints, in O(nlogn) time. Then for any indices i < j,
segments i and j intersect if and only if Q[i] > Q[j]. Thus, our goal is to compute the
number of pairs of indices i < j such that Q[i] > Q[j]. Such a pair is called an inversion.

We count the number of inversions in Q using the following extension of mergesort;
as a side effect, this algorithm also sorts Q. If n < 100, we use brute force in O(1) time.
Otherwise:

* Recursively count inversions in (and sort) Q[1..|n/2]].
* Recursively count inversions in (and sort) Q[|n/2|+1..n].
e Count inversions Q[i] > Q[j] where i < |n/2] and j > |n/2] as follows:
— Color the elements in the Left half Q[1..n/2] bLue.
— Color the elements in the Right half Q[n/2 + 1..n] Red.
— Merge Q[1..n/2] and Q[n/2 + 1..n], maintaining their colors.
— For each blue element Q[i], count the number of smaller red elements Q[j].

The last substep can be performed in O(n) time using a simple for-loop:

CouNTREDBLUE(A[1..n]):
count < 0
total < 0

fori«<—1ton
if A[i] is red
count < count + 1
else
total « total + count

return total




CS/ECE 374 Homework 4 (due September ) Fall 2016

In fact, we can execute the third merge-and-count step directly by modifying the MERGE
algorithm, without any need for “colors”. Here changes to the standard MERGE algorithm
are indicated in red.

MERGEANDCOUNT(A[1..n],m):
i—1; jem+1; count < 0; total < 0O

fork—1ton
ifj>n
B[k] < A[i]; i < i+1; total « total + count
elseifi >m
B[k] < A[j]; j < j+1; count < count+ 1
else if A[i] < A[j]
B[k] < A[i]; i < i+1; total « total + count
else
B[k] < A[j]; j < j+1; count < count+1
fork—1ton
Alk] « B[k]
return total

We can further optimize this algorithm by observing that count is always equal to
j—m—1. (Proof: Initially, j = m+ 1 and count = 0, and we always increment j and count
together.)

MERGEANDCOUNT2(A[1..n],m):
i—1; jem+1; total <0

fork<—1ton
ifj>n
B[k] <« A[i]; i < i+1; total < total + j —m —1
elseifi >m
B[kl —A[j]; j e j+1
else if Ali] < A[j]
B[k] < A[i]; i «i+1; total < total +j —m —1
else
Blk]<A[j]; j<j+1
fork<—1ton
Alk] « B[k]
return total

The modified MERGE algorithm still runs in O(n) time, so the running time of the
resulting modified mergesort still obeys the recurrence T(n) = 2T(n/2) + O(n). We
conclude that the overall running time is O(nlogn), as required. ]

Rubric: 10 points = 2 for base case + 3 for divide (split and recurse) + 3 for conquer
(merge and count) + 2 for time analysis. Max 3 points for a correct O(n?)-time algorithm.
This is neither the only way to correctly describe this algorithm nor the only correct
O(nlogn)-time algorithm. No proof of correctness is required.
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» Homework 5 eu
Due Tuesday, October 11, 2016 at 8pm

1. For each of the following problems, the input consists of two arrays X[1..k] and Y[1..n]
where k < n.

(a) Describe and analyze an algorithm to determine whether X occurs as two disjoint
subsequences of Y, where “disjoint” means the two subsequences have no indices in
common. For example, the string PPAP appears as two disjoint subsequences in the
string PENPINEAPPLEAPPLEPEN, but the string PEEPLE does not.

(b) Describe and analyze an algorithm to compute the number of occurrences of X as
a subsequence of Y. For example, the string PPAP appears exactly 23 times as a
subsequence of the string PENPINEAPPLEAPPLEPEN. If all characters in X and Y
are equal, your algorithm should return (Z) For purposes of analysis, assume that
each arithmetic operation takes O(1) time.

2. You are driving a bus along a long straight highway, full of rowdy, hyper, thirsty students
and an endless supply of soda. Each minute that each student is on your bus, that student
drinks one ounce of soda. Your goal is to drive all students home, so that the total volume
of soda consumed by the students is as small as possible.

Your bus begins at an exit (probably not at either end) with all students on board and
moves at a constant speed of 37.4 miles per hour. Each student needs to be dropped off
at a highway exit. You may reverse directions as often as you like; for example, you are
allowed to drive forward to the next exit, let some students off, then turn around and drive
back to the previous exit, drop more students off, then turn around again and drive to
further exits. (Assume that at each exit, you can stop the bus, drop off students, and if
necessary turn around, all instantaneously.)

Describe an efficient algorithm to take the students home so that they drink as little
soda as possible. Your algorithm will be given the following input:
* Asorted array L[1..n], where L[i] is the Location of the ith exit, measured in miles
from the first exit; in particular, L[1] = 0.
e An array N[1..n], where N[i] is the Number of students you need to drop off at the
ith exit
* An integer start equal to the index of the starting exit.

Your algorithm should return the total volume of soda consumed by the students when you
drive the optimal route.C

Non-US students are welcome to assume kilometers and liters instead of miles and ounces. Late 18th-century
French students are welcome to use decimal minutes.
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3. Vankin’s Mile is an American solitaire game played on an n x n square grid. The player
starts by placing a token on any square of the grid. Then on each turn, the player moves
the token either one square to the right or one square down. The game ends when player
moves the token off the edge of the board. Each square of the grid has a numerical value,
which could be positive, negative, or zero. The player starts with a score of zero; whenever
the token lands on a square, the player adds its value to his score. The object of the game
is to score as many points as possible.

For example, given the grid below, the player can score 8 —6 +7 —3 + 4 = 10 points by
placing the initial token on the 8 in the second row, and then moving down, down, right,
down, down. (This is not the best possible score for these values.)

-1 71-8] 10| =5

4

(a) Describe and analyze an efficient algorithm to compute the maximum possible score
for a game of Vankin’s Mile, given the n x n array of values as input.

(b) In the Canadian version of this game, appropriately called Vankin’s Kilometer, the
player can move the token either one square down, one square right, or one square
left in each turn. However, to prevent infinite scores, the token cannot land on the
same square more than once. Describe and analyze an efficient algorithm to compute
the maximum possible score for a game of Vankin’s Kilometer, given the n x n array
of values as input.C

tlf we also allowed upward movement, the resulting game (Vankin’s Fathom?) would be NP-hard.
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Solved Problem

4. A shuffle of two strings X and Y is formed by interspersing the characters into a new
string, keeping the characters of X and Y in the same order. For example, the string
BANANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways.

BANANAANANAS BANANAANANAS BANANAANANAS

Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING are both
shuffles of DYNAMIC and PROGRAMMING:

PRODGYRNAMAMMIINCG DYPRONGARMAMMICING

Given three strings A[1..m], B[1..n], and C[1..m+n], describe and analyze an algorithm
to determine whether C is a shuffle of A and B.

Solution: We define a boolean function Shuf(i, j), which is TRUE if and only if the prefix
C[1..i+ j] is a shuffle of the prefixes A[1..i] and B[1..j]. This function satisfies the
following recurrence:

TRUE ifi=j=0
Shuf(0,j — 1) A(B[j]1=C[j]) ifi=0andj>0
Shuf(i, ) = { Shuf(i —1,0) A (A[i] = C[i]) ifi>0and j=0

(Shuf(i —1, ) A(ALi]=C[i +j]))
V (Shuf(i,j —1)A(B[j1=Cl[i+j])) ifi>0andj>0

We need to compute Shuf(m, n).

We can memoize all function values into a two-dimensional array Shuf[0..m][0..n].
Each array entry Shuf[i, j] depends only on the entries immediately below and immediately
to the right: Shuf[i —1,j] and Shuf[i,j —1]. Thus, we can fill the array in standard
row-major order. The original recurrence gives us the following pseudocode:

SHUFFLE?(A[1..m], B[1..n], C[1..m+n]):
Shuf[0,0] « TRUE
forje—1ton
Shufl0, j] < Shufl0,j —1]A(B[j]=C[j])
forie—1ton
Shufli, 0] « Shufli—1,0] A (Ali] = B[i])
forj<1ton
Shuf{i, j] « FALSE
if Ali]=C[i+j]
Shufli,j] « Shufli,j]1V Shufli—1,j]
if B[i]=C[i+j]
Shufli, j] « Shufli,j]V Shufli,j—1]

return Shuf[m, n]

The algorithm runs in O(mn) time. [ ]
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Rubric: Max 10 points: Standard dynamic programming rubric. No proofs required.
Max 7 points for a slower polynomial-time algorithm; scale partial credit accordingly.

Standard dynamic programming rubric. For problems worth 10 poins:

* 6 points for a correct recurrence, described either using mathematical notation
or as pseudocode for a recursive algorithm.

+ 1 point for a clear English description of the function you are trying to
evaluate. (Otherwise, we don’'t even know what you're trying to do.)
Automatic zero if the English description is missing.

+ 1 point for stating how to call your function to get the final answer.

+ 1 point for base case(s). —%2 for one minor bug, like a typo or an off-by-one
error.

+ 3 points for recursive case(s). —1 for each minor bug, like a typo or an off-
by-one error. No credit for the rest of the problem if the recursive
case(s) are incorrect.

* 4 points for details of the dynamic programming algorithm
+ 1 point for describing the memoization data structure

+ 2 points for describing a correct evaluation order; a clear picture is usually
sufficient. If you use nested loops, be sure to specify the nesting order.

+ 1 point for time analysis
* Itis not necessary to state a space bound.

* For problems that ask for an algorithm that computes an optimal structure—such
as a subset, partition, subsequence, or tree—an algorithm that computes only
the value or cost of the optimal structure is sufficient for full credit, unless the
problem says otherwise.

¢ Official solutions usually include pseudocode for the final iterative dynamic
programming algorithm, but iterative psuedocode is not required for full
credit. If your solution includes iterative pseudocode, you do not need to
separately describe the recurrence, memoization structure, or evaluation order.
(But you still need to describe the underlying recursive function in English.)

¢ Official solutions will provide target time bounds. Algorithms that are faster than
this target are worth more points; slower algorithms are worth fewer points,
typically by 2 or 3 points (out of 10) for each factor of n. Partial credit is scaled
to the new maximum score, and all points above 10 are recorded as extra credit.

We rarely include these target time bounds in the actual questions, because
when we have included them, significantly more students turned in algorithms
that meet the target time bound but didn't work (earning 0/10) instead of correct
algorithms that are slower than the target time bound (earning 8/10).
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«» Homework 6 &
Due Tuesday, October 16, 2016 at 8pm

1. Every year, as part of its annual meeting, the Antarctican Snail Lovers of Upper Glacierville
hold a Round Table Mating Race. Several high-quality breeding snails are placed at the
edge of a round table. The snails are numbered in order around the table from 1 to n.
During the race, each snail wanders around the table, leaving a trail of slime behind it.
The snails have been specially trained never to fall off the edge of the table or to cross a
slime trail, even their own. If two snails meet, they are declared a breeding pair, removed
from the table, and whisked away to a romantic hole in the ground to make little baby
snails. Note that some snails may never find a mate, even if the race goes on forever.

The end of a typical Antarctican SLUG race. Snails 6 and 8 never find mates.
The organizers must pay M[3,4]+ M[2,5]+ M[1,7].

For every pair of snails, the Antarctican SLUG race organizers have posted a monetary
reward, to be paid to the owners if that pair of snails meets during the Mating Race.
Specifically, there is a two-dimensional array M[1..n,1..n] posted on the wall behind
the Round Table, where M[i, j] = M[j,i] is the reward to be paid if snails i and j meet.
Rewards may be positive, negative, or zero.

Describe and analyze an algorithm to compute the maximum total reward that the
organizers could be forced to pay, given the array M as input.
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2. You and your eight-year-old nephew Elmo decide to play a simple card game. At the
beginning of the game, the cards are dealt face up in a long row. Each card is worth a
different number of points. After all the cards are dealt, you and Elmo take turns removing
either the leftmost or rightmost card from the row, until all the cards are gone. At each
turn, you can decide which of the two cards to take. The winner of the game is the player
that has collected the most points when the game ends.

Having never taken an algorithms class, EImo follows the obvious greedy strategy—
when it’s his turn, Elmo always takes the card with the higher point value. Your task is to
find a strategy that will beat Elmo whenever possible. (It might seem mean to beat up on a
little kid like this, but Elmo absolutely hates it when grown-ups let him win.)

(a) Prove that you should not also use the greedy strategy. That is, show that there is
a game that you can win, but only if you do not follow the same greedy strategy as
Elmo.

(b) Describe and analyze an algorithm to determine, given the initial sequence of cards,
the maximum number of points that you can collect playing against Elmo.

(c) Five years later, Elmo has become a significantly stronger player. Describe and analyze
an algorithm to determine, given the initial sequence of cards, the maximum number
of points that you can collect playing against a perfect opponent. [Hint: What is a
perfect opponent?]
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3. One day, Alex got tired of climbing in a gym and decided to take a very large group of
climber friends outside to climb. The climbing area where they went, had a huge wide
boulder, not very tall, with various marked hand and foot holds. Alex quickly determined
an “allowed” set of moves that her group of friends can perform to get from one hold to
another.

The overall system of holds can be described by a rooted tree T with n vertices, where
each vertex corresponds to a hold and each edge corresponds to an allowed move between
holds. The climbing paths converge as they go up the boulder, leading to a unique hold at
the summit, represented by the root of T.O

Alex and her friends (who are all excellent climbers) decided to play a game, where as
many climbers as possible are simultaneously on the boulder and each climber needs to
perform a sequence of exactly k moves. Each climber can choose an arbitrary hold to start
from, and all moves must move away from the ground. Thus, each climber traces out a
path of k edges in the tree T, all directed toward the root. However, no two climbers are
allowed to touch the same hold; the paths followed by different climbers cannot intersect
at all.

Describe and analyze an efficient algorithm to compute the maximum number of
climbers that can play this game. More formally, you are given a rooted tree T and an
integer k, and you want to find the largest possible number of disjoint paths in T, where
each path has length k. For full credit, do not assume that T is a binary tree. For example,
given the tree T below and k = 3 as input, your algorithm should return the integer 8.

Seven disjoint paths of length k=3 in a rooted tree.
This is not the largest such set of paths in this tree.

0Q: Why do computer science professors think trees have their roots at the top?
A: Because they’ve never been outside!
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Solved Problems

4. A string w of parentheses ( and ) and brackets [ and ] is balanced if it is generated by
the following context-free grammar:

S—e|(S)|[S]1]SS
For example, the stringw = (L()T1[1()) L) ()1() is balanced, because w = xy, where

x=([0100O) ad y=L00O10.

Describe and analyze an algorithm to compute the length of a longest balanced
subsequence of a given string of parentheses and brackets. Your input is an array A[1..n],
where A[i] € {(,), [,]} for every index i.

Solution: Suppose A[1..n] is the input string. For all indices i and j, we write A[i] ~ A[j]
to indicate that A[i] and A[j] are matching delimiters: Either A[i] = ( and A[j]=) or
Ali]l=[and A[j]=1.

For all indices i and j, let LBS(i, j) denote the length of the longest balanced subsequence
of the substring A[i .. j]. We need to compute LBS(1, n). This function obeys the following

recurrence:
(0 ifi>j
2+ILBS(i+1,j—1)
. . if A[i] ~ A[j
LBS(i,j) = { max f,]{‘f‘lf‘ (LBS(i, k) + LBS(k + 1, ))) ifAli] ~A[j]
\1}](.1%111)( (LBS(i,k) +LBS(k + 1,j)) otherwise

We can memoize this function into a two-dimensional array LBS[1..n,1..n]. Since
every entry LBS[i, j] depends only on entries in later rows or earlier columns (or both), we
can evaluate this array row-by-row from bottom up in the outer loop, scanning each row
from left to right in the inner loop. The resulting algorithm runs in O(n?®) time.

LONGESTBALANCEDSUBSEQUENCE(A[1..n]):
fori < ndownto 1
LBS[i,i] <0
forje—i+1lton
if Ali] ~A[j]
LBS[i,j] —LBS[i+1,j—1]+2
else
LBS[i,j]< 0
forke—itoj—1
LBS[i, j] < max {LBS[i, j], LBS[i,k]+LBS[k + 1,1}
return LBS[1,n]

Rubric: 10 points, standard dynamic programming rubric
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5. Oh, no! You've just been appointed as the new organizer of Giggle, Inc.’s annual mandatory
holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree
with the company president at the root. The all-knowing oracles in Human Resources have
assigned a real number to each employee measuring how “fun” the employee is. In order
to keep things social, there is one restriction on the guest list: An employee cannot attend
the party if their immediate supervisor is also present. On the other hand, the president
of the company must attend the party, even though she has a negative fun rating; it’s her
company, after all.

Describe an algorithm that makes a guest list for the party that maximizes the sum of
the “fun” ratings of the guests. The input to your algorithm is a rooted tree T describing
the company hierarchy, where each node v has a field v.fun storing the “fun” rating of the
corresponding employee.

Solution (two functions): We define two functions over the nodes of T.

e MaxFunYes(v) is the maximum total “fun” of a legal party among the descendants
of v, where v is definitely invited.

* MaxFunNo(v) is the maximum total “fun” of a legal party among the descendants
of v, where v is definitely not invited.

We need to compute MaxFunYes(root). These two functions obey the following mutual
recurrences:

MaxFunYes(v) = v.fun + Z MaxFunNo(w)

children w of v

MaxFunNo(v) = Z max{MaxFunYes(w), MaxFunNo(w)}

children w of v

(These recurrences do not require separate base cases, because Y@ = 0.) We can memoize
these functions by adding two additional fields v.yes and v.no to each node v in the tree.
The values at each node depend only on the vales at its children, so we can compute all 2n
values using a postorder traversal of T.

CompUTEMAXFUN(V):
v.yes < v.fun
BESTPARTY(T): v.no <0
CoMPUTEMAXFUN(T.root) for all children w of v
return T.root.yes CompPUTEMAXFUN(W)
v.yes « v.yes + w.no
v.no < v.no + max{w.yes, w.no}

(Yes, this is still dynamic programming; we’re only traversing the tree recursively because
that’s the most natural way to traverse trees!n) The algorithm spends O(1) time at each
node, and therefore runs in O(n) time altogether. [ |

DA naive recursive implementation would run in O(¢") time in the worst case, where ¢ = (1 + +/5)/2 ~ 1.618 is
the golden ratio. The worst-case tree is a path—every non-leaf node has exactly one child.
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Solution (one function): For each node v in the input tree T, let MaxFun(v) denote the
maximum total “fun” of a legal party among the descendants of v, where v may or may
not be invited.

The president of the company must be invited, so none of the president’s “children”
in T can be invited. Thus, the value we need to compute is

root.fun + Z MaxFun(w).

grandchildren w of root
The function MaxFun obeys the following recurrence:

v.fun + Z MaxFun(x)

grandchildren x of v

Z MaxFun(w)

children w of v

MaxFun(v) = max

(This recurrence does not require a separate base case, because >, @ = 0.) We can memoize
this function by adding an additional field v.maxFun to each node v in the tree. The value
at each node depends only on the values at its children and grandchildren, so we can
compute all values using a postorder traversal of T.

CompUTEMAXFUN(V):
BESTPARTY(T): yes < v.fun
CompPUTEMAXFUN(T.root) no <0
party « T.root.fun for all children w of v
for all children w of T.root CoMPUTEMAXFUN(W)
for all children x of w no < no + w.maxFun

party < party + x.maxFun for all children x of w

return party yes « yes + x.maxFun
v.maxFun < max{yes,no}

(Yes, this is still dynamic programming; we’re only traversing the tree recursively because
that’s the most natural way to traverse trees!0)

The algorithm spends O(1) time at each node (because each node has exactly one
parent and one grandparent) and therefore runs in O(n) time altogether. ]

Rubric: 10 points: standard dynamic programming rubric. These are not the only
correct solutions.

dLike the previous solution, a direct recursive implementation would run in O(¢") time in the worst case, where
¢ =(1+ +/5)/2 ~ 1.618 is the golden ratio.
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+ Homework 7 &
Due Tuesday, October 25, 2016 at 8pm

If you use a greedy algorithm, you must prove that it is correct, or you will get zero
points even if your algorithm is correct.

1. You’ve been hired to store a sequence of n books on shelves in a library. The order of the
books is fixed by the cataloging system and cannot be changed; each shelf must store a
contiguous interval of the given sequence of books. You are given two arrays H[1..n] and
T[1..n], where H[i] and T[i] are respectively the height and thickness of the ith book in
the sequence. All shelves in this library have the same length L; the total thickness of all
books on any single shelf cannot exceed L.

(a) Suppose all the books have the same height h (that is, H[i] = h for all i) and the
shelves have height larger than h, so each book fits on every shelf. Describe and
analyze a greedy algorithm to store the books in as few shelves as possible. [Hint:
The algorithm is obvious, but why is it correct?]

(b) That was a nice warmup, but now here’s the real problem. In fact the books have
different heights, but you can adjust the height of each shelf to match the tallest book
on that shelf. (In particular, you can change the height of any empty shelf to zero.)
Now your task is to store the books so that the sum of the heights of the shelves is as
small as possible. Show that your greedy algorithm from part (a) does not always
give the best solution to this problem.

(c) Describe and analyze an algorithm to find the best assignment of books to shelves as
described in part (b).

2. Consider a directed graph G, where each edge is colored either red, white, or blue. A
walkoin G is called a French flag walk if its sequence of edge colors is red, white, blue, red,
white, blue, and so on. More formally, a walk vy—v;— - - - >V, is a French flag walk if, for
every integer i, the edge v;—v;,; is red if i mod 3 = 0, white if i mod 3 = 1, and blue if
imod 3 =2.

Describe an efficient algorithm to find all vertices in a given edge-colored directed
graph G that can be reached from a given vertex v through a French flag walk.

ORecall that a walk in a directed graph G is a sequence of vertices v,—v;— - - - =V, such that v,_;—v; is an edge in
G for every index i. A path is a walk in which no vertex appears more than once.
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3. Racetrack (also known as Graph Racers and Vector Rally) is a two-player paper-and-pencil
racing game that Jeff played on the bus in 5th grade.o The game is played with a track
drawn on a sheet of graph paper. The players alternately choose a sequence of grid points
that represent the motion of a car around the track, subject to certain constraints explained
below.

Each car has a position and a velocity, both with integer x- and y-coordinates. A subset
of grid squares is marked as the starting area, and another subset is marked as the finishing
area. The initial position of each car is chosen by the player somewhere in the starting
area; the initial velocity of each car is always (0,0). At each step, the player optionally
increments or decrements either or both coordinates of the car’s velocity; in other words,
each component of the velocity can change by at most 1 in a single step. The car’s new
position is then determined by adding the new velocity to the car’s previous position. The
new position must be inside the track; otherwise, the car crashes and that player loses the
race.0 The race ends when the first car reaches a position inside the finishing area.

Suppose the racetrack is represented by an n x n array of bits, where each 0 bit
represents a grid point inside the track, each 1 bit represents a grid point outside the track,
the “starting area” is the first column, and the “finishing area” is the last column.

Describe and analyze an algorithm to find the minimum number of steps required to
move a car from the starting line to the finish line of a given racetrack. [Hint: Build a
graph. No, not that graph, a different one. What are the vertices? What are the edges? What
problem is this?]

velocity position
(0,0) (1,5)
(1,0 (2,5)

(2,-1) (4,4)
(3,0) (7,4)
2,1 (9,5)

(1,2) (10,7)

HSINI4

0,3) (10,10)

(-1,4) (9,14)
0,3) 9,17)
(1,2) (10,19)
2,2) (12,21)
2,1 (14,22) .
(2,0) (16,22) [
(1,-1) | (17,21) ,SE
(2,-1) | (19,20) ]
(3,0) (22,20)

(3,1) (25,21)
A 16-step Racetrack run, on a 25 x 25 track. This is not the shortest run on this track.

OThe actual game is a bit more complicated than the version described here. See http://harmmade.com/vectorracer/
for an excellent online version.

OHowever, it is not necessary for the line between the old position and the new position to lie entirely within the
track. Sometimes Speed Racer has to push the A button.
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Solved Problem

4. Professor McClane takes you out to a lake and hands you three empty jars. Each jar holds
a positive integer number of gallons; the capacities of the three jars may or may not be
different. The professor then demands that you put exactly k gallons of water into one of
the jars (which one doesn’t matter), for some integer k, using only the following operations:

(a) Fill a jar with water from the lake until the jar is full.
(b) Empty a jar of water by pouring water into the lake.

(c) Pour water from one jar to another, until either the first jar is empty or the second jar
is full, whichever happens first.

For example, suppose your jars hold 6, 10, and 15 gallons. Then you can put 13 gallons of
water into the third jar in six steps:

* Fill the third jar from the lake.

¢ Fill the first jar from the third jar. (Now the third jar holds 9 gallons.)

* Empty the first jar into the lake.

* Fill the second jar from the lake.

* Fill the first jar from the second jar. (Now the second jar holds 4 gallons.)
e Empty the second jar into the third jar.

Describe and analyze an efficient algorithm that either finds the smallest number
of operations that leave exactly k gallons in any jar, or reports correctly that obtaining
exactly k gallons of water is impossible. Your input consists of the capacities of the three
jars and the positive integer k. For example, given the four numbers 6,10,15 and 13 as
input, your algorithm should return the number 6 (for the sequence of operations listed
above).

Solution: Let A, B, C denote the capacities of the three jars. We reduce the problem to
breadth-first search in the following directed graph:

e V = {(a, b,c) | 0<a<pandO0<b<Band0<c< C}. Each vertex corresponds
to a possible configuration of water in the three jars. There are (A+1)(B+1)(C+1) =
O(ABC) vertices altogether.

* The graph has a directed edge (a, b, c)—(a’, b’c’) whenever it is possible to move from
the first configuration to the second in one step. Specifically, there is an edge from
(a, b, ) to each of the following vertices (except those already equal to (a, b, ¢)):

- (0,b,c) and (a,0,c) and (a, b,0) — dumping a jar into the lake

- (A, b,c¢) and (a,B,c) and (a, b, C) — filling a jar from the lake
(0,a+b,¢) ifa+b<B
(a+b—B,B,c) ifa+b>B
(0,b,a+¢) ifa+c<C
(a+c—C,b,C) ifa+c=C
(a+b,0,¢) ifa+b <A
(A,a+b—Ayc) ifa+b=A

} — pouring from the first jar into the second
} — pouring from the first jar into the third

} — pouring from the second jar into the first
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(a,0,b+c¢) ifb+c<C
- {(a,b—l—c—C,C) ifb+c>C
(a+c,b,0) ifa+c<A
- {(A,b,aJrc—A) ifat+c>A
(a,b+¢c,0) ifb+c<B
- {(a,B,b+c—B) ifb+c>B

Since each vertex has at most 12 outgoing edges, there are at most 12(A+ 1) x
(B+1)(C +1) = 0O(ABC) edges altogether.

} — pouring from the second jar into the third
} — pouring from the third jar into the first

} — pouring from the third jar into the second

To solve the jars problem, we need to find the shortest path in G from the start vertex
(0,0,0) to any target vertex of the form (k,-,-) or (+,k,-) or (-,-, k). We can compute this
shortest path by calling breadth-first search starting at (0, 0,0), and then examining every
target vertex by brute force. If BFS does not visit any target vertex, we report that no
legal sequence of moves exists. Otherwise, we find the target vertex closest to (0,0, 0) and
trace its parent pointers back to (0, 0, 0) to determine the shortest sequence of moves. The
resulting algorithm runs in O(V + E) = O(ABC) time.

We can make this algorithm faster by observing that every move either leaves at least
one jar empty or leaves at least one jar full. Thus, we only need vertices (a, b, c) where
eithera=0orb=0orc=0o0ra=Aor b =B or c =C; no other vertices are reachable
from (0,0,0). The number of non-redundant vertices and edges is O(AB + BC + AC).
Thus, if we only construct and search the relevant portion of G, the algorithm runs in
O(AB + BC + AC) time. [ |

Rubric (for graph reduction problems): 10 points:

* 2 for correct vertices

* 2 for correct edges
— % for forgetting “directed”

* 2 for stating the correct problem (shortest paths)
— “Breadth-first search” is not a problem; it’s an algorithm.

e 2 points for correctly applying the correct algorithm (breadth-first search)
—1 for using Dijkstra instead of BFS

* 2 points for time analysis in terms of the input parameters.

* Max 8 points for O(ABC) time; scale partial credit
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= Homework 8 =

Due Tuesday, November 1, 2016 at 8pm

This is the last homework before Midterm 2.

1. After a grueling algorithms midterm, you decide to take the bus home. Since you planned
ahead, you have a schedule that lists the times and locations of every stop of every bus in
Champaign-Urbana. Champaign-Urbana is currently suffering from a plague of zombies,
so even though the bus stops have fences that supposedly keep the zombies out, you’d still
like to spend as little time waiting at bus stops as possible. Unfortunately, there isn’t a
single bus that visits both your exam building and your home; you must transfer between
buses at least once.

Describe and analyze an algorithm to determine a sequence of bus rides from Siebel to
your home, that minimizes the total time you spend waiting at bus stops. You can assume
that there are b different bus lines, and each bus stops n times per day. Assume that the
buses run exactly on schedule, that you have an accurate watch, and that walking between
bus stops is too dangerous to even contemplate.

2. Kris is a professional rock climber (friends with Alex and the rest of the climbing crew from
HW6) who is competing in the U.S. climbing nationals. The competition requires Kris to
use as many holds on the climbing wall as possible, using only transitions that have been
explicitly allowed by the route-setter.

The climbing wall has n holds. Kris is given a list of m pairs (x, y) of holds, each
indicating that moving directly from hold x to hold y is allowed; however, moving directly
from y to x is not allowed unless the list also includes the pair (y, x). Kris needs to figure
out a sequence of allowed transitions that uses as many holds as possible, since each new
hold increases his score by one point. The rules allow Kris to choose the first and last hold
in his climbing route. The rules also allow him to use each hold as many times as he likes;
however, only the first use of each hold increases Kris’s score.

(a) Define the natural graph representing the input. Describe and analyze an algorithm
to solve Kris’s climbing problem if you are guaranteed that the input graph is a dag.

(b) Describe and analyze an algorithm to solve Kris’s climbing problem with no restrictions
on the input graph.

Both of your algorithms should output the maximum possible score that Kris can earn.
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3. Many years later, in a land far, far away, after winning all the U.S. national competitions
for 10 years in a row, Kris retired from competitive climbing and became a route setter
for competitions. However, as the years passed, the rules changed. Climbers are now
required to climb along the shortest sequence of legal moves from one specific node to
another, where the distance between two holds is specified by the route setter. In addition
to the usual set of n holds and m valid moves between them (as in the previous problem),
climbers are now told their start hold s, their finish hold t, and the distance from x to y
for every allowed move (x, y).

Rather than make up this year’s new route completely from scratch, Kris decides to
make one small change to last year’s input. The previous route setter suggested a list of k
new allowed moves and their distances. Kris needs to to choose the single edge from this
list of suggestions that decreases the distance from s to t as much as possible.

Describe and analyze an algorithm to solve Kris’s problem. Your input consists of the
following information:

¢ A directed graph G = (V, E).

e Two vertices s, t € V.

e Aset of k new edges E’, such that ENE' =&
A length £(e) > O for every edge e € EUE'.

Your algorithm should return the edge e € E’ whose addition to the graph yields the
smallest shortestopath distance from s to t.

For full credit, your algorithm should run in O(mlogn + k) time, but as always, a slower
correct algorithm is worth more than a faster incorrect algorithm.
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Solved Problem

4. Although we typically speak of “the” shortest path between two nodes, a single graph could
contain several minimum-length paths with the same endpoints.

\ 14 \ 14 \FM “ 14
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Four (of many) equal-length shortest paths.
Describe and analyze an algorithm to determine the number of shortest paths from a source
vertex s to a target vertex t in an arbitrary directed graph G with weighted edges. You
may assume that all edge weights are positive and that all necessary arithmetic operations
can be performed in O(1) time.
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[Hint: Compute shortest path distances from s to every other vertex. Throw away all edges
that cannot be part of a shortest path from s to another vertex. What’s left?]

Solution: We start by computing shortest-path distances dist(v) from s to v, for every
vertex v, using Dijkstra’s algorithm. Call an edge u—v tight if dist(u) + w(u—v) = dist(v).
Every edge in a shortest path from s to t must be tight. Conversely, every path from s to t
that uses only tight edges has total length dist(t) and is therefore a shortest path!

Let H be the subgraph of all tight edges in G. We can easily construct H in O(V + E)
time. Because all edge weights are positive, H is a directed acyclic graph. It remains only
to count the number of paths from s to t in H.

For any vertex v, let PathsToT(v) denote the number of paths in H from v to t; we need
to compute PathsToT(s). This function satisfies the following simple recurrence:

1 ifv=t

PathsToT(v) =
athsToT(v) ZPathsToT(w) otherwise

vV-ow
In particular, if v is a sink but v # t (and thus there are no paths from v to t), this
recurrence correctly gives us PathsToT(v) = Z @=0.

We can memoize this function into the graph itself, storing each value PathsToT(v) at
the corresponding vertex v. Since each subproblem depends only on its successors in H, we
can compute PathsToT(v) for all vertices v by considering the vertices in reverse topological
order, or equivalently, by performing a depth-first search of H starting at s. The resulting
algorithm runs in O(V + E) time.

The overall running time of the algorithm is dominated by Dijkstra’s algorithm in the
preprocessing phase, which runs in O(E log V) time. [ ]

Rubric: 10 points = 5 points for reduction to counting paths in a dag + 5 points for
the path-counting algorithm (standard dynamic programming rubric)
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» Homework 9 &

Due Tuesday, November 15, 2016 at 8pm

1. Consider the following problem, called BoxDEPTH: Given a set of n axis-aligned rectangles
in the plane, how big is the largest subset of these rectangles that contain a common point?

(a) Describe a polynomial-time reduction from BoxDEPTH to MaxCLIQUE, and prove that
your reduction is correct.

(b) Describe and analyze a polynomial-time algorithm for BoxDEPTH. [Hint: Don’t try to
optimize the running time; O(n®) is good enough.]

(c) Why don’t these two results imply that P=NP?

2. This problem asks you to describe polynomial-time reductions between two closely related
problems:

* SuBseTSUM: Given a set S of positive integers and a target integer T, is there a
subset of S whose sum is T?

* ParTITION: Given a set S of positive integers, is there a way to partition S into two
subsets S; and S, that have the same sum?

(a) Describe a polynomial-time reduction from SUBSETSUM to PARTITION.

(b) Describe a polynomial-time reduction from PARTITION to SUBSETSUM.

Don’t forget to to prove that your reductions are correct.

3. Suppose you are given a graph G = (V, E) where V represents a collection of people and
an edge between two people indicates that they are friends. You wish to partition V into
at most k non-overlapping groups Vi, Vs, ..., Vj such that each group is very cohesive. One
way to model cohesiveness is to insist that each pair of people in the same group should be
friends; in other words, they should form a clique.

Prove that the following problem is NP-hard: Given an undirected graph G and an
integer k, decide whether the vertices of G can be partitioned into k cliques.
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Solved Problem

4. Consider the following solitaire game. The puzzle consists of an n x m grid of squares,
where each square may be empty, occupied by a red stone, or occupied by a blue stone.
The goal of the puzzle is to remove some of the given stones so that the remaining stones
satisfy two conditions: (1) every row contains at least one stone, and (2) no column
contains stones of both colors. For some initial configurations of stones, reaching this goal
is impossible.

ooe] @
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A solvable puzzle and one of its many solutions. An unsolvable puzzle.
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Prove that it is NP-hard to determine, given an initial configuration of red and blue
stones, whether this puzzle can be solved.

Solution: We show that this puzzle is NP-hard by describing a reduction from 3SAT.

Let ® be a 3CNF boolean formula with m variables and n clauses. We transform this
formula into a puzzle configuration in polynomial time as follows. The size of the board is
n x m. The stones are placed as follows, for all indices i and j:

* If the variable x; appears in the ith clause of &, we place a blue stone at (i, j).
* If the negated variable X; appears in the ith clause of ®, we place a red stone at (i, j).

¢ Otherwise, we leave cell (i, j) blank.

We claim that this puzzle has a solution if and only if ® is satisfiable. This claim
immediately implies that solving the puzzle is NP-hard. We prove our claim as follows:

= First, suppose ® is satisfiable; consider an arbitrary satisfying assignment. For each
index j, remove stones from column j according to the value assigned to x;:
— If x; = TRUE, remove all red stones from column j.
— If x; = FALSE, remove all blue stones from column j.
In other words, remove precisely the stones that correspond to FALSE literals. Because
every variable appears in at least one clause, each column now contains stones of
only one color (if any). On the other hand, each clause of & must contain at least one

TrUE literal, and thus each row still contains at least one stone. We conclude that the
puzzle is satisfiable.

<= On the other hand, suppose the puzzle is solvable; consider an arbitrary solution. For
each index j, assign a value to x; depending on the colors of stones left in column j:
— If column j contains blue stones, set x; = TRUE.
— If column j contains red stones, set x; = FALSE.
— If column j is empty, set x; arbitrarily.
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In other words, assign values to the variables so that the literals corresponding to
the remaining stones are all TRUE. Each row still has at least one stone, so each
clause of ® contains at least one TRUE literal, so this assignment makes & = TRUE.
We conclude that ® is satisfiable.

This reduction clearly requires only polynomial time. |

Rubric (for all polynomial-time reductions): 10 points =
+ 3 points for the reduction itself
— For an NP-hardness proof, the reduction must be from a known NP-hard
problem. You can use any of the NP-hard problems listed in the lecture
notes (except the one you are trying to prove NP-hard, of course).

+

3 points for the “if” proof of correctness
3 points for the “only if” proof of correctness
1 point for writing “polynomial time”

+ +

* An incorrect polynomial-time reduction that still satisfies half of the correctness
proof is worth at most 4/10.
A reduction in the wrong direction is worth 0/10.
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Due Tuesday, November 29, 2016 at 8pm

1. A subset S of vertices in an undirected graph G is called almost independent if at most
374 edges in G have both endpoints in S. Prove that finding the size of the largest
almost-independent set of vertices in a given undirected graph is NP-hard.

2. A subset S of vertices in an undirected graph G is called triangle-free if, for every triple of
vertices u,v,w € S, at least one of the three edges uv,uw, vw is absent from G. Prove that
finding the size of the largest triangle-free subset of vertices in a given undirected graph is
NP-hard.

A triangle-free subset of 7 vertices.
This is not the largest triangle-free subset in this graph.

3. Charon needs to ferry n recently deceased people across the river Acheron into Hades.
Certain pairs of these people are sworn enemies, who cannot be together on either side
of the river unless Charon is also present. (If two enemies are left alone, one will steal
the obol from the other’s mouth, leaving them to wander the banks of the Acheron as a
ghost for all eternity. Let’s just say this is a Very Bad Thing.) The ferry can hold at most k
passengers at a time, including Charon, and only Charon can pilot the ferry.

Prove that it is NP-hard to decide whether Charon can ferry all n people across the
Acheron unharmed.o The input for Charon’s problem consists of the integers k and n and
an n-vertex graph G describing the pairs of enemies. The output is either TRUE or FALSE.

DAside from being, you know, dead.
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Problem 3 is a generalization of the following extremely well-known puzzle, whose first known
appearance is in the treatise Propositiones ad Acuendos Juvenes [Problems to Sharpen the Young]
by the 8th-century English scholar Alcuin of York.r

XVIII. ProposITIO DE HOMINE ET CAPRA ET LvPO.

Homo quidam debebat ultra fluuium transferre lupum, capram, et fasciculum cauli. Et
non potuit aliam nauem inuenire, nisi quae duos tantum ex ipsis ferre ualebat. Praeceptum
itaque ei fuerat, ut omnia haec ultra illaesa omnino transferret. Dicat, qui potest, quomodo
eis illaesis transire potuit?

Solutio. Simili namque tenore ducerem prius capram et dimitterem foris lupum et
caulum. Tum deinde uenirem, lupumque transferrem: lupoque foris misso capram naui
receptam ultra reducerem; capramque foris missam caulum transueherem ultra; atque iterum
remigassem, capramque assumptam ultra duxissem. Sicque faciendo facta erit remigatio
salubris, absque uoragine lacerationis.

In case your classical Latin is rusty, here is an English translation:

XVIII. THE PROBLEM OF THE MAN, THE GOAT, AND THE WOLF.

A man needed to transfer a wolf, a goat, and a bundle of cabbage across a river. However,
he found that his boat could only bear the weight of two [objects at a time, including the
man]. And he had to get everything across unharmed. Tell me if you can: How they were
able to cross unharmed?

Solution. In a similar fashion [as an earlier problem], I would first take the goat across
and leave the wolf and cabbage on the opposite bank. Then I would take the wolf across;
leaving the wolf on shore, I would retrieve the goat and bring it back again. Then I would
leave the goat and take the cabbage across. And then I would row across again and get the
goat. In this way the crossing would go well, without any threat of slaughter.

Please do not write your solution to problem 3 in classical Latin.

OAt least, we think that’s who wrote it; the evidence for his authorship is rather circumstantial, although we do
know from his correspondence with Charlemagne that he sent the emperor some “simple arithmetical problems for
fun”. Most scholars believe that even if Alcuin is the actual author of the Propositiones, he didn’t come up with the
problems himself, but just collected his problems from other sources. Some things never change.
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Solved Problem

4. A double-Hamiltonian tour in an undirected graph G is a closed walk that visits every vertex
in G exactly twice. Prove that it is NP-hard to decide whether a given graph G has a
double-Hamiltonian tour.

(&

This graph contains the double-Hamiltonian tour a~b—d—g—e—b—d—c—f —a—c—f—g—e—a.

Solution: We prove the problem is NP-hard with a reduction from the standard Hamiltonian
cycle problem. Let G be an arbitrary undirected graph. We construct a new graph H by
attaching a small gadget to every vertex of G. Specifically, for each vertex v, we add two
vertices v! and vb, along with three edges vvl’, vt and s

NN

A vertex in G, and the corresponding vertex gadget in H.
I claim that G has a Hamiltonian cycle if and only if H has a double-Hamiltonian tour.

—> Suppose G has a Hamiltonian cycle v;—vy— - -+ —v,—v;. We can construct a double-
Hamiltonian tour of H by replacing each vertex v; with the following walk:

L)

e —>vi—>vib—>vi —V; —>v?—>vi—> e

<= Conversely, suppose H has a double-Hamiltonian tour D. Consider any vertex v in the
original graph G; the tour D must visit v exactly twice. Those two visits split D into
two closed walks, each of which visits v exactly once. Any walk from v’ or v* to any
other vertex in H must pass through v. Thus, one of the two closed walks visits only
the vertices v, vb, and v!. Thus, if we simply remove the vertices in H \ G from D, we
obtain a closed walk in G that visits every vertex in G once.

Given any graph G, we can clearly construct the corresponding graph H in polynomial
time.

With more effort, we can construct a graph H that contains a double-Hamiltonian tour
that traverses each edge of H at most once if and only if G contains a Hamiltonian cycle.
For each vertex v in G we attach a more complex gadget containing five vertices and eleven
edges, as shown on the next page. [ |
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S

A vertex in G, and the corresponding modified vertex gadget in H.

Common incorrect solution (self-loops): We attempt to prove the problem is NP-hard
with a reduction from the Hamiltonian cycle problem. Let G be an arbitrary undirected
graph. We construct a new graph H by attaching a self-loop every vertex of G. Given any
graph G, we can clearly construct the corresponding graph H in polynomial time.

AR

An incorrect vertex gadget.

Suppose G has a Hamiltonian cycle v;—v,— -+ —v,—Vv;. We can construct a double-
Hamiltonian tour of H by alternating between edges of the Hamiltonian cycle and self-loops:

V12V 2 Vo2 Vo= Vg3— o =V =V — V.

On the other hand, if H has a double-Hamiltonian tour, we cannot conclude that G has a
Hamiltonian cycle, because we cannot guarantee that a double-Hamiltonian tour in H uses
any self-loops. The graph G shown below is a counterexample; it has a double-Hamiltonian
tour (even before adding self-loops) but no Hamiltonian cycle.

This graph has a double-Hamiltonian tour.

Rubric (for all polynomial-time reductions): 10 points =
+ 3 points for the reduction itself
— For an NP-hardness proof, the reduction must be from a known NP-hard

problem. You can use any of the NP-hard problems listed in the lecture
notes (except the one you are trying to prove NP-hard, of course).

+ 3 points for the “if” proof of correctness

+ 3 points for the “only if” proof of correctness

+ 1 point for writing “polynomial time”

* An incorrect polynomial-time reduction that still satisfies half of the correctness
proof is worth at most 4/10.
* A reduction in the wrong direction is worth 0/10.
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“Due” Tuesday, December, 2016

This homework is only for practice; it will not be graded. However, similar questions
may appear on the final exam, so we still strongly recommend treating this as a
regular homework. Solutions will be released next Tuesday as usual.

1. Recall that w? denotes the reversal of string w; for example, TURINGR = GNIRUT. Prove
that the following language is undecidable.

REVACCEPT := {(M ) | M accepts (M )R}

Note that Rice’s theorem does not apply to this language.

2. Let M be a Turing machine, let w be an arbitrary input string, and let s be an integer. We
say that M accepts w in space s if, given w as input, M accesses only the first s (or fewer)
cells on its tape and eventually accepts.

(a) Sketch a Turing machine/algorithm that correctly decides the following language:
{(M,w) | M accepts w in space |W|2}
(b) Prove that the following language is undecidable:

{(M ) | M accepts at least one string w in space |W|2}

3. Consider the language SomETIMESHALT = {(M) | M halts on at least one input string}.
Note that (M) € SoMETIMESHALT does not imply that M accepts any strings; it is enough
that M halts on (and possibly rejects) some string.

(a) Prove that SoMETIMESHALT is undecidable.

(b) Sketch a Turing machine/algorithm that accepts SOMETIMESHALT.
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Solved Problem

4. For each of the following languages, either prove that the language is decidable, or prove
that the language is undecidable.

(@ Lg= {(M ) | given any input string, M eventually leaves its start state}

Solution: We can determine whether a given Turing machine M always leaves its
start state by careful analysis of its transition function 6. As a technical point, I will
assume that crashing on the first transition does not count as leaving the start state.

e If 6(start,a) = (+,-,—1) for any input symbol a € 3., then M crashes on input a
without leaving the start state.

e If 6(start,d0) =(:,-,—1), then M crashes on the empty input without leaving the
start state.

e Otherwise, M moves to the right until it leaves the start state. There are two
subcases to consider:

- If 6(start,00) = (start,-,+1), then M loops forever on the empty input
without leaving the start state.

— Otherwise, for any input string, M must eventually leave the start state,
either when reading some input symbol or when reading the first blank.

It is straightforward (but tedious) to perform this case analysis with a Turing machine
that receives the encoding (M) as input. We conclude that L is decidable. |

(d) L, = {(M) | M decides LO}

Solution:

e By part (a), there is a Turing machine that decides L.

* Let M,je; be a Turing machine that immediately rejects its input, by defining
o(start,a) = reject for all a € X U {00}. Then M, decides the language
D # Ly. [ |

Thus, Rice’s Decision Theorem implies that L, is undecidable.

(¢ Ly,= {(M) | M decides Ll}
Solution: By part (b), no Turing machine decides L;, which implies that L, = &.
Thus, M, je; correctly decides L,. We conclude that L, is decidable. [ |
d Ly= {(M) | M decides Lz}
Solution: Because L, = &, we have
Ly ={(M) | M decides @} = {(M) | REJECT(M) = ©*}

* We have already seen a Turing machine M., such that REJECT(M gject) = X*.

* Let M, .. be a Turing machine that immediately accepts its input, by defining
o(start,a) = accept for all a € ZU {00}. Then REJECT(M,cept) =D #Z*. W

Thus, Rice’s Rejection Theorem implies that L, is undecidable.
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(e)

Ly= {(M) | M decides L3}

Solution: By part (b), no Turing machine decides L3, which implies that L, = @.
Thus, M, je; correctly decides L,. We conclude that L, is decidable.

At this point, we have fallen into a loop. For any k > 4, define
L= {(M) | M decides Lk_l}.

Then Ly is decidable (because L, = @) if and only if k is even. [ |

Rubric: 10 points: 4 for part (a) + 1% for each other part.

Rubric (for all undecidability proofs, out of 10 points):
Diagonalization:

+ 4 for correct wrapper Turing machine

+ 6 for self-contradiction proof (= 3 for &< + 3 for =)

Reduction:
+ 4 for correct reduction
+ 3 for “if” proof
+ 3 for “only if” proof

Rice’s Theorem:
+ 4 for positive Turing machine
+ 4 for negative Turing machine
+ 2 for other details (including using the correct variant of Rice’s Theorem)
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The following problems ask you to prove some “obvious” claims about recursively-defined string
functions. In each case, we want a self-contained, step-by-step induction proof that builds on
formal definitions and prior reults, not on intuition. In particular, your proofs must refer to the
formal recursive definitions of string length and string concatenation:

wl 0 ifw=e
w|:=
1+ x| if w = ax for some symbol a and some string x
Z ifw=e
wez:= ) .
a-(xez) if w=ax for some symbol a and some string x

You may freely use the following results, which are proved in the lecture notes:

Lemma 1: w * ¢ = w for all strings w.
Lemma 2: |w * x| = |w| + |x| for all strings w and x.

Lemma 3: (wex)e*y=we*(x*y)forall strings w, x, and y.

The reversal wR of a string w is defined recursively as follows:

WR::{S ifw=¢

xR ea if w=ax for some symbol a and some string x
For example, STRESSED® = DESSERTS and WTF374% = 473FTW.

1. Prove that |w| = [w®| for every string w.
2. Prove that (w ¢ 2)? = 2R « wR for all strings w and z.

3. Prove that (WR)R = w for every string w.

[Hint: You need #2 to prove #3, but you may find it easier to solve #3 first.]

To think about later: Let #(a, w) denote the number of times symbol a appears in string w. For
example, #(X,WTF374) =0 and #(0,000010101010010100) =12.

4. Give a formal recursive definition of #(a, w).
5. Prove that #(a,w * 2) = #(a,w) + #(a, 2) for all symbols a and all strings w and z.

6. Prove that #(a, wR) = #(a, w) for all symbols a and all strings w.
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Give regular expressions for each of the following languages over the alphabet {0, 1}.

. All strings containing the substring 000.

All strings not containing the substring 000.

All strings in which every run of 0s has length at least 3.

. All strings in which every substring ©00 appears after every 1.

. All strings containing at least three Os.

Every string except ©00. [Hint: Don’t try to be clever.]

Work on these later:

All strings w such that in every prefix of w, the number of 0s and 1s differ by at most 1.

. All strings containing at least two 0s and at least one 1.

All strings w such that in every prefix of w, the number of Os and 1s differ by at most 2.

. All strings in which the substring 000 appears an even number of times.

(For example, 0001000 and 0000 are in this language, but 00000 is not.)
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Describe deterministic finite-state automata that accept each of the following languages over the
alphabet 32 = {0, 1}. Describe briefly what each state in your DFAs means.

Either drawings or formal descriptions are acceptable, as long as the states Q, the start state
s, the accept states A, and the transition function 6 are all be clear. Try to keep the number of
states small.

1. All strings containing the substring 000.

2. All strings not containing the substring 000.

3. All strings in which every run of 0s has length at least 3.
4. All strings in which no substring 000 appears before a 1.
5. All strings containing at least three Os.

6. Every string except ©00. [Hint: Don’t try to be clever.]

Work on these later:

7. All strings w such that in every prefix of w, the number of 0s and 1s differ by at most 1.
8. All strings containing at least two 0s and at least one 1.
9. All strings w such that in every prefix of w, the number of 0s and 1s differ by at most 2.

10. All strings in which the substring 00 appears an even number of times.
(For example, 0001000 and 0000 are in this language, but 00000 is not.)
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Describe deterministic finite-state automata that accept each of the following languages over the
alphabet 3 = {0, 1}. You may find it easier to describe these DFAs formally than to draw pictures.

Either drawings or formal descriptions are acceptable, as long as the states Q, the start state s,
the accept states A, and the transition function & are all be clear. Try to keep the number of
states small.

1. All strings in which the number of 0s is even and the number of 1s is not divisible by 3.

2. All strings that are both the binary representation of an integer divisible by 3 and the
ternary (base-3) representation of an integer divisible by 4.

For example, the string 1100 is an element of this language, because it represents
23+ 22 =12 in binary and 3% + 32 = 36 in ternary.

Work on these later:

3. All strings w such that (Ig/l) mod 6 = 4. [Hint: Maintain both (|v2v|) mod 6 and |w| mod 6.]

*4. All strings w such that F(;0 ) mod 10 = 4, where #(10,w) denotes the number of times
10 appears as a substring of w, and F,, is the nth Fibonacci number:

0 ifn=0
Fn = 1 lf n=1
F,_1+F,_, otherwise
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Prove that each of the following languages is not regular.

1. {0%" | n> o0}

2. {02"1" | n >0}

3. {0™1" | m # 2n}

4. Strings over {0, 1} where the number of Os is exactly twice the number of 1s.

5. Strings of properly nested parentheses (), brackets [ ], and braces { }. For example, the
string ([ 1) {7} is in this language, but the string ( [) ] is not, because the left and right
delimiters don’t match.

6. Strings of the form wq#w,# --- #w, for some n > 2, where each substring w; is a string in
{0, 1}*, and some pair of substrings w; and w; are equal.

Work on these later:

7. {0”2 | nZO}

8. {w e (0+1)"| wis the binary representation of a perfect square}
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Let L be an arbitrary regular language.

1. Prove that the language insert1(L) := {x1y | xy € L} is regular.

Intuitively, insert1(L) is the set of all strings that can be obtained from strings in L by insert-
ing exactly one 1. For example, if . = {&,00K!}, then insert1(L) = {1,100K!,010K!,
001K!,00K1!,00K!1}.

2. Prove that the language deletel(L) := {xy | x1y € L} is regular.

Intuitively, deletel(L) is the set of all strings that can be obtained from strings in L
by deleting exactly one 1. For example, if L = {101101,00,¢}, then deletel(L) =
{01101,10101,10116}.

Work on these later: (In fact, these might be easier than problems 1 and 2.)
3. Consider the following recursively defined function on strings:

€ ifw=e
stutter(w) :=

aa * stutter(x) if w = ax for some symbol a and some string x

Intuitively, stutter(w) doubles every symbol in w. For example:

¢ stutter(PRESTO) = PPRREESSTTOO
¢ stutter(HOCUSoPOCUS) = HHOOCCUUSS<©<+PPOOCCUUSS

Let L be an arbitrary regular language.

(a) Prove that the language stutter'(L) := {w | stutter(w) € L} is regular.
(b) Prove that the language stutter(L) := {stutter(w) | w € L} is regular.

4. Consider the following recursively defined function on strings:

€ ifw=¢e
evens(w) :=1{ ¢ if w = a for some symbol a
b - evens(x) if w = abx for some symbols a and b and some string x

Intuitively, evens(w) skips over every other symbol in w. For example:

* evens(EXPELLIARMUS) = XELAMS
* evens(AVADA<KEDAVRA) = VD<EAR.

Once again, let L be an arbitrary regular language.

(a) Prove that the language evens™'(L) := {w | evens(w) € L} is regular.

(b) Prove that the language evens(L) := {evens(w) | w € L} is regular.
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Alex showed the following context-free grammars in class on Tuesday; in each example, the
grammar itself is on the left; the explanation for each non-terminal is on the right.

* Properly nested strings of parentheses.

S—e]|S(S) properly nested parentheses

Here is a different grammar for the same language:

S—e|(S)]|SS properly nested parentheses

e {0™1" | m # n}. This is the set of all binary strings composed of some number of 0s
followed by a different number of 1s.

S—A|B {0™1" | m # n}
A—0A|0OC {0™1" | m > n}
B—Bl|C1 {0™1" | m < n}
C—e¢|0C1 {0™1" | m =n}

Give context-free grammars for each of the following languages. For each grammar, describe in
English the language for each non-terminal, and in the examples above. As usual, we won't get
to all of these in section.

1. {02"1" | n >0}

2. {0M1" | m # 2n}
[Hint: If m # 2n, then either m < 2n or m > 2n. Extend the previous grammar, but pay
attention to parity. This language contains the string 01.]

3. {0,1}*\ {0%"1" | n>0}

[Hint: Extend the previous grammar. What'’s missing?]

Work on these later:

4. {w e{0,1}* | #O,w)=2- #(1,W)} — Binary strings where the number of Os is exactly
twice the number of 1s.

5. {0, 1"\ {ww | we{0,1}"}.
[Anti-hint: The language {ww | w € 0, 1*} is not context-free. Thus, the complement of a
context-free language is not necessarily context-free!]
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For each of the following languages over the alphabet ¥ = {0, 1}, either prove the language is
regular (by giving an equivalent regular expression, DFA, or NFA) or prove that the language is
not regular (using a fooling set argument). Exactly half of these languages are regular.

1. {0™"10" |n>0}

2. {0"10"w |n>0and we ©*}

3. {w0"10"x |we ¥*and n > 0 and x € X*}

4. Strings in which the number of 0s and the number of 1s differ by at most 2.

5. Strings such that in every prefix, the number of s and the number of 1s differ by at most 2.

6. Strings such that in every substring, the number of 0s and the number of 1s differ by at
most 2.
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Design Turing machines M = (Q, %, T, 6, start, accept, reject) for each of the following tasks,
either by listing the states Q, the tape alphabet I', and the transition function 6 (in a table), or by
drawing the corresponding labeled graph.

Each of these machines uses the input alphabet ¥ = {1, #}; the tape alphabet I can be any
superset of {1, #,00,>} where O is the blank symbol and > is a special symbol marking the left
end of the tape. Each machine should reject any input not in the form specified below.

1. On input 1", for any non-negative integer n, write 1"#1" on the tape and accept.

2. On input #"1™, for any non-negative integers m and n, write 1™ on the tape and accept.
In other words, delete all the #s and shift the 1s to the start of the tape.

1211

3. On input #1", for any non-negative integer n, write # on the tape and accept. [Hint:

Modify the Turing machine from problem 1.]

4. On input 1", for any non-negative integer n, write 12" on the tape and accept. [Hint: Use
the three previous Turing machines as subroutines. ]
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Here are several problems that are easy to solve in O(n) time, essentially by brute force. Your
task is to design algorithms for these problems that are significantly faster.

1. Suppose we are given an array A[1..n] of n distinct integers, which could be positive,
negative, or zero, sorted in increasing order so that A[1] < A[2] < --- < A[n].

(a) Describe a fast algorithm that either computes an index i such that Ali] =i or
correctly reports that no such index exists.

(b) Suppose we know in advance that A[1] > 0. Describe an even faster algorithm that
either computes an index i such that A[i] =i or correctly reports that no such index
exists. [Hint: This is really easy.]

2. Suppose we are given an array A[1..n] such that A[1] > A[2] and A[n—1] < A[n]. We say
that an element A[x] is a local minimum if both A[x — 1] > A[x] and A[x] < A[x + 1].
For example, there are exactly six local minima in the following array:

P72 31757 [3 s 4 s 6 ]o]

Describe and analyze a fast algorithm that returns the index of one local minimum. For
example, given the array above, your algorithm could return the integer 9, because A[9] is
a local minimum. [Hint: With the given boundary conditions, any array must contain at
least one local minimum. Why?]

3. Suppose you are given two sorted arrays A[1..n] and B[1..n] containing distinct integers.
Describe a fast algorithm to find the median (meaning the nth smallest element) of the
union AU B. For example, given the input

Al1..81=[0,1,6,9,12,13,18,20]  B[1..8]=[2,4,5,8,17,19,21,23]

your algorithm should return the integer 9. [Hint: What can you learn by comparing one
element of A with one element of B?]

To think about later:

4. Now suppose you are given two sorted arrays A[1..m] and B[1..n] and an integer k.
Describe a fast algorithm to find the kth smallest element in the union AU B. For example,
given the input

Al1..8]1=[0,1,6,9,12,13,18,20]  B[1..5]=[2,5,7,17,19] k=6

your algorithm should return the integer 7.
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In lecture, Alex described an algorithm of Karatsuba that multiplies two n-digit integers using
0(n'83) single-digit additions, subtractions, and multiplications. In this lab we’ll look at some
extensions and applications of this algorithm.

1. Describe an algorithm to compute the product of an n-digit number and an m-digit number,
where m < n, in O(m'$3~1n) time.

2. Describe an algorithm to compute the decimal representation of 2" in O(n'8%) time. (The
standard algorithm that computes one digit at a time requires ©(n?) time.)

3. Describe a divide-and-conquer algorithm to compute the decimal representation of an
arbitrary n-bit binary number in O(n'¢®) time. [Hint: Let x = a - 2"/% + b. Watch out for an
extra log factor in the running time. ]

Think about later:

4. Suppose we can multiply two n-digit numbers in O(M(n)) time. Describe an algorithm to
compute the decimal representation of an arbitrary n-bit binary number in O(M(n)logn)
time.
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A subsequence of a sequence (for example, an array, linked list, or string), obtained by removing
zero or more elements and keeping the rest in the same sequence order. A subsequence is called
a substring if its elements are contiguous in the original sequence. For example:

e SUBSEQUENCE, UBSEQU, and the empty string ¢ are all substrings (and therefore sub-
sequences) of the string SUBSEQUENCE;

* SBSQNC, SQUEE, and EEE are all subsequences of SUBSEQUENCE but not substrings;

* QUEUE, EQUUS, and DIMAGGIO are not subsequences (and therefore not substrings) of
SUBSEQUENCE.

Describe recursive backtracking algorithms for the following problems. Don’t worry about running
times.

1. Given an array A[1..n] of integers, compute the length of a longest increasing subsequence.
A sequence B[1..£] is increasing if B[i] > B[i — 1] for every index i > 2.

For example, given the array
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,7)

your algorithm should return the integer 6, because (1,4,5,6,8,9) is a longest increasing
subsequence (one of many).

2. Given an array A[1.. n] of integers, compute the length of a longest decreasing subsequence.
A sequence B[1..£] is decreasing if B[i] < B[i — 1] for every index i > 2.

For example, given the array
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,7)

your algorithm should return the integer 5, because (9,6, 5,4, 2) is a longest decreasing
subsequence (one of many).

3. Given an array A[1..n] of integers, compute the length of a longest alternating subse-
quence. A sequence B[1..{] is alternating if B[i] < B[i — 1] for every even index i > 2,
and B[i] > B[i — 1] for every odd index i > 3.

For example, given the array

your algorithm should return the integer 17, because (3,1,4,1,5,2,6,5,8,7,9,3,8,4,6,2,7)
is a longest alternating subsequence (one of many).
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To think about later:

4. Given an array A[1..n] of integers, compute the length of a longest convex subsequence
of A. A sequence B[1..£] is convex if B[i]—B[i— 1] > B[i — 1] — B[i — 2] for every index
i>3.

For example, given the array
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,7)

your algorithm should return the integer 6, because (3,1,1,2,5,9) is a longest convex
subsequence (one of many).

5. Given an array A[1..n], compute the length of a longest palindrome subsequence of A.
Recall that a sequence B[1..£] is a palindrome if B[i] = B[{ —i + 1] for every index i.

For example, given the array
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,7)

your algorithm should return the integer 7, because (4,9, 5,3, 5, 9, 4) is a longest palindrome
subsequence (one of many).



CS/ECE 374 Lab 7% — October 7 Fall 2016

A subsequence of a sequence (for example, an array, a linked list, or a string), obtained by
removing zero or more elements and keeping the rest in the same sequence order. A subsequence
is called a substring if its elements are contiguous in the original sequence. For example:

* SUBSEQUENCE, UBSEQU, and the empty string ¢ are all substrings of the string SUB-
SEQUENCE;

* SBSQNC, UEQUE, and EEE are all subsequences of SUBSEQUENCE but not substrings;

* QUEUE, SSS, and FOOBAR are not subsequences of SUBSEQUENCE.

Describe and analyze dynamic programming algorithms for the following problems. For the
first three, use the backtracking algorithms you developed on Wednesday.

1. Given an array A[1..n] of integers, compute the length of a longest increasing subsequence
of A. A sequence B[1..£] is increasing if B[i] > B[i — 1] for every index i > 2.

2. Given an array A[1..n] of integers, compute the length of a longest decreasing subsequence
of A. A sequence B[1..£] is decreasing if B[i] < B[i — 1] for every index i > 2.

3. Given an array A[ 1 .. n] of integers, compute the length of a longest alternating subsequence
of A. A sequence B[1..{] is alternating if B[i] < B[i — 1] for every even index i > 2, and
B[i] > B[i—1] for every odd index i > 3.

4. Given an array A[1..n] of integers, compute the length of a longest convex subsequence
of A. A sequence B[1..£] is convex if B[i]—B[i—1] > B[i — 1] — B[i — 2] for every index
i>3.

5. Given an array A[1..n], compute the length of a longest palindrome subsequence of A.
Recall that a sequence B[1..£] is a palindrome if B[i] = B[{ —i + 1] for every index i.
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Basic steps in developing a dynamic programming algorithm

1. Formulate the problem recursively. This is the hard part. There are two distinct but
equally important things to include in your formulation.

(a) Specification. First, give a clear and precise English description of the problem you
are claiming to solve. Not how to solve the problem, but what the problem actually is.
Omitting this step in homeworks or exams is an automatic zero.

(b) Solution. Second, give a clear recursive formula or algorithm for the whole problem
in terms of the answers to smaller instances of exactly the same problem. It generally
helps to think in terms of a recursive definition of your inputs and outputs. If you
discover that you need a solution to a similar problem, or a slightly related problem,
you’re attacking the wrong problem; go back to step 1.

2. Build solutions to your recurrence from the bottom up. Write an algorithm that starts
with the base cases of your recurrence and works its way up to the final solution, by
considering intermediate subproblems in the correct order. This stage can be broken down
into several smaller, relatively mechanical steps:

(a) Identify the subproblems. What are all the different ways can your recursive
algorithm call itself, starting with some initial input?

(b) Analyze running time. Add up the running times of all possible subproblems,
ignoring the recursive calls.

(c) Choose a memoization data structure. For most problems, each recursive subprob-
lem can be identified by a few integers, so you can use a multidimensional array. But
some problems need a more complicated data structure.

(d) Identify dependencies. Except for the base cases, every recursive subproblem
depends on other subproblems—which ones? Draw a picture of your data structure,
pick a generic element, and draw arrows from each of the other elements it depends
on. Then formalize your picture.

(e) Find a good evaluation order. Order the subproblems so that each subproblem
comes after the subproblems it depends on. Typically, you should consider the base
cases first, then the subproblems that depends only on base cases, and so on. Be
careful!

(f) Write down the algorithm. You know what order to consider the subproblems, and
you know how to solve each subproblem. So do that! If your data structure is an array,
this usually means writing a few nested for-loops around your original recurrence.
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Lenny Rutenbar, the founding dean of the new Maximilian Q. Levchin College of Computer
Science, has commissioned a series of snow ramps on the south slope of the Orchard Downs
sledding hillo and challenged Bill Kudeki, head of the Department of Electrical and Computer
Engineering, to a sledding contest. Bill and Lenny will both sled down the hill, each trying to
maximize their air time. The winner gets to expand their department/college into both Siebel
Center and the new ECE Building; the loser has to move their entire department/college under
the Boneyard bridge next to Everitt Lab.

Whenever Lenny or Bill reaches a ramp while on the ground, they can either use that ramp to
jump through the air, possibly flying over one or more ramps, or sled past that ramp and stay on
the ground. Obviously, if someone flies over a ramp, they cannot use that ramp to extend their
jump.

1. Suppose you are given a pair of arrays Ramp[1..n] and Length[1..n], where Ramp[i] is
the distance from the top of the hill to the ith ramp, and Length[i] is the distance that any
sledder who takes the ith ramp will travel through the air.

Describe and analyze an algorithm to determine the maximum total distance that Lenny
or Bill can spend in the air.

2. Uh-oh. The university lawyers heard about Lenny and Bill’s little bet and immediately
objected. To protect the university from either lawsuits or sky-rocketing insurance rates,
they impose an upper bound on the number of jumps that either sledder can take.

Describe and analyze an algorithm to determine the maximum total distance that Lenny
or Bill can spend in the air with at most k jumps, given the original arrays Ramp[1..n] and
Length[1..n] and the integer k as input.

3. To think about later: When the lawyers realized that imposing their restriction didn’t
immediately shut down the contest, they added a new restriction: No ramp can be used
more than once! Disgusted by the legal interference, Lenny and Bill give up on their bet
and decide to cooperate to put on a good show for the spectators.

Describe and analyze an algorithm to determine the maximum total distance that Lenny
and Bill can spend in the air, each taking at most k jumps (so at most 2k jumps total), and
with each ramp used at most once.

OThe north slope is faster, but too short for an interesting contest.
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1. A basic arithmetic expression is composed of characters from the set {1,+,x} and
parentheses. Almost every integer can be represented by more than one basic arithmetic
expression. For example, all of the following basic arithmetic expression represent the
integer 14:

1+14+1+1+14+14+1+1+14+1+1+14+1+1+1+1
(I+D)xA+1+1+1+1))+((Q1+1D)x(Q+1))
A+D)x(A+14+14+1+14+1+1)
I+Dx(((1+1+DxA+1)+1)

Describe and analyze an algorithm to compute, given an integer n as input, the minimum
number of 1’s in a basic arithmetic expression whose value is equal to n. The number
of parentheses doesn’t matter, just the number of 1’s. For example, when n = 14, your
algorithm should return 8, for the final expression above. The running time of your
algorithm should be bounded by a small polynomial function of n.

2. To think about later: Suppose you are given a sequence of integers separated by +
and — signs; for example:
1+3—2—-54+1—-6+7

You can change the value of this expression by adding parentheses in different places. For
example:

1+3—2—-54+1—-6+7=-1
1+3—2-5)+(1—-6)+7=9
1+B-2)—GB+1)—(6+7)=-17

Describe and analyze an algorithm to compute, given a list of integers separated by +
and — signs, the maximum possible value the expression can take by adding parentheses.
Parentheses must be used only to group additions and subtractions; in particular, do not
use them to create implicit multiplication as in 1 + 3(—2)(—5)+1—6+7 = 33.



CS/ECE 374 Lab 9 — October 19 Fall 2016

Recall the class scheduling problem described in lecture on Tuesday. We are given two arrays
S[1..n] and F[1..n], where S[i] < F[i] for each i, representing the start and finish times of n
classes. Your goal is to find the largest number of classes you can take without ever taking two
classes simultaneously. We showed in class that the following greedy algorithm constructs an
optimal schedule:

Choose the course that ends first, discard all conflicting classes, and recurse.

But this is not the only greedy strategy we could have tried. For each of the following
alternative greedy algorithms, either prove that the algorithm always constructs an optimal
schedule, or describe a small input example for which the algorithm does not produce an optimal
schedule. Assume that all algorithms break ties arbitrarily (that is, in a manner that is completely
out of your control). Exactly three of these greedy strategies actually work.

1. Choose the course x that ends last, discard classes that conflict with x, and recurse.
2. Choose the course x that starts first, discard all classes that conflict with x, and recurse.
3. Choose the course x that starts last, discard all classes that conflict with x, and recurse.

4. Choose the course x with shortest duration, discard all classes that conflict with x, and
recurse.

5. Choose a course x that conflicts with the fewest other courses, discard all classes that conflict
with x, and recurse.

6. If no classes conflict, choose them all. Otherwise, discard the course with longest duration
and recurse.

7. If no classes conflict, choose them all. Otherwise, discard a course that conflicts with the
most other courses and recurse.

8. Let x be the class with the earliest start time, and let y be the class with the second earliest
start time.

e If x and y are disjoint, choose x and recurse on everything but x.
e If x completely contains y, discard x and recurse.
* Otherwise, discard y and recurse.

9. If any course x completely contains another course, discard x and recurse. Otherwise,
choose the course y that ends last, discard all classes that conflict with y, and recurse.
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For each of the problems below, transform the input into a graph and apply a standard graph
algorithm that you've seen in class. Whenever you use a standard graph algorithm, you must
provide the following information. (I recommend actually using a bulleted list.)

What are the vertices?

What are the edges? Are they directed or undirected?

If the vertices and/or edges have associated values, what are they?
What problem do you need to solve on this graph?

What standard algorithm are you using to solve that problem?

What is the running time of your entire algorithm, including the time to build the graph, as
a function of the original input parameters?

. Snakes and Ladders is a classic board game, originating in India no later than the 16th

century. The board consists of an n x n grid of squares, numbered consecutively from 1
to n?, starting in the bottom left corner and proceeding row by row from bottom to top,
with rows alternating to the left and right. Certain pairs of squares, always in different
rows, are connected by either “snakes” (leading down) or “ladders” (leading up). Each
square can be an endpoint of at most one snake or ladder.

112]@4]s|6]7|@®] 9o

A typical Snakes and Ladders board.
Upward straight arrows are ladders; downward wavy arrows are snakes.

You start with a token in cell 1, in the bottom left corner. In each move, you advance
your token up to k positions, for some fixed constant k (typically 6). If the token ends the
move at the top end of a snake, you must slide the token down to the bottom of that snake.
If the token ends the move at the bottom end of a ladder, you may move the token up to
the top of that ladder.

Describe and analyze an algorithm to compute the smallest number of moves required
for the token to reach the last square of the grid.

. Let G be a connected undirected graph. Suppose we start with two coins on two arbitrarily

chosen vertices of G. At every step, each coin must move to an adjacent vertex. Describe and
analyze an algorithm to compute the minimum number of steps to reach a configuration
where both coins are on the same vertex, or to report correctly that no such configuration
is reachable. The input to your algorithm consists of a graph G = (V, E) and two vertices
u,v € V (which may or may not be distinct).
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For each of the problems below, transform the input into a graph and apply a standard graph
algorithm that you've seen in class. Whenever you use a standard graph algorithm, you must
provide the following information. (I recommend actually using a bulleted list.)

* What are the vertices?

* What are the edges? Are they directed or undirected?

* If the vertices and/or edges have associated values, what are they?

* What problem do you need to solve on this graph?

* What standard algorithm are you using to solve that problem?

* What is the running time of your entire algorithm, including the time to build the graph, as
a function of the original input parameters?

1. Inspired by the previous lab, you decide to organize a Snakes and Ladders competition
with n participants. In this competition, each game of Snakes and Ladders involves three
players. After the game is finished, they are ranked first, second, and third. Each player
may be involved in any (non-negative) number of games, and the number need not be
equal among players.

At the end of the competition, m games have been played. You realize that you forgot
to implement a proper rating system, and therefore decide to produce the overall ranking
of all n players as you see fit. However, to avoid being too suspicious, if player A ranked
better than player B in any game, then A must rank better than B in the overall ranking.

You are given the list of players and their ranking in each of the m games. Describe and
analyze an algorithm that produces an overall ranking of the n players that is consistent
with the individual game rankings, or correctly reports that no such ranking exists.

2. There are n galaxies connected by m intergalactic teleport-ways. Each teleport-way joins
two galaxies and can be traversed in both directions. However, the company that runs the
teleport-ways has established an extremely lucrative cost structure: Anyone can teleport
further from their home galaxy at no cost whatsoever, but teleporting toward their home
galaxy is prohibitively expensive.

Judy has decided to take a sabbatical tour of the universe by visiting as many galaxies
as possible, starting at her home galaxy. To save on travel expenses, she wants to teleport
away from her home galaxy at every step, except for the very last teleport home.

Describe and analyze an algorithm to compute the maximum number of galaxies that
Judy can visit. Your input consists of an undirected graph G with n vertices and m edges
describing the teleport-way network, an integer 1 < s < n identifying Judy’s home galaxy,
and an array D[1..n] containing the distances of each galaxy from s.

To think about later:

3. Just before embarking on her universal tour, Judy wins the space lottery, giving her just
enough money to afford two teleports toward her home galaxy. Describe a new algorithm
to compute the maximum number of distinct galaxies Judy can visit. She can visit the
same galaxy more than once, but only the first visit counts toward her total.
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1. Describe and analyze an algorithm to compute the shortest path from vertex s to vertex
t in a directed graph with weighted edges, where exactly one edge u—v has negative
weight. Assume the graph has no negative cycles. [Hint: Modify the input graph and
run Dijkstra’s algorithm. Alternatively, don’t modify the input graph, but run Dijkstra’s
algorithm anyway.]

2. You just discovered your best friend from elementary school on Twitbook. You both want to
meet as soon as possible, but you live in two different cites that are far apart. To minimize
travel time, you agree to meet at an intermediate city, and then you simultaneously hop in
your cars and start driving toward each other. But where exactly should you meet?

You are given a weighted graph G = (V, E), where the vertices V represent cities and
the edges E represent roads that directly connect cities. Each edge e has a weight w(e)
equal to the time required to travel between the two cities. You are also given a vertex p,
representing your starting location, and a vertex q, representing your friend’s starting
location.

Describe and analyze an algorithm to find the target vertex t that allows you and your
friend to meet as soon as possible, assuming both of you leave home right now.
To think about later:

3. Alooped tree is a weighted, directed graph built from a binary tree by adding an edge from
every leaf back to the root. Every edge has a non-negative weight.

4 W' N\
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A looped tree.

(a) How much time would Dijkstra’s algorithm require to compute the shortest path
between two vertices u and v in a looped tree with n nodes?

(b) Describe and analyze a faster algorithm.
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1. Suppose that you have just finished computing the array dist[1..V,1.. V] of shortest-path
distances between all pairs of vertices in an edge-weighted directed graph G. Unfortunately,
you discover that you incorrectly entered the weight of a single edge u—v, so all that
precious CPU time was wasted. Or was it? Maybe your distances are correct after all!

In each of the following problems, let w(u—v) denote the weight that you used in your
distance computation, and let w’(u—v) denote the correct weight of u—v.

(a) Suppose w(u—v) > w’(u—v); that is, the weight you used for u—v was larger than
its true weight. Describe an algorithm that repairs the distance array in O(V?2) time
under this assumption. [Hint: For every pair of vertices x and y, either u—v is on the
shortest path from x to y or it isn’t.]

(b) Maybe even that was too much work. Describe an algorithm that determines whether
your original distance array is actually correct in O(1) time, again assuming that
w(u—v) > w'(u—v). [Hint: Either u—v is the shortest path from u to v or it isn’t.]

(c) To think about later: Describe an algorithm that determines in O(VE) time whether
your distance array is actually correct, even if w(u—v) < w’'(u—v).

(d) To think about later: Argue that when w(u—v) < w’(u—v), repairing the distance
array requires recomputing shortest paths from scratch, at least in the worst case.

2. You—yes, you—can cause a major economic collapse with the power of graph algorithms!C
The arbitrage business is a money-making scheme that takes advantage of differences in
currency exchange. In particular, suppose that 1 US dollar buys 120 Japanese yen; 1 yen
buys 0.01 euros; and 1 euro buys 1.2 US dollars. Then, a trader starting with $1 can
convert their money from dollars to yen, then from yen to euros, and finally from euros
back to dollars, ending with $1.44! The cycle of currencies $ - ¥ —-€ — $ is called an
arbitrage cycle. Of course, finding and exploiting arbitrage cycles before the prices are
corrected requires extremely fast algorithms.

Suppose n different currencies are traded in your currency market. You are given
the matrix R[1..n] of exchange rates between every pair of currencies; for each i and j,
one unit of currency i can be traded for R[i, j] units of currency j. (Do not assume that
R[i,j]-R[j,1]=1.)

(a) Describe an algorithm that returns an array V[1..n], where V[i] is the maximum
amount of currency i that you can obtain by trading, starting with one unit of
currency 1, assuming there are no arbitrage cycles.

(b) Describe an algorithm to determine whether the given matrix of currency exchange
rates creates an arbitrage cycle.

*(c¢) To think about later: Modify your algorithm from part (b) to actually return an
arbitrage cycle, if such a cycle exists.

ONo, you can’t.
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1. Suppose you are given a magic black box that somehow answers the following decision
problem in polynomial time:
e INPUT: A boolean circuit K with n inputs and one output.
* OurtruT: TRUE if there are input values x;, X, ..., X, € {TRUE, FALSE} that make K

output TRUE, and FALSE otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following related
search problem in polynomial time:

e INPUT: A boolean circuit K with n inputs and one output.

e OQuTtpuT: Input values xi,X,,...,Xx, € {TRUE,FALSE} that make K output TRUE, or

NoNE if there are no such inputs.

[Hint: You can use the magic box more than once.]

2. Anindependent set in a graph G is a subset S of the vertices of G, such that no two vertices
in S are connected by an edge in G. Suppose you are given a magic black box that somehow
answers the following decision problem in polynomial time:

* INPUT: An undirected graph G and an integer k.

e OutpuT: TRUE if G has an independent set of size k, and FALSE otherwise.

(a) Using this black box as a subroutine, describe algorithms that solves the following
optimization problem in polynomial time:

e INPUT: An undirected graph G.
* OutrurT: The size of the largest independent set in G.

[Hint: You've seen this problem before.]

(b) Using this black box as a subroutine, describe algorithms that solves the following
search problem in polynomial time:

e INPUT: An undirected graph G.
* OuTpuT: An independent set in G of maximum size.
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To think about later:

3. Formally, a proper coloring of a graph G = (V,E) is a function ¢: V — {1,2,...,k}, for
some integer k, such that c(u) # c(v) for all uv € E. Less formally, a valid coloring assigns
each vertex of G a color, such that every edge in G has endpoints with different colors. The
chromatic number of a graph is the minimum number of colors in a proper coloring of G.

Suppose you are given a magic black box that somehow answers the following decision
problem in polynomial time:

* INPUT: An undirected graph G and an integer k.

* OurtpuT: TRUE if G has a proper coloring with k colors, and FALSE otherwise.
Using this black box as a subroutine, describe an algorithm that solves the following
coloring problem in polynomial time:

e INPUT: An undirected graph G.

e OurpuT: A valid coloring of G using the minimum possible number of colors.

[Hint: You can use the magic box more than once. The input to the magic box is a graph and
only a graph, meaning only vertices and edges.]
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Proving that a problem X is NP-hard requires several steps:
* Choose a problem Y that you already know is NP-hard (because we told you so in class).

* Describe an algorithm to solve Y, using an algorithm for X as a subroutine. Typically this
algorithm has the following form: Given an instance of Y, transform it into an instance
of X, and then call the magic black-box algorithm for X.

* Prove that your algorithm is correct. This always requires two separate steps, which are
usually of the following form:

— Prove that your algorithm transforms “good” instances of Y into “good” instances
of X.

— Prove that your algorithm transforms “bad” instances of Y into “bad” instances of X.
Equivalently: Prove that if your transformation produces a “good” instance of X, then
it was given a “good” instance of Y.

* Argue that your algorithm for Y runs in polynomial time.

1. Recall the following kCoLor problem: Given an undirected graph G, can its vertices be
colored with k colors, so that every edge touches vertices with two different colors?

(a) Describe a direct polynomial-time reduction from 3CoLoR to 4COLOR.
(b) Prove that kCoLor problem is NP-hard for any k > 3.

2. A Hamiltonian cycle in a graph G is a cycle that goes through every vertex of G exactly
once. Deciding whether an arbitrary graph contains a Hamiltonian cycle is NP-hard.

A tonian cycle in a graph G is a cycle that goes through at least half of the vertices of G.
Prove that deciding whether a graph contains a tonian cycle is NP-hard.

To think about later:

3. Let G be an undirected graph with weighted edges. A Hamiltonian cycle in G is heavy if
the total weight of edges in the cycle is at least half of the total weight of all edges in G.
Prove that deciding whether a graph contains a heavy Hamiltonian cycle is NP-hard.

A heavy Hamiltonian cycle. The cycle has total weight 34; the graph has total weight 67.
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Prove that each of the following problems is NP-hard.

1. Given an undirected graph G, does G contain a simple path that visits all but 374 vertices?

2. Given an undirected graph G, does G have a spanning tree in which every node has degree
at most 3747

3. Given an undirected graph G, does G have a spanning tree with at most 374 leaves?
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1. Recall that a 5-coloring of a graph G is a function that assigns each vertex of G a “color”
from the set {0, 1, 2, 3,4}, such that for any edge uv, vertices u and v are assigned different
“colors”. A s5-coloring is careful if the colors assigned to adjacent vertices are not only
distinct, but differ by more than 1 (mod 5). Prove that deciding whether a given graph
has a careful 5-coloring is NP-hard. [Hint: Reduce from the standard 5CoLor problem.]

A careful 5-coloring.

2. Prove that the following problem is NP-hard: Given an undirected graph G, find any
integer k > 374 such that G has a proper coloring with k colors but G does not have a
proper coloring with k — 374 colors.

3. A bicoloring of an undirected graph assigns each vertex a set of two colors. There are two
types of bicoloring: In a weak bicoloring, the endpoints of each edge must use different
sets of colors; however, these two sets may share one color. In a strong bicoloring, the
endpoints of each edge must use distinct sets of colors; that is, they must use four colors
altogether. Every strong bicoloring is also a weak bicoloring.

(a) Prove that finding the minimum number of colors in a weak bicoloring of a given

graph is NP-hard.
(b) Prove that finding the minimum number of colors in a strong bicoloring of a given
graph is NP-hard.
{1,2} {1,2}
{2,4} {1,3} {4,5} {3,4}
{2,3} {1,4} {2,3} {5,1}

Left: A weak bicoloring of a 5-clique with four colors.
Right A strong bicoloring of a 5-cycle with five colors.
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Proving that a language L is undecidable by reduction requires several steps. (These are the
essentially the same steps you already use to prove that a problem is NP-hard.)

* Choose a language L’ that you already know is undecidable (because we told you so in
class). The simplest choice is usually the standard halting language

HaLT := {(M,w) \ M halts on w}

* Describe an algorithm that decides L’, using an algorithm that decides L as a black box.
Typically your reduction will have the following form:

Given an arbitrary string x, construct a special string y,
such that y € L if and only if x € L.

In particular, if L = HALT, your reduction will have the following form:

Given the encoding (M, w) of a Turing machine M and a string w,
construct a special string y, such that
y € L if and only if M halts on input w.

* Prove that your algorithm is correct. This proof almost always requires two separate steps:

- Prove thatif x € L' then y € L.
— Prove thatif x ¢ L’ then y & L.

Very important: Name every object in your proof, and always refer to objects by their names.
Never refer to “the Turing machine” or “the algorithm” or “the input string” or (god forbid) “it”
or “this”. Even in casual conversation, even if you're “just” explaining your intuition, even when
you’re just thinking about the reduction.

Prove that the following languages are undecidable.
1. ACCEPTILLINI := {(M) | M accepts the string ILLINI}
2. ACCEPTTHREE := {(M ) \ M accepts exactly three strings}

3. ACCEPTPALINDROME := {(M ) | M accepts at least one palindrome}
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Solution (for problem 1): For the sake of argument, suppose there is an algorithm DECIDE-
AccepTILLINT that correctly decides the language AccEpTILLINI. Then we can solve the halting
problem as follows:

DecipEHALT({M, w)):
Encode the following Turing machine M’:
M’ (x):
run M on input w
return TRUE

if DEciDEAcCEPTILLINI((M'))
return TRUE

else
return FALSE

We prove this reduction correct as follows:

—> Suppose M halts on input w.
Then M’ accepts every input string x.
In particular, M’ accepts the string ILLINI.
So DECIDEACCEPTILLINI accepts the encoding (M’).

So DEcIDEHALT correctly accepts the encoding (M, w).

&= Suppose M does not halt on input w.
Then M’ diverges on every input string x.
In particular, M’ does not accept the string TLLINT.
So DECIDEACCEPTILLINI rejects the encoding (M’).
So DEcIDEHALT correctly rejects the encoding (M, w).

In both cases, DECIDEHALT is correct. But that’s impossible, because HALT is undecidable. We
conclude that the algorithm DECIDEACCEPTILLINI does not exist. [ |

As usual for undecidablility proofs, this proof invokes four distinct Turing machines:

* The hypothetical algorithm DECIDEACCEPTILLINI.
e The new algorithm DeEciDEHALT that we construct in the solution.
e The arbitrary machine M whose encoding is part of the input to DECIDEHALT.

* The special machine M’ whose encoding DEcIDEHALT constructs (from the encoding of M
and w) and then passes to DECIDEACCEPTILLINI.
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Rice’s Theorem. Let £ be any set of languages that satisfies the following conditions:
 There is a Turing machine Y such that Accerr(Y) € L.
* There is a Turing machine N such that Accepr(N) & L.

The language AccepTIN(L) := {(M ) | Accepr(M) € L} is undecidable.

Prove that the following languages are undecidable using Rice’s Theorem:
1. ACCEPTREGULAR := {(M ) \ AccepT(M) is regular}
2. ACCEPTILLINI := {(M) | M accepts the string ILLINI}
3. ACCEPTPALINDROME := {(M ) | M accepts at least one palindrome}
4. ACCEPTTHREE := {(M ) \ M accepts exactly three strings}

5. ACCEPTUNDECIDABLE := {(M ) \ AccerT(M) is undecidable }

To think about later. Which of the following are undecidable? How would you prove that?
1. Accert{{¢e}} = {(M) | M accepts only the string ¢; that is, AcCEPT(M) = {8}}
2. AccepT{@} := {(M ) | M does not accept any strings; that is, AcCEPT(M) = @}
3. ACCEPTQ := {(M ) | AccepT(M) is not an acceptable language}
4. ACCEPT=REJECT := {(M) | AccepT(M) = REJECT(M) }
5. ACCEPT#REJECT := {(M) | AccepT(M) # REJECT(M) }

6. ACCEPTUREJECT := {(M) | AccepT(M) UREJECT(M) = Z]*}
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Write your answers in the separate answer booklet.

Please return this question sheet and your cheat sheet with your answers.

1. For each statement below, check “True” if the statement is always true and “False” otherwise.
Each correct answer is worth +1 point; each incorrect answer is worth —%: point; checking
“I don’t know” is worth + Y4 point; and flipping a coin is (on average) worth +% point. You
do not need to prove your answer is correct.

Read each statement very carefully. Some of these are deliberately subtle.

(a) If the moon is made of cheese, then Jeff is the Queen of England.
(b) The language {0™1" | m,n > 0} is not regular.
(c) For all languages L, the language L* is regular.

(d) For all languages L C ¥*, if L is recognized by a DFA, then * \ L can be represented
by a regular expression.

(e) For all languages L and L, if LN L’ =@ and L’ is not regular, then L is regular.
(0 For all languages L, if L is not regular, then L does not have a finite fooling set.

(g) Let M = (2,Q,s,A,8) and M’ = (2,Q,5,Q \ A, 8) be arbitrary DFAs with identical
alphabets, states, starting states, and transition functions, but with complementary
accepting states. Then L(M)NL(M") = @.

(h) Let M = (%,Q,5,A,6) and M’ = (2,Q,s,Q \ A, 8) be arbitrary NFAs with identical
alphabets, states, starting states, and transition functions, but with complementary
accepting states. Then L(M)NL(M') = @.

(i) For all context-free languages L and L’, the language L * L’ is also context-free.

(j) Every non-context-free language is non-regular.

2. For each of the following languages over the alphabet & = {0, 1}, either prove that the
language is regular or prove that the language is not regular. Exactly one of these two
languages is regular.

(a) {O”WO” | weXtand n> 0}
)] {w@”w | weXxtandn> O}

For example, both of these languages contain the string 00110100000110100.
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3. Let L = {0%1772/0 | i, j > 0} and let G be the following context free-grammar:

S—AB
A— g | 00A1
B—¢|11B0O

(a) Prove that L(G) C L.
(b) Prove that L C L(G).

[Hint: What are L(A) and L(B)? Prove it!]

4. For any language L, let SUFFIXES(L) := {x | yx € L for some y € Z*} be the language
containing all suffixes of all strings in L. For example, if L = {010,101,110}, then
SUFFIXES(L) ={¢,0,1,01,10,010,101,110}.

Prove that for any regular language L, the language SUFFIXES(L) is also regular.

5. For each of the following languages L, give a regular expression that represents L and
describe a DFA that recognizes L.

(a) The set of all strings in {0, 1}* that do not contain the substring 0110.
(b) The set of all strings in {0, 1}* that contain exactly one of the substrings 01 or 10.

You do not need to prove that your answers are correct.
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Write your answers in the separate answer booklet.

Please return this question sheet and your cheat sheet with your answers.

1. For each statement below, check “True” if the statement is always true and “False” otherwise.
Each correct answer is worth +1 point; each incorrect answer is worth —%: point; checking
“I don’t know” is worth + Y4 point; and flipping a coin is (on average) worth +% point. You
do not need to prove your answer is correct.

Read each statement very carefully. Some of these are deliberately subtle.

(a) If 2+ 2 =5, then Jeff is the Queen of England.
(b) The language {0™#0" | m,n > 0} is regular.
(c) For all languages L, the language L* is regular.

(d) For all languages L C ¥, if L cannot be recognized by a DFA, then %* \ L cannot be
represented by a regular expression.

(e) For all languages L and L/, if LN L’ =@ and L’ is regular, then L is regular.
(0 For all languages L, if L has a finite fooling set, then L is regular.

(g) Let M = (2,Q,s,A,8) and M’ = (%,Q,s,Q \ A, &) be arbitrary NFAs with identical
alphabets, states, starting states, and transition functions, but with complementary
accepting states. Then L(M)U L(M') = ©*.

(h) Let M = (%,Q,5,A,6) and M’ = (2,Q,s,Q \ A, 8) be arbitrary NFAs with identical
alphabets, states, starting states, and transition functions, but with complementary
accepting states. Then L(M)NL(M') = @.

(i) For all context-free languages L and L’, the language L * L’ is also context-free.

(j) Every non-regular language is context-free.

2. For each of the following languages over the alphabet & = {0, 1}, either prove that the
language is regular or prove that the language is not regular. Exactly one of these two
languages is regular.

(a) {WO”W | weXxtandn> O}

)] {O”WO” | weXtand n> 0}

For example, both of these languages contain the string 00110100000110100.
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3. Let L ={1™0" | m < n < 2m} and let G be the following context free-grammar:
S— 1850|1800 | e

(a) Prove that L(G) C L.
(b) Prove that L C L(G).

4. For any language L, let PREFIXES(L) := {x { xy € L for some y € Z]*} be the language
containing all prefixes of all strings in L. For example, if L = {000,100,110,111}, then
PrREFIXES(L) ={¢,0,1,00,10,11,000,100,110,111}.

Prove that for any regular language L, the language PREFIXES(L) is also regular.

5. For each of the following languages L, give a regular expression that represents L and
describe a DFA that recognizes L.

(a) The set of all strings in {0, 1}* that contain either both or neither of the substrings
©1 and 10.

(b) The set of all strings in {0, 1}* that do not contain the substring 1001.

You do not need to prove that your answers are correct.
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Write your answers in the separate answer booklet.

Please return this question sheet and your cheat sheet with your answers.

1. For each statement below, check “True” if the statement is always true and “False” otherwise.
Each correct answer is worth +1 point; each incorrect answer is worth —%: point; checking
“I don’t know” is worth + Y4 point; and flipping a coin is (on average) worth +% point. You
do not need to prove your answer is correct.

Read each statement very carefully. Some of these are deliberately subtle.

(a) If 100 is a prime number, then Jeff is the Queen of England.
(b) The language {Om0”+m0” m,n > O} is regular.
(c) For all languages L, the language L* is regular.

(d) For all languages L C %*, if L can be recognized by a DFA, then ¥* \ L cannot be
represented by a regular expression.

(e) For all languages L and L', if L C L” and L’ is regular, then L is regular.
(f) For all languages L, if L has a finite fooling set, then L is not regular.

(g) Let M = (2,Q,s,A,8) and M’ = (%,Q,s,Q \ A, &) be arbitrary NFAs with identical
alphabets, states, starting states, and transition functions, but with complementary
accepting states. Then L(M)U L(M') = ©*.

(h) Let M = (%,Q,5,A,6) and M’ = (2,Q,s,Q \ A, 8) be arbitrary NFAs with identical
alphabets, states, starting states, and transition functions, but with complementary
accepting states. Then L(M)NL(M') = @.

(i) For all context-free languages L and L’, the language L * L’ is also context-free.

(j) Every regular language is context-free.

2. For each of the following languages over the alphabet & = {0, 1}, either prove that the
language is regular or prove that the language is not regular. Exactly one of these two
languages is regular.

(a) {WO”W | weXxtandn> O}

)] {O”WO” | weXtand n> 0}

For example, both of these languages contain the string 00110100000110100.
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3. Let L ={1™0" | n < m < 2n} and let G be the following context free-grammar:
S— 1580|1180 e

(a) Prove that L(G) C L.
(b) Prove that L C L(G).

4. For any language L, let PREFIXES(L) := {x { xy € L for some y € Z]*} be the language
containing all prefixes of all strings in L. For example, if L = {000,100,110,111}, then
PrREFIXES(L) ={¢,0,1,00,10,11,000,100,110,111}.

Prove that for any regular language L, the language PREFIXES(L) is also regular.

5. For each of the following languages L, give a regular expression that represents L and
describe a DFA that recognizes L.

(a) The set of all strings in {0, 1}* that contain either both or neither of the substrings
©1 and 10.

(b) The set of all strings in {0, 1}* that do not contain the substring 1010.

You do not need to prove that your answers are correct.
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Write your answers in the separate answer booklet.

Please return this question sheet and your cheat sheet with your answers.

1. Clearly indicate the following structures in the directed graph below, or write NONE if the
indicated structure does not exist. (There are several copies of the graph in the answer

booklet.)

N

(c) A topological order.

(a) A depth-first spanning tree rooted at r.
(b) A breadth-first spanning tree rooted at r.

(d) The strongly connected components.

2. The following puzzles appear in my younger daughter’s math workbook.o (I've put the
solutions on the right so you don’t waste time solving them during the exam.)

Complete each angle maze below by tracing a path
PRACTICE from start to finish that has only acute angles.
/\
Start Finish
Finish
Start

Start

Start: Finish

Finish

Describe and analyze an algorithm to solve arbitrary acute-angle mazes.

You are given a connected undirected graph G, whose vertices are points in the plane
and whose edges are line segments. Edges do not intersect, except at their endpoints. For
example, a drawing of the letter X would have five vertices and four edges; the first maze
above has 13 vertices and 15 edges. You are also given two vertices Start and Finish.

Your algorithm should return TRUE if G contains a walk from Start to Finish that has
only acute angles, and FALSE otherwise. Formally, a walk through G is valid if, for any two
consecutive edges u—v—w in the walk, either Zuvw = 180° or 0 < Zuvw < 90°. Assume
you have a subroutine that can compute the angle between any two segments in O(1) time.

Do not assume that angles are multiples of 1°.

mJason Batterson and Shannon Rogers, Beast Academy Math: Practice 3A, 2012. See https://www.beastacademy.

com/resources/printables.php for more examples.
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3. Suppose you are given a sorted array A[1..n] of distinct numbers that has been rotated k
steps, for some unknown integer k between 1 and n—1. That is, the prefix A[ 1 .. k] is sorted
in increasing order, the suffix A[k + 1..n] is sorted in increasing order, and A[n] < A[1].
For example, you might be given the following 16-element array (where k = 10):

9:13 16:18:19 :23:28 31 37:42|—4 0:2 5:7 8|

Describe and analyze an efficient algorithm to determine if the given array contains a
given number x. The input to your algorithm is the array A[1..n] and the number x; your
algorithm is not given the integer k.

4. You have a collection of n lockboxes and m gold keys. Each key unlocks at most one box;
however, each box might be unlocked by one key, by multiple keys, or by no keys at all.
There are only two ways to open each box once it is locked: Unlock it properly (which
requires having a matching key in your hand), or smash it to bits with a hammer.

Your baby brother, who loves playing with shiny objects, has somehow managed to lock
all your keys inside the boxes! Luckily, your home security system recorded everything, so
you know exactly which keys (if any) are inside each box. You need to get all the keys
back out of the boxes, because they are made of gold. Clearly you have to smash at least
one box.

(a) Your baby brother has found the hammer and is eagerly eyeing one of the boxes.
Describe and analyze an algorithm to determine if it is possible to retrieve all the keys
without smashing any box except the one your brother has chosen.

(b) Describe and analyze an algorithm to compute the minimum number of boxes that
must be smashed to retrieve all the keys.

5. It’s almost time to show off your flippin’ sweet dancing skills! Tomorrow is the big dance
contest you’ve been training for your entire life, except for that summer you spent with
your uncle in Alaska hunting wolverines. You’ve obtained an advance copy of the the list
of n songs that the judges will play during the contest, in chronological order.

You know all the songs, all the judges, and your own dancing ability extremely well.
For each integer k, you know that if you dance to the kth song on the schedule, you will be
awarded exactly Score[ k] points, but then you will be physically unable to dance for the
next Wait[ k] songs (that is, you cannot dance to songs k + 1 through k + Wait[k]). The
dancer with the highest total score at the end of the night wins the contest, so you want
your total score to be as high as possible.

Describe and analyze an efficient algorithm to compute the maximum total score you
can achieve. The input to your sweet algorithm is the pair of arrays Score[1..n] and
Wait[1..n].
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Write your answers in the separate answer booklet.

Please return this question sheet and your cheat sheet with your answers.

1. Clearly indicate the following structures in the directed graph below, or write NONE if the
indicated structure does not exist. (There are several copies of the graph in the answer
booklet.)

(a) A depth-first spanning tree rooted at r.
(b) A breadth-first spanning tree rooted at r.

O—0

(c) A topological order.

(d) The strongly connected components.

O

2. The following puzzle appears in my younger daughter’s math workbook.o (I've put the
solution on the right so you don’t waste time solving it during the exam.)

For problem 12, trace a path from start to finish that
has only obtuse angles.

Start / : ; ; ; Start

Finish

i i 7 Finish

Describe and analyze an algorithm to solve arbitrary obtuse-angle mazes.

You are given a connected undirected graph G, whose vertices are points in the plane
and whose edges are line segments. Edges do not intersect, except at their endpoints. For
example, a drawing of the letter X would have five vertices and four edges; the maze above
has 17 vertices and 26 edges. You are also given two vertices Start and Finish.

Your algorithm should return TRUE if G contains a walk from Start to Finish that
has only obtuse angles, and FaLse otherwise. Formally, a walk through G is valid if
90° < ZLuvw < 180° for every pair of consecutive edges u—v—w in the walk. Assume you
have a subroutine that can compute the angle between any two segments in O(1) time.
Do not assume that angles are multiples of 1°.

mJason Batterson and Shannon Rogers, Beast Academy Math: Practice 3A, 2012. See https://www.beastacademy.
com/resources/printables.php for more examples.
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3. Suppose you are given two unsorted arrays A[1..n] and B[1..n] containing 2n distinct
integers, such that A[1] < B[1] and A[n] > B[n]. Describe and analyze an efficient
algorithm to compute an index i such that A[i] < B[i] and A[i + 1] > B[i+ 1]. [Hint: Why
does such an index i always exist?]

4. You have a collection of n lockboxes and m gold keys. Each key unlocks at most one box;
however, each box might be unlocked by one key, by multiple keys, or by no keys at all.
There are only two ways to open each box once it is locked: Unlock it properly (which
requires having a matching key in your hand), or smash it to bits with a hammer.

Your baby brother, who loves playing with shiny objects, has somehow managed to lock
all your keys inside the boxes! Luckily, your home security system recorded everything, so
you know which keys (if any) are inside each box. You need to get all the keys back out of
the boxes, because they are made of gold. Clearly you have to smash at least one box.

(a) Your baby brother has found the hammer and is eagerly eyeing one of the boxes.
Describe and analyze an algorithm to determine if it is possible to retrieve all the keys
without smashing any box except the one your brother has chosen.

(b) Describe and analyze an algorithm to compute the minimum number of boxes that
must be smashed to retrieve all the keys.

5. A shuffle of two strings X and Y is formed by interspersing the characters into a new
string, keeping the characters of X and Y in the same order. For example, the string
BANANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways.

BANANAANANAS BANANAANANAS BANANAANANAS

Given three strings A[1..m], B[1..n], and C[1..m+n], describe and analyze an algorithm
to determine whether C is a shuffle of A and B.
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Write your answers in the separate answer booklet.

Please return this question sheet and your cheat sheet with your answers.

1. Clearly indicate the following structures in the directed graph below, or write NONE if the
indicated structure does not exist. (There are several copies of the graph in the answer
booklet.)

(a) A depth-first spanning tree rooted at r.
(b) A breadth-first spanning tree rooted at r.

O—0

(c) A topological order.

(d) The strongly connected components.

O

2. The following puzzle appears in my younger daughter’s math workbook.o (I've put the
solution on the right so you don’t waste time solving it during the exam.)

For problem 12, trace a path from start to finish that
has only obtuse angles.

Start / : ; ; ; Start

Finish

i i 7 Finish

Describe and analyze an algorithm to solve arbitrary obtuse-angle mazes.

You are given a connected undirected graph G, whose vertices are points in the plane
and whose edges are line segments. Edges do not intersect, except at their endpoints. For
example, a drawing of the letter X would have five vertices and four edges; the maze above
has 17 vertices and 26 edges. You are also given two vertices Start and Finish.

Your algorithm should return TRUE if G contains a walk from Start to Finish that
has only obtuse angles, and FaLse otherwise. Formally, a walk through G is valid if
90° < ZLuvw < 180° for every pair of consecutive edges u—v—w in the walk. Assume you
have a subroutine that can compute the angle between any two segments in O(1) time.
Do not assume that angles are multiples of 1°.

mJason Batterson and Shannon Rogers, Beast Academy Math: Practice 3A, 2012. See https://www.beastacademy.
com/resources/printables.php for more examples.
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3. Suppose you are given two unsorted arrays A[1..n] and B[1..n] containing 2n distinct
integers, such that A[1] < B[1] and A[n] > B[n]. Describe and analyze an efficient
algorithm to compute an index i such that A[i] < B[i] and A[i + 1] > B[i+ 1]. [Hint: Why
does such an index i always exist?]

4. You have a collection of n lockboxes and m gold keys. Each key unlocks at most one box;
however, each box might be unlocked by one key, by multiple keys, or by no keys at all.
There are only two ways to open each box once it is locked: Unlock it properly (which
requires having a matching key in your hand), or smash it to bits with a hammer.

Your baby brother, who loves playing with shiny objects, has somehow managed to lock
all your keys inside the boxes! Luckily, your home security system recorded everything, so
you know which keys (if any) are inside each box. You need to get all the keys back out of
the boxes, because they are made of gold. Clearly you have to smash at least one box.

(a) Your baby brother has found the hammer and is eagerly eyeing one of the boxes.
Describe and analyze an algorithm to determine if it is possible to retrieve all the keys
without smashing any box except the one your brother has chosen.

(b) Describe and analyze an algorithm to compute the minimum number of boxes that
must be smashed to retrieve all the keys.

5. A palindrome is any string that is exactly the same as its reversal, like I, or DEED, or
RACECAR, or AMANAPLANACATACANALPANAMA.

Describe and analyze an algorithm to find the length of the longest subsequence of a
given string that is also a palindrome. For example, the longest palindrome subsequence of
MAHDYNAMICPROGRAMZ LETMESHOWYOUTHEM is MHYMRORMYHM, so given that string
as input, your algorithm should output the number 11.
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e Don’t panic!

* Please print your name and your NetID and circle your discussion section in the boxes
above.

* This is a closed-book, closed-notes, closed-electronics exam. If you brought anything except
your writing implements and your two double-sided 84" x 11" cheat sheets, please put it
away for the duration of the exam. In particular, you may not use any electronic devices.

* Please read the entire exam before writing anything. Please ask for clarification if any
question is unclear.

¢ The exam lasts 180 minutes.

* If you run out of space for an answer, continue on the back of the page, or on the blank
pages at the end of this booklet, but please tell us where to look. Alternatively, feel free
to tear out the blank pages and use them as scratch paper.

* As usual, answering any (sub)problem with “I don’t know” (and nothing else) is worth 25%
partial credit. Yes, even for problem 1. Correct, complete, but suboptimal solutions are
always worth more than 25%. A blank answer is not the same as “I don’t know”.

* Beware the Three Deadly Sins. Give complete solutions, not examples. Don’t use weak
induction. Declare all your variables.

e If you use a greedy algorithm, you must prove that it is correct to receive any credit.
Otherwise, proofs are required only when we explicitly ask for them.

* Please return your cheat sheets and all scratch paper with your answer booklet.

* Good luck! And have a great winter break!
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1. For each of the following questions, indicate every correct answer by marking the “Yes” box,
and indicate every incorrect answer by marking the “No” box. Assume P # NP. If there is
any other ambiguity or uncertainty, mark the “No” box. For example:

Wilvo| 2+42=4

Yes X x+y=5

Yes X 3SAT can be solved in polynomial time.

% No | Jeff is not the Queen of England.

There are 40 yes/no choices altogether.

* Each correct choice is worth 4% point.
e Each incorrect choice is worth —V4 point.

* To indicate “I don’t know”, write IDK next to the boxes; each IDK is worth +% point.

(a) Which of the following statements is true for every language L C {0, 1}*?

Yes || No L contains the empty string €.

Yes || No L* is infinite.

Yes || No | L*isregular.

Yes || No L is infinite or L is decidable (or both).

Yes || No | If L is the union of two regular languages, then L is regular.

Yes || No | If L is the union of two decidable languages, then L is decidable.

Yes || No | If L is the union of two undecidable languages, then L is undecidable.

L is accepted by some NFA with 374 states if and only if L is accepted
by some DFA with 374 states.

Yes No

Yes || No | If L ¢ P, then L is not regular.




CS/ECE 374

Final Exam (Version X) Fall 2016

(b) Which of the following languages over the alphabet {0, 1} are regular?

Yes No
Yes No
Yes No
Yes No
Yes No
Yes No

{0™1" | m >0 and n > 0}

All strings with the same number of Os and 1s

Binary representations of all prime numbers less than 101
{ww | wisa palindrome}

{wxw \ w is a palindrome and x € {0, l}*}

{(M ) ’ M accepts a finite number of non-palindromes}

(c) Which of the following languages over the alphabet {0, 1} are decidable?

Yes No
Yes No
Yes No
Yes No
Yes No
Yes No

%)
{or1270n12" | n> 0}

{ww | w is a palindrome}

{{M) | M accepts a finite number of non-palindromes}
{(M,w) | M accepts ww}

{(M ,W) | M accepts ww after at most |w|? transitions}

(d) Which of the following languages can be proved undecidable using Rice’s Theorem?

Yes No
Yes No
Yes No
Yes No

{(M ) i M accepts an infinite number of strings}
{(M ) \ M accepts either (M) or (M )R}
{(M ) ’ M does not accept exactly 374 palindromes}

{(M ) ’ M accepts some string w after at most |w|? transitions}
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(e) Which of the following is a good English specification of a recursive function that can be
used to compute the edit distance between two strings A[1..n] and B[1..n]?

Yes No
Yes No
Yes No
Yes No
Yes No

Edit(i, j) is the answer for i and j.

Edit(i, j) is the edit distance between A[i] and B[j].
Edit[1..n,1..n] stores the edit distances for all prefixes.
Edit(i, j) is the edit distance between A[i..n] and B[j..n].

Edit[i, j] is the value stored at row i and column j of the table.

(f) Suppose we want to prove that the following language is undecidable.

MUGGLE := {(M) \ M accepts SCIENCE but rejects MAGIC}

Professor Potter, your instructor in Defense Against Models of Computation and Other
Dark Arts, suggests a reduction from the standard halting language

HaLT := {(M ,w) | M halts on inputs w}.

Specifically, suppose there is a Turing machine DETECTOMUGGLETUM that decides
MUGGLE. Professor Potter claims that the following algorithm decides HaLT.

DecipEHALT((M, w)):
Encode the following Turing machine:
RUBBERDUCK(X):
run M on input w
if x = MAGIC
return FALSE
else
return TRUE

return DETECTOMUGGLETUM({RUBBERDUCK))

Which of the following statements is true for all inputs (M, w)?

Yes No
Yes No
Yes No
Yes No
Yes No

If M rejects w, then RuBBERDUCK rejects MAGIC.
If M accepts w, then DETECTOMUGGLETUM accepts (RUBBERDUCK).

If M rejects w, then DECIDEHALT rejects (M, w).

DecipDEHALT decides the language Havrt. (That is, Professor Potter’s
reduction is actually correct.)

DEeciDEHALT actually runs (or simulates) RUBBERDUCK.
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(g) Consider the following pair of languages:

* HamPATH := {G | G is a directed graph with a Hamiltonian path}

* AcycLIC := {G | G is a directed acyclic graph}

(For concreteness, assume that in both of these languages, graphs are represented by
their adjacency matrices.) Which of the following must be true, assuming P#NP?

Yes No
Yes No
Yes No
Yes No
Yes No

AcycLic € NP

Acycric N HAMPATH € P

HawmPaTH is decidable.

There is no polynomial-time reduction from HAMPATH to AcycLIC.

There is no polynomial-time reduction from AcycrLic to HAMPATH.
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2. A quasi-satisfying assignment for a 3CNF boolean formula @ is an assignment of truth
values to the variables such that at most one clause in ® does not contain a true literal. Prove

that it is NP-hard to determine whether a given 3CNF boolean formula has a quasi-satisfying
assignment.
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3. Recall that a run in a string is a maximal non-empty substring in which all symbols are equal.
For example, the string 0001111000 consists of three runs: a run of three 0s, a run of
four 1s, and another run of three 0s.

(a) Let L be the set of all strings in {0, 1}* in which every run of 0s has odd length and every
run of 1s has even length. For example, L contains ¢ and 00000 and 0001111000, but
L does not contain 1 or 0000 or 110111000.

Describe both a regular expression for L and a DFA that accepts L.

(b) Let L’ be the set of all non-empty strings in {0, 1}* in which the number of runs is equal
to the length of the first run. For example, L’ contains © and 1100 and 0000101, but
L’ does not contain 0000 or 110111000 or &.

Prove that L’ is not a regular language.
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4. Your cousin Elmo is visiting you for Christmas, and he’s brought a different card game. Like
your previous game with Elmo, this game is played with a row of n cards, each labeled with
an integer (which could be positive, negative, or zero). Both players can see all n card values.
Otherwise, the game is almost completely different.

On each turn, the current player must take the leftmost card. The player can either keep
the card or give it to their opponent. If they keep the card, their turn ends and their opponent
takes the next card; however, if they give the card to their opponent, the current player’s turn
continues with the next card. In short, the player that does not get the ith card decides who
gets the (i + 1)th card. The game ends when all cards have been played. Each player adds
up their card values, and whoever has the higher total wins.

For example, suppose the initial cards are [3,—1,4,1,5,9], and Elmo plays first. Then
the game might proceed as follows:

* Elmo keeps the 3, ending his turn.

* You give Elmo the —1.

* You keep the 4, ending your turn.

* Elmo gives you the 1.

* Elmo gives you the 5.

e Elmo keeps the 9, ending his turn. All cards are gone, so the game is over.

e Your scoreis 1+4+5 =10 and Elmo’s score is 3—1+ 9 =11, so Elmo wins.
Describe an algorithm to compute the highest possible score you can earn from a given row
of cards, assuming Elmo plays first and plays perfectly. Your input is the array C[1..n] of

card values. For example, if the input is [3,—1,4,1,5, 9], your algorithm should return the
integer 10.



CS/ECE 374 Final Exam (Version X) Fall 2016

5. Prove that each of the following languages is undecidable:

(a) {(M) | M accepts RICESTHEOREM}
()] {(M) | M rejects RICESTH EOREM} [Hint: Use part (a), not Rice’s theorem]
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6. There are n galaxies connected by m intergalactic teleport-ways. Each teleport-way joins two
galaxies and can be traversed in both directions. Also, each teleport-way uv has an associated
cost of c(uv) galactic credits, for some positive integer c(uv). The same teleport-way can be
used multiple times in either direction, but the same toll must be paid every time it is used.

Judy wants to travel from galaxy s to galaxy t, but teleportation is rather unpleasant, so
she wants to minimize the number of times she has to teleport. However, she also wants the
total cost to be a multiple of 10 galactic credits, because carrying small change is annoying.

Describe and analyze an algorithm to compute the minimum number of times Judy must
teleport to travel from galaxy s to galaxy t so that the total cost of all teleports is an integer
multiple of 10 galactic credits. Your input is a graph G = (V, E) whose vertices are galaxies
and whose edges are teleport-ways; every edge uv in G stores the corresponding cost c(uv).

[Hint: This is not the same Intergalactic Judy problem that you saw in lab.]
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(scratch paper)

10
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(scratch paper)

11
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You may assume the following problems are NP-hard:

CIrRcUITSAT: Given a boolean circuit, are there any input values that make the circuit output
TRUE?

3SaT: Given a boolean formula in conjunctive normal form, with exactly three literals per clause,
does the formula have a satisfying assignment?

MAXINDEPENDENTSET: Given an undirected graph G, what is the size of the largest subset of
vertices in G that have no edges among them?

MaxCLIQUE: Given an undirected graph G, what is the size of the largest complete subgraph of
G?

MINVERTEXCOVER: Given an undirected graph G, what is the size of the smallest subset of vertices
that touch every edge in G?

3CoLoR: Given an undirected graph G, can its vertices be colored with three colors, so that every
edge touches vertices with two different colors?

HamiLToNIANPATH: Given an undirected graph G, is there a path in G that visits every vertex
exactly once?

HamirToNIANCYCLE: Given an undirected graph G, is there a cycle in G that visits every vertex
exactly once?

DirecTEDHAMILTONIANCYCLE: Given an directed graph G, is there a directed cycle in G that
visits every vertex exactly once?

TRAVELINGSALESMAN: Given a graph G (either directed or undirected) with weighted edges, what
is the minimum total weight of any Hamiltonian path/cycle in G?

DrAUGHTS: Given an n X n international draughts configuration, what is the largest number of
pieces that can (and therefore must) be captured in a single move?

SUPER MARIO: Given an n x n level for Super Mario Brothers, can Mario reach the castle?

You may assume the following languages are undecidable:

SELFREJECT := {(M) ‘ M rejects (M)}
SELFACCEPT := {(M) | M accepts (M)}
SELFHALT := {(M) | M halts on (M)}
SELFDIVERGE := {(M) ‘ M does not halt on (M)}
REJECT := {(M,w) } M rejects W}
AccEpT := {(M,w) \ M accepts w}
Harr := {(M,w) } M halts on w}
DIVERGE := {(M,w) } M does not halt on w}
NEVERREJECT := {(M ) | REJECT(M) = @}
NEVERACCEPT := {(M) ‘ AcceprT(M) = @}
NEVERHALT := {(M ) ‘ Hart(M) = @}
NEVERDIVERGE := {(M ) | DIVERGE(M) = @}
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