
CS/ECE 374 ] Fall 2016

Y Homework 11 Z
“Due” Tuesday, December, 2016

This homework is only for practice; it will not be graded. However, similar questions
may appear on the final exam, so we still strongly recommend treating this as a
regular homework. Solutions will be released next Tuesday as usual.

1. Recall that wR denotes the reversal of string w; for example, TURINGR = GNIRUT. Prove
that the following language is undecidable.

RevAccept :=
�

〈M〉
�

� M accepts 〈M〉R
	

Note that Rice’s theorem does not apply to this language.

2. Let M be a Turing machine, let w be an arbitrary input string, and let s be an integer. We
say that M accepts w in space s if, given w as input, M accesses only the first s (or fewer)
cells on its tape and eventually accepts.

(a) Sketch a Turing machine/algorithm that correctly decides the following language:
�

〈M , w〉
�

� M accepts w in space |w|2
	

(b) Prove that the following language is undecidable:
�

〈M〉
�

� M accepts at least one string w in space |w|2
	

3. Consider the language SometimesHalt = {〈M〉 | M halts on at least one input string}.
Note that 〈M〉 ∈ SometimesHalt does not imply that M accepts any strings; it is enough
that M halts on (and possibly rejects) some string.

(a) Prove that SometimesHalt is undecidable.

(b) Sketch a Turing machine/algorithm that accepts SometimesHalt.
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Solved Problem

4. For each of the following languages, either prove that the language is decidable, or prove
that the language is undecidable.

(a) L0 =
�

〈M〉
�

� given any input string, M eventually leaves its start state
	

Solution: We can determine whether a given Turing machine M always leaves its
start state by careful analysis of its transition function δ. As a technical point, I will
assume that crashing on the first transition does not count as leaving the start state.

• If δ(start, a) = (·, ·,−1) for any input symbol a ∈ Σ, then M crashes on input a
without leaving the start state.

• If δ(start,�) = (·, ·,−1), then M crashes on the empty input without leaving the
start state.

• Otherwise, M moves to the right until it leaves the start state. There are two
subcases to consider:
– If δ(start,�) = (start, ·,+1), then M loops forever on the empty input
without leaving the start state.

– Otherwise, for any input string, M must eventually leave the start state,
either when reading some input symbol or when reading the first blank.

It is straightforward (but tedious) to perform this case analysis with a Turing machine
that receives the encoding 〈M〉 as input. We conclude that L0 is decidable. �

(b) L1 =
�

〈M〉
�

� M decides L0

	

Solution:

• By part (a), there is a Turing machine that decides L0.
• Let Mreject be a Turing machine that immediately rejects its input, by defining
δ(start, a) = reject for all a ∈ Σ ∪ {�}. Then Mreject decides the language
∅ 6= L0. �

Thus, Rice’s Decision Theorem implies that L1 is undecidable.

(c) L2 =
�

〈M〉
�

� M decides L1

	

Solution: By part (b), no Turing machine decides L1, which implies that L2 = ∅.
Thus, Mreject correctly decides L2. We conclude that L2 is decidable. �

(d) L3 =
�

〈M〉
�

� M decides L2

	

Solution: Because L2 =∅, we have

L3 =
�

〈M〉
�

� M decides ∅
	

=
�

〈M〉
�

� Reject(M) = Σ∗
	

• We have already seen a Turing machine Mreject such that Reject(Mreject) = Σ∗.
• Let Maccept be a Turing machine that immediately accepts its input, by defining
δ(start, a) = accept for all a ∈ Σ∪ {�}. Then Reject(Maccept) =∅ 6= Σ∗. �

Thus, Rice’s Rejection Theorem implies that L1 is undecidable.

2



CS/ECE 374 Homework 10 (due November 29) Fall 2016

(e) L4 =
�

〈M〉
�

� M decides L3

	

Solution: By part (b), no Turing machine decides L3, which implies that L4 = ∅.
Thus, Mreject correctly decides L4. We conclude that L4 is decidable.

At this point, we have fallen into a loop. For any k > 4, define

Lk =
�

〈M〉
�

� M decides Lk−1

	

.

Then Lk is decidable (because Lk =∅) if and only if k is even. �

Rubric: 10 points: 4 for part (a) + 1½ for each other part.

Rubric (for all undecidability proofs, out of 10 points):
Diagonalization:

+ 4 for correct wrapper Turing machine
+ 6 for self-contradiction proof (= 3 for⇐ + 3 for⇒)

Reduction:
+ 4 for correct reduction
+ 3 for “if” proof
+ 3 for “only if” proof

Rice’s Theorem:
+ 4 for positive Turing machine
+ 4 for negative Turing machine
+ 2 for other details (including using the correct variant of Rice’s Theorem)
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