
CS/ECE 374 A Lab 1 — August 28 Fall 2019

The following problems ask you to prove some “obvious” claims about recursively-defined string
functions. In each case, we want a self-contained, step-by-step induction proof that builds on
formal definitions and prior reults, not on intuition. In particular, your proofs must refer to the
formal recursive definitions of string length and string concatenation:

|w| :=

¨

0 if w= ε
1+ |x | if w= ax for some symbol a and some string x

w • z :=

¨

z if w= ε
a · (x • z) if w= ax for some symbol a and some string x

You may freely use the following results, which are proved in the lecture notes:

Lemma 1: w • ε = w for all strings w.

Lemma 2: |w • x |= |w|+ |x | for all strings w and x .

Lemma 3: (w • x) • y = w • (x • y) for all strings w, x , and y .

The reversal wR of a string w is defined recursively as follows:

wR :=

(

ε if w= ε

xR • a if w= ax for some symbol a and some string x

For example, STRESSEDR = DESSERTS and WTF374R = 473FTW.

1. Prove that |w|= |wR| for every string w.

2. Prove that (w • z)R = zR • wR for all strings w and z.

3. Prove that (wR)R = w for every string w.

[Hint: The proof for problem 3 relies on problem 2, but you may find it easier to solve problem 3
first.]

To think about later: Let #(a, w) denote the number of times symbol a appears in string w. For
example, #(X,WTF374) = 0 and #(0,000010101010010100) = 12.

4. Give a formal recursive definition of #(a, w).

5. Prove that #(a, w • z) = #(a, w) +#(a, z) for all symbols a and all strings w and z.

6. Prove that #(a, wR) = #(a, w) for all symbols a and all strings w.

1

CS/ECE 374 A Lab 1½ — August 30 Fall 2019

Give regular expressions for each of the following languages over the binary alphabet {0,1}.

1. All strings containing the substring 000.

2. All strings not containing the substring 000.

3. All strings in which every run of 0s has length at least 3.

4. All strings in which all the 1s appear before any substring 000.

5. All strings containing at least three 0s.

6. Every string except 000. [Hint: Don’t try to be clever.]

Work on these later:

7. All strings w such that in every prefix of w, the number of 0s and 1s differ by at most 1.

?8. All strings containing at least two 0s and at least one 1.

?9. All strings w such that in every prefix of w, the number of 0s and 1s differ by at most 2.

Æ10. All strings in which the substring 000 appears an even number of times.
(For example, 0001000 and 0000 are in this language, but 00000 is not.)

1

CS/ECE 374 A Lab 2 — September 4 Fall 2019

Describe deterministic finite-state automata that accept each of the following languages over the
alphabet Σ= {0,1}. Describe briefly what each state in your DFAs means. Yes, these are exactly
the same languages that you saw last Friday.

Either drawings or formal descriptions are acceptable, as long as the states Q, the start state s,
the accept states A, and the transition function δ are all be clear. Try not to use too many states,
but don’t try to use as few states as possible.

1. All strings containing the substring 000.

2. All strings not containing the substring 000.

3. All strings in which every run of 0s has length at least 3.

4. All strings in which all the 1s appear before any substring 000.

5. All strings containing at least three 0s.

6. Every string except 000. [Hint: Don’t try to be clever.]

Work on these later:

7. All strings w such that in every prefix of w, the number of 0s and 1s differ by at most 1.

8. All strings containing at least two 0s and at least one 1.

9. All strings w such that in every prefix of w, the number of 0s and 1s differ by at most 2.

?10. All strings in which the substring 000 appears an even number of times.
(For example, 0001000 and 0000 are in this language, but 00000 is not.)

1

CS/ECE 374 A Lab 2½ — September 6 Fall 2019

Describe deterministic finite-state automata that accept each of the following languages over the
alphabet Σ= {0,1}. You may find it easier to describe these DFAs formally than to draw pictures.

Either drawings or formal descriptions are acceptable, as long as the states Q, the start state s,
the accept states A, and the transition function δ are all clear. Try to keep the number of states
small.

1. All strings in which the number of 0s is even and the number of 1s is not divisible by 3.

2. All strings in which the number of 0s is even or the number of 1s is not divisible by 3.

3. All strings that are both the binary representation of an integer divisible by 3 and the
ternary (base-3) representation of an integer divisible by 4.

For example, the string 1100 is an element of this language, because it represents
23 + 22 = 12 in binary and 33 + 32 = 36 in ternary.

Work on these later:

3. All strings in which the subsequence 0101 appears an even number of times.

4. All strings w such that
�|w|

2

�

mod 6= 4.
[Hint: Maintain both

�|w|
2

�

mod 6 and |w|mod 6.]
[Hint:

�n+1
2

�

=
�n

2

�

+ n.]

?5. All strings w such that F#(10,w) mod 10= 4, where #(10, w) denotes the number of times
10 appears as a substring of w, and Fn is the nth Fibonacci number:

Fn =











0 if n= 0

1 if n= 1

Fn−1 + Fn−2 otherwise

1

CS/ECE 374 A Lab 3 — September 11 Fall 2019

Prove that each of the following languages is not regular.

1.
�

02n �
� n≥ 0
	

2. {02n1n | n≥ 0}

3. {0m1n | m 6= 2n}

4. Strings over {0,1} where the number of 0s is exactly twice the number of 1s.

5. Strings of properly nested parentheses (), brackets [], and braces {}. For example, the
string ([]){} is in this language, but the string ([)] is not, because the left and right
delimiters don’t match.

Work on these later:

6. Strings of the form w1#w2# · · ·#wn for some n≥ 2, where each substring wi is a string in
{0,1}∗, and some pair of substrings wi and w j are equal.

7.
�

0n2 �
� n≥ 0
	

8. {w ∈ (0+ 1)∗ | w is the binary representation of a perfect square}

1

CS/ECE 374 A Lab 3½ — September 13 Fall 2019

1. (a) Convert the regular expression (0∗1+ 01∗)∗ into an NFA using Thompson’s algorithm.

(b) Convert the NFA you just constructed into a DFA using the incremental subset
construction. Draw the resulting DFA. Your DFA should have four states, all reachable
from the start state. (Some of these states are obviously equivalent, but keep them
separate.)

(c) Think about later: Convert the DFA you constructed in part (b) into a regular
expression using Han and Wood’s algorithm. You should not get the same regular
expression you started with.

(d) Think about later: Find the smallest DFA that is equivalent to your DFA from
part (b) and convert that smaller DFA into a regular expression using Han and Wood’s
algorithm. Again, you should not get the same regular expression you started with.

(e) What is this language?

2. (a) Convert the regular expression (ε + (0+ 11)∗0)1(11)∗ into an NFA using Thompson’s
algorithm.

(b) Convert the NFA you just constructed into a DFA using the incremental subset
construction. Draw the resulting DFA. Your DFA should have six states, all reachable
from the start state. (Some of these states are obviously equivalent, but keep them
separate.)

(c) Think about later: Convert the DFA you constructed in part (b) into a regular
expression using Han and Wood’s algorithm. You should not get the same regular
expression you started with.

(d) Think about later: Find the smallest DFA that is equivalent to your DFA from part (b),
using Moore’s algorithm (in Section 3.10 of the notes), and convert that smaller DFA
into a regular expression using Han and Wood’s algorithm. Again, you should not get
the same regular expression you started with.

(e) What is this language?

1

CS/ECE 374 A Lab 4 — September 18 Fall 2019

Consider the following recursively defined function on strings:

stutter(w) :=

¨

ε if w= ε
aa • stutter(x) if w= ax for some symbol a and some string x

Intuitively, stutter(w) doubles every symbol in w. For example:

• stutter(PRESTO) = PPRREESSTTOO

• stutter(HOCUS�POCUS) = HHOOCCUUSS��PPOOCCUUSS

Let L be an arbitrary regular language.

1. Prove that the language stutter−1(L) := {w | stutter(w) ∈ L} is regular.

2. Prove that the language stutter(L) := {stutter(w) | w ∈ L} is regular.

Work on these later:

3. Let L be an arbitrary regular language.

(a) Prove that the language insert1(L) := {x1y | x y ∈ L} is regular.
Intuitively, insert1(L) is the set of all strings that can be obtained from strings
in L by inserting exactly one 1. For example, if L = {ε,OOK!}, then insert1(L) =
{1,1OOK!,O1OK!,OO1K!,OOK1!,OOK!1}.

(b) Prove that the language delete1(L) := {x y | x1y ∈ L} is regular.
Intuitively, delete1(L) is the set of all strings that can be obtained from strings in L
by deleting exactly one 1. For example, if L = {101101,00,ε}, then delete1(L) =
{01101,10101,10110}.

4. Consider the following recursively defined function on strings:

evens(w) :=











ε if w= ε
ε if w= a for some symbol a

b · evens(x) if w= abx for some symbols a and b and some string x

Intuitively, evens(w) skips over every other symbol in w. For example:

• evens(EXPELLIARMUS) = XELAMS

• evens(AVADA�KEDAVRA) = VD�EAR.

Once again, let L be an arbitrary regular language.

(a) Prove that the language evens−1(L) := {w | evens(w) ∈ L} is regular.
(b) Prove that the language evens(L) := {evens(w) | w ∈ L} is regular.

1

CS/ECE 374 A Lab 4½ — September 20 Fall 2019

You saw the following context-free grammars in class on Thursday; in each example, the grammar
itself is on the left; the explanation for each non-terminal is on the right.

• Properly nested strings of parentheses.

S→ ε | S(S) properly nested parentheses

Here is a different grammar for the same language:

S→ ε | (S) | SS properly nested parentheses

• {0m1n | m 6= n}. This is the set of all binary strings composed of some number of 0s
followed by a different number of 1s.

S→ A | B {0m1n | m 6= n}
A→ 0A | 0C {0m1n | m> n}
B→ B1 | C1 {0m1n | m< n}
C → ε | 0C1 {0m1n | m= n}

Give context-free grammars for each of the following languages. For each grammar, describe
the language for each non-terminal, either in English or using mathematical notation, as in the
examples above. We probably won’t finish all of these during the lab session.

1. {02n1n | n≥ 0}

2. {0m1n | m 6= 2n}

[Hint: If m 6= 2n, then either m< 2n or m> 2n. Extend the previous grammar, but pay
attention to parity. This language contains the string 01.]

3. {0,1}∗ \ {02n1n | n≥ 0}

[Hint: Extend the previous grammar. What’s missing?]

Work on these later:

4.
�

w ∈ {0,1}∗
�

� #(0, w) = 2 ·#(1, w)
	

— Binary strings where the number of 0s is exactly
twice the number of 1s.

?5. {0,1}∗ \ {ww | w ∈ {0,1}∗}.

[Anti-hint: The language {ww | w ∈ 0,1∗} is not context-free. Thus, the complement of a
context-free language is not necessarily context-free!]

1

CS/ECE 374 A Lab 5 — February 14 Spring 2018

Let L be an arbitrary regular language over the alphabet Σ = {0,1}. Prove that the following
languages are also regular. (You probably won’t get to all of these.)

1. FlipOdds(L) := {flipOdds(w) | w ∈ L}, where the function flipOdds inverts every odd-
indexed bit in w. For example:

flipOdds(0000111101010101) = 1010010111111111

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We construct a new DFA
M ′ = (Q′, s′, A′,δ′) that accepts FlipOdds(L) as follows.

Intuitively, M ′ receives some string flipOdds(w) as input, restores every other bit
to obtain w, and simulates M on the restored string w.

Each state (q,flip) of M ′ indicates that M is in state q, and we need to flip the
next input bit if flip= True

Q′ =Q× {True,False}
s′ = (s,True)

A′ =

δ′((q,flip), a) =

�

2. UnflipOdd1s(L) := {w ∈ Σ∗ | flipOdd1s(w) ∈ L}, where the function flipOdd1 inverts
every other 1 bit of its input string, starting with the first 1. For example:

flipOdd1s(0000111101010101) = 0000010100010001

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We construct a new DFA
M ′ = (Q′, s′, A′,δ′) that accepts UnflipOdd1s(L) as follows.

Intuitively, M ′ receives some string w as input, flips every other 1 bit, and simulates
M on the transformed string.

Each state (q,flip) of M ′ indicates that M is in state q, and we need to flip the
next 1 bit of and only if flip= True.

Q′ =Q× {True,False}
s′ = (s,True)

A′ =

δ′((q,flip), a) =

�

1

CS/ECE 374 A Lab 5 — February 14 Spring 2018

3. FlipOdd1s(L) := {flipOdd1s(w) | w ∈ L}, where the function flipOdd1 is defined as in the
previous problem.

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We construct a new NFA
M ′ = (Q′, s′, A′,δ′) that accepts FlipOdd1s(L) as follows.

Intuitively, M ′ receives some string flipOdd1s(w) as input, guesses which 0 bits to
restore to 1s, and simulates M on the restored string w. No string in FlipOdd1s(L)
has two 1s in a row, so if M ′ ever sees 11, it rejects.

Each state (q,flip) of M ′ indicates that M is in state q, and we need to flip a 0 bit
before the next 1 if flip= True.

Q′ =Q× {True,False}
s′ = (s,True)

A′ =

δ′((q,flip), a) =

�

4. Faro(L) :=
�

faro(w, x)
�

� w, x ∈ L and |w|= |x |
	

, where the function faro is defined recur-
sively as follows:

faro(w, x) :=

¨

x if w= ε
a · faro(x , y) if w= a y for some a ∈ Σ and some y ∈ Σ∗

For example, faro(0001101,1111001) = 01010111100011. (A "faro shuffle" splits a
deck of cards into two equal piles and then perfectly interleaves them.)

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We construct a DFA M ′ =
(Q′, s′, A′,δ′) that accepts Faro(L) as follows.

Intuitively, M ′ reads the string faro(w, x) as input, splits the string into the
subsequences w and x , and passes each of those strings to an independent copy of M .

Each state (q1, q2,next) indicates that the copy of M that gets w is in state q1, the
copy of M that gets x is in state q2, and next indicates which copy gets the next input
bit.

Q′ =Q×Q× {1, 2}
s′ = (s, s, 1)

A′ =

δ′((q1, q2,next), a) =

�

2

CS/ECE 374 Lab 6 — February 21 Spring 2018

Here are several problems that are easy to solve in O(n) time, essentially by brute force. Your
task is to design algorithms for these problems that are significantly faster.

1. Suppose we are given an array A[1 .. n] of n distinct integers, which could be positive,
negative, or zero, sorted in increasing order so that A[1]< A[2]< · · ·< A[n].

(a) Describe a fast algorithm that either computes an index i such that A[i] = i or
correctly reports that no such index exists.

(b) Suppose we know in advance that A[1]> 0. Describe an even faster algorithm that
either computes an index i such that A[i] = i or correctly reports that no such index
exists. [Hint: This is really easy.]

2. Suppose we are given an array A[1 .. n] such that A[1]≥ A[2] and A[n−1]≤ A[n]. We say
that an element A[x] is a local minimum if both A[x − 1] ≥ A[x] and A[x] ≤ A[x + 1].
For example, there are exactly six local minima in the following array:

9
Î
7 7 2

Î
1 3 7 5

Î
4 7

Î
3
Î
3 4 8

Î
6 9

Describe and analyze a fast algorithm that returns the index of one local minimum. For
example, given the array above, your algorithm could return the integer 9, because A[9] is
a local minimum. [Hint: With the given boundary conditions, any array must contain at
least one local minimum. Why?]

3. Suppose you are given two sorted arrays A[1 .. n] and B[1 .. n] containing distinct integers.
Describe a fast algorithm to find the median (meaning the nth smallest element) of the
union A∪ B. For example, given the input

A[1 .. 8] = [0, 1,6, 9,12, 13,18, 20] B[1 .. 8] = [2, 4,5, 8,17, 19,21, 23]

your algorithm should return the integer 9. [Hint: What can you learn by comparing one
element of A with one element of B?]

To think about later:

4. Now suppose you are given two sorted arrays A[1 .. m] and B[1 .. n] and an integer k.
Describe a fast algorithm to find the kth smallest element in the union A∪ B. For example,
given the input

A[1 .. 8] = [0,1, 6,9, 12,13, 18, 20] B[1 .. 5] = [2, 5, 7, 17, 19] k = 6

your algorithm should return the integer 7.

1

CS/ECE 374 Lab 6½ — February 23 Spring 2018

In lecture, Jeff described an algorithm of Karatsuba that multiplies two n-digit integers using
O(nlg3) single-digit additions, subtractions, and multiplications. In this lab we’ll look at some
extensions and applications of this algorithm.

1. Describe an algorithm to compute the product of an n-digit number and an m-digit number,
where m< n, in O(mlg 3−1n) time.

2. Describe an algorithm to compute the decimal representation of 2n in O(nlg3) time.

[Hint: Repeated squaring. The standard algorithm that computes one decimal digit at a
time requires Θ(n2) time.]

3. Describe a divide-and-conquer algorithm to compute the decimal representation of an
arbitrary n-bit binary number in O(nlg3) time.

[Hint: Let x = a · 2n/2 + b. Watch out for an extra log factor in the running time.]

Think about later:

4. Suppose we can multiply two n-digit numbers in O(M(n)) time. Describe an algorithm to
compute the decimal representation of an arbitrary n-bit binary number in O(M(n) log n)
time.

1

CS/ECE 374 A Lab 7 — October 9 Fall 2019

A subsequence of a sequence (for example, an array, linked list, or string), obtained by removing
zero or more elements and keeping the rest in the same sequence order. A subsequence is called
a substring if its elements are contiguous in the original sequence. For example:

• SUBSEQUENCE, UBSEQU, and the empty string ε are all substrings (and therefore sub-
sequences) of the string SUBSEQUENCE;

• SBSQNC, SQUEE, and EEE are all subsequences of SUBSEQUENCE but not substrings;

• QUEUE, EQUUS, and DIMAGGIO are not subsequences (and therefore not substrings) of
SUBSEQUENCE.

Describe recursive backtracking algorithms for the following longest-subsequence problems.
Don’t worry about running times.

1. Given an array A[1 .. n] of integers, compute the length of a longest increasing subsequence.
A sequence B[1 ..`] is increasing if B[i]> B[i − 1] for every index i ≥ 2.

For example, given the array

3,1,4, 1,5, 9, 2,6, 5, 3, 5,8,9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7
�

your algorithm should return the integer 6, because 〈1, 4, 5, 6, 8, 9〉 is a longest increasing
subsequence (one of many).

2. Given an array A[1 .. n] of integers, compute the length of a longest decreasing subsequence.
A sequence B[1 ..`] is decreasing if B[i]< B[i − 1] for every index i ≥ 2.

For example, given the array

3, 1,4,1, 5,9, 2,6, 5, 3,5, 8, 9, 7, 9, 3, 2, 3, 8,4, 6,2, 7
�

your algorithm should return the integer 5, because 〈9, 6, 5, 4, 2〉 is a longest decreasing
subsequence (one of many).

3. Given an array A[1 .. n] of integers, compute the length of a longest alternating subsequence.
A sequence B[1 ..`] is alternating if B[i] < B[i − 1] for every even index i ≥ 2, and
B[i]> B[i − 1] for every odd index i ≥ 3.

For example, given the array

3,1,4,1,5, 9,2,6,5, 3, 5,8, 9,7,9,3, 2, 3,8,4,6,2,7
�

your algorithm should return the integer 17, because 〈3, 1, 4, 1, 5, 2, 6, 5, 8, 7, 9,3, 8,4, 6,2, 7〉
is a longest alternating subsequence (one of many).

1

CS/ECE 374 A Lab 7 — October 9 Fall 2019

To think about later:

4. Given an array A[1 .. n] of integers, compute the length of a longest convex subsequence
of A. A sequence B[1 ..`] is convex if B[i]− B[i − 1]> B[i − 1]− B[i − 2] for every index
i ≥ 3.

For example, given the array

3,1, 4,1, 5, 9,2, 6, 5, 3,5, 8,9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7
�

your algorithm should return the integer 6, because 〈3,1, 1,2, 5,9〉 is a longest convex
subsequence (one of many).

5. Given an array A[1 .. n], compute the length of a longest palindrome subsequence of A.
Recall that a sequence B[1 ..`] is a palindrome if B[i] = B[`− i + 1] for every index i.

For example, given the array

3, 1,4, 1, 5,9, 2, 6,5,3,5, 8, 9, 7,9, 3, 2, 3, 8,4, 6, 2, 7
�

your algorithm should return the integer 7, because 〈4,9, 5,3, 5,9, 4〉 is a longest palindrome
subsequence (one of many).

2

CS/ECE 374 A Lab 7½ — October 11 Fall 2019

A subsequence of a sequence (for example, an array, a linked list, or a string), obtained by
removing zero or more elements and keeping the rest in the same sequence order. A subsequence
is called a substring if its elements are contiguous in the original sequence. For example:

• SUBSEQUENCE, UBSEQU, and the empty string ε are all substrings of the string SUBSEQUENCE;

• SBSQNC, UEQUE, and EEE are all subsequences of SUBSEQUENCE but not substrings;

• QUEUE, SSS, and FOOBAR are not subsequences of SUBSEQUENCE.

Describe and analyze dynamic programming algorithms for the following longest-subsequence
problems. Use the recursive backtracking algorithms you developed on Wednesday.

1. Given an array A[1 .. n] of integers, compute the length of a longest increasing subsequence
of A. A sequence B[1 ..`] is increasing if B[i]> B[i − 1] for every index i ≥ 2.

2. Given an array A[1 .. n] of integers, compute the length of a longest decreasing subsequence
of A. A sequence B[1 ..`] is decreasing if B[i]< B[i − 1] for every index i ≥ 2.

3. Given an array A[1 .. n] of integers, compute the length of a longest alternating subsequence
of A. A sequence B[1 ..`] is alternating if B[i]< B[i − 1] for every even index i ≥ 2, and
B[i]> B[i − 1] for every odd index i ≥ 3.

4. Given an array A[1 .. n] of integers, compute the length of a longest convex subsequence
of A. A sequence B[1 ..`] is convex if B[i]− B[i − 1]> B[i − 1]− B[i − 2] for every index
i ≥ 3.

5. Given an array A[1 .. n], compute the length of a longest palindrome subsequence of A.
Recall that a sequence B[1 ..`] is a palindrome if B[i] = B[`− i + 1] for every index i.

1

CS/ECE 374 A Lab 7½ — October 11 Fall 2019

Basic steps in developing a dynamic programming algorithm

1. Formulate the problem recursively. This is the hard part. There are two distinct but
equally important things to include in your formulation.

(a) Specification. First, give a clear and precise English description of the problem you
are claiming to solve. Not how to solve the problem, but what the problem actually is.
Omitting this step in homeworks or exams is an automatic zero.

(b) Solution. Second, give a clear recursive formula or algorithm for the whole problem
in terms of the answers to smaller instances of exactly the same problem. It generally
helps to think in terms of a recursive definition of your inputs and outputs. If you
discover that you need a solution to a similar problem, or a slightly related problem,
you’re attacking the wrong problem; go back to step 1.

2. Build solutions to your recurrence from the bottom up. Write an algorithm that starts
with the base cases of your recurrence and works its way up to the final solution, by
considering intermediate subproblems in the correct order. This stage can be broken down
into several smaller, relatively mechanical steps:

(a) Identify the subproblems. What are all the different ways can your recursive
algorithm call itself, starting with some initial input?

(b) Analyze running time. Add up the running times of all possible subproblems,
ignoring the recursive calls.

(c) Choose a memoization data structure. For most problems, each recursive subprob-
lem can be identified by a few integers, so you can use a multidimensional array. But
some problems need a more complicated data structure.

(d) Identify dependencies. Except for the base cases, every recursive subproblem
depends on other subproblems—which ones? Draw a picture of your data structure,
pick a generic element, and draw arrows from each of the other elements it depends
on. Then formalize your picture.

(e) Find a good evaluation order. Order the subproblems so that each subproblem
comes after the subproblems it depends on. Typically, you should consider the base
cases first, then the subproblems that depends only on base cases, and so on. Be
careful!

(f) Write down the algorithm. You know what order to consider the subproblems, and
you know how to solve each subproblem. So do that! If your data structure is an array,
this usually means writing a few nested for-loops around your original recurrence.

2

CS/ECE 374 A Lab 8 — October 16 Fall 2019

Nancy Gunter, the founding dean of the new Maksymilian R. Levchin College of Computing,
has commissioned a series of snow ramps on the south slope of the Orchard Downs sledding hill1
and challenged Erhan Hajek, head of the Department of Electrical and Computer Engineering,
to a sledding contest. Erhan and Nancy will both sled down the hill, each trying to maximize
their air time. The winner gets to expand their department/college into Siebel Center, the
ECE Building, and the new Campus Instructional Facility; the loser has to move their entire
department/college under the Boneyard bridge behind Everitt Lab.

Whenever Nancy or Erhan reaches a ramp while on the ground, they can either use that ramp
to jump through the air, possibly flying over one or more ramps, or sled past that ramp and stay
on the ground. Obviously, if someone flies over a ramp, they cannot use that ramp to extend
their jump.

1. Suppose you are given a pair of arrays Ramp[1 .. n] and Length[1 .. n], where Ramp[i] is
the distance from the top of the hill to the ith ramp, and Length[i] is the distance that any
sledder who takes the ith ramp will travel through the air.

Describe and analyze an algorithm to determine the maximum total distance that Erhan
and Nancy can travel through the air.

2. Uh-oh. The university lawyers heard about Nancy and Erhan’s little bet and immediately
objected. To protect the university from both lawsuits and sky-rocketing insurance rates,
they impose an upper bound on the number of jumps that either sledder can take.

Describe and analyze an algorithm to determine the maximum total distance that Nancy
or Erhan can spend in the air with at most k jumps, given the original arrays Ramp[1 .. n]
and Length[1 .. n] and the integer k as input.

3. To think about later: When the lawyers realized that imposing their restriction didn’t
immediately shut down the contest, they added yet another restriction: No ramp may be
used more than once! Disgusted by all the legal interference, Erhan and Nancy give up on
their bet and decide to cooperate to put on a good show for the spectators.

Describe and analyze an algorithm to determine the maximum total distance that Nancy
and Erhan can spend in the air, each taking at most k jumps (so at most 2k jumps total),
and with each ramp used at most once.

1The north slope is faster, but too short for an interesting contest.

1

CS/ECE 374 A Lab 8½ — October 18 Fall 2019

1. A basic arithmetic expression is composed of characters from the set {1,+,×} and
parentheses. Almost every integer can be represented by more than one basic arithmetic
expression. For example, all of the following basic arithmetic expression represent the
integer 14:

1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1

((1+ 1)× (1+ 1+ 1+ 1+ 1)) + ((1+ 1)× (1+ 1))

(1+ 1)× (1+ 1+ 1+ 1+ 1+ 1+ 1)

(1+ 1)× (((1+ 1+ 1)× (1+ 1)) + 1)

Describe and analyze an algorithm to compute, given an integer n as input, the minimum
number of 1’s in a basic arithmetic expression whose value is equal to n. The number
of parentheses doesn’t matter, just the number of 1’s. For example, when n = 14, your
algorithm should return 8, for the final expression above. The running time of your
algorithm should be bounded by a small polynomial function of n.

Think about later:

2. Suppose you are given a sequence of integers separated by + and − signs; for example:

1+ 3− 2− 5+ 1− 6+ 7

You can change the value of this expression by adding parentheses in different places. For
example:

1+ 3− 2− 5+ 1− 6+ 7= −1

(1+ 3− (2− 5)) + (1− 6) + 7= 9

(1+ (3− 2))− (5+ 1)− (6+ 7) = −17

Describe and analyze an algorithm to compute, given a list of integers separated by +
and − signs, the maximum possible value the expression can take by adding parentheses.
Parentheses must be used only to group additions and subtractions; in particular, do not
use them to create implicit multiplication as in 1+ 3(−2)(−5) + 1− 6+ 7= 33.

1

CS/ECE 374 A Lab 9 — October 23 Fall 2019

For each of the problems below, transform the input into a graph and apply a standard graph
algorithm that you’ve seen in class. Whenever you use a standard graph algorithm, you must
provide the following information. (I recommend actually using a bulleted list.)

• What are the vertices? What does each vertex represent?

• What are the edges? Are they directed or undirected?

• If the vertices and/or edges have associated values, what are they?

• What problem do you need to solve on this graph?

• What standard algorithm are you using to solve that problem?

• What is the running time of your entire algorithm, including the time to build the graph, as
a function of the original input parameters?

1. Snakes and Ladders is a classic board game, originating in India no later than the 16th
century. The board consists of an n× n grid of squares, numbered consecutively from 1
to n2, starting in the bottom left corner and proceeding row by row from bottom to top,
with rows alternating to the left and right. Certain pairs of squares, always in different
rows, are connected by either “snakes” (leading down) or “ladders” (leading up). Each
square can be an endpoint of at most one snake or ladder.

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

A typical Snakes and Ladders board.
Upward straight arrows are ladders; downward wavy arrows are snakes.

You start with a token in cell 1, in the bottom left corner. In each move, you advance
your token up to k positions, for some fixed constant k (typically 6). Then if the token is at
the top of a snake, you must slide the token down to the bottom of that snake, and if the
token is at the bottom of a ladder, you may move the token up to the top of that ladder.

Describe and analyze an efficient algorithm to compute the smallest number of moves
required for the token to reach the last square of the Snakes and Ladders board.

2. Let G be an undirected graph. Suppose we start with two coins on two arbitrarily chosen
vertices of G. At every step, each coin must move to an adjacent vertex. Describe and
analyze an efficient algorithm to compute the minimum number of steps to reach a
configuration where both coins are on the same vertex, or to report correctly that no such
configuration is reachable. The input to your algorithm consists of a graph G = (V, E) and
two vertices u, v ∈ V (which may or may not be distinct).

1

CS/ECE 374 A Lab 9 — October 23 Fall 2019

Think about later:

3. Let G be an undirected graph. Suppose we start with 374 coins on 374 arbitrarily chosen
vertices of G. At every step, each coin must move to an adjacent vertex. Describe and
analyze an efficient algorithm to compute the minimum number of steps to reach a
configuration where all 374 coins are on the same vertex, or to report correctly that no
such configuration is reachable. The input to your algorithm consists of a graph G = (V, E)
and starting vertices s1, s2, . . . , s374 (which may or may not be distinct).

2

CS/ECE 374 A Lab 9½ — October 25 Fall 2019

For each of the problems below, transform the input into a graph and apply a standard graph
algorithm that you’ve seen in class. Whenever you use a standard graph algorithm, you must
provide the following information. (I recommend actually using a bulleted list.)

• What are the vertices? What does each vertex represent?

• What are the edges? Are they directed or undirected?

• If the vertices and/or edges have associated values, what are they?

• What problem do you need to solve on this graph?

• What standard algorithm are you using to solve that problem?

• What is the running time of your entire algorithm, including the time to build the graph, as
a function of the original input parameters?

1. Inspired by the previous lab, you decide to organize a Snakes and Ladders competition
with n participants. In this competition, each game of Snakes and Ladders involves three
players. After the game is finished, they are ranked first, second, and third. Each player
may be involved in any (non-negative) number of games, and the number need not be
equal among players.

At the end of the competition, m games have been played. You realize that you forgot
to implement a proper rating system, and therefore decide to produce the overall ranking
of all n players as you see fit. However, to avoid being too suspicious, if player A ranked
better than player B in any game, then A must rank better than B in the overall ranking.

You are given the list of players and their ranking in each of the m games. Describe and
analyze an algorithm that produces an overall ranking of the n players that is consistent
with the individual game rankings, or correctly reports that no such ranking exists.

2. There are n galaxies connected by m intergalactic teleport-ways. Each teleport-way joins
two galaxies and can be traversed in both directions. However, the company that runs the
teleport-ways has established an extremely lucrative cost structure: Anyone can teleport
further from their home galaxy at no cost whatsoever, but teleporting toward their home
galaxy is prohibitively expensive.

Judy has decided to take a sabbatical tour of the universe by visiting as many galaxies
as possible, starting at her home galaxy. To save on travel expenses, she wants to teleport
away from her home galaxy at every step, except for the very last teleport home.

Describe and analyze an algorithm to compute the maximum number of galaxies that
Judy can visit. Your input consists of an undirected graph G with n vertices and m edges
describing the teleport-way network, an integer 1≤ s ≤ n identifying Judy’s home galaxy,
and an array D[1 .. n] containing the distances of each galaxy from s.

To think about later:

3. Just before embarking on her universal tour, Judy wins the space lottery, giving her just
enough money to afford two teleports toward her home galaxy. Describe and analyze a
new algorithm to compute the maximum number of galaxies Judy can visit; if she visits
the same galaxy twice, that counts as two visits. After all, argues the travel agent, who can
see an entire galaxy in just one visit?

1

CS/ECE 374 A Lab 9½ — October 25 Fall 2019

?4. Judy replies angrily to the travel agent that she can see an entire galaxy in just one visit,
because 99% of every galaxy is exactly the same glowing balls of plasma and lifeless chunks
of rock and McDonalds and Starbucks and prefab “Irish” pubs and overpriced souvenir
shops and Peruvian street-corner musicians as every other galaxy.

Describe and analyze an algorithm to compute the maximum number of distinct galaxies
Judy can visit. She is still allowed to visit the same galaxy more than once, but only the
first visit counts toward her total.

2

CS/ECE 374 A Lab 10 — October 30 Fall 2019

1. Describe and analyze an algorithm to compute the shortest path from vertex s to vertex t
in a directed graph with weighted edges, where exactly one edge u�v has negative weight.
Assume the graph has no negative cycles. [Hint: Modify the input graph and run Dijkstra’s
algorithm. Alternatively, don’t modify the input graph, but run Dijkstra’s algorithm
anyway.]

2. You just discovered your best friend from elementary school on Twitbook. You both want to
meet as soon as possible, but you live in two different cities that are far apart. To minimize
travel time, you agree to meet at an intermediate city, and then you simultaneously hop in
your cars and start driving toward each other. But where exactly should you meet?

You are given a weighted graph G = (V, E), where the vertices V represent cities and
the edges E represent roads that directly connect cities. Each edge e has a weight w(e)
equal to the time required to travel between the two cities. You are also given a vertex p,
representing your starting location, and a vertex q, representing your friend’s starting
location.

Describe and analyze an algorithm to find the target vertex t that allows you and your
friend to meet as soon as possible, assuming both of you leave home right now.

To think about later:

3. A looped tree is a weighted, directed graph built from a binary tree by adding an edge from
every leaf back to the root. Every edge has a non-negative weight.

5 8

17 0 1

23 9 14

42416 7

A looped tree.

(a) How much time would Dijkstra’s algorithm require to compute the shortest path
between two vertices u and v in a looped tree with n nodes?

(b) Describe and analyze a faster algorithm.

1

CS/ECE 374 A Lab 10½ — November 1 Fall 2019

1. Suppose that you have just finished computing the array dist[1 .. V, 1 .. V] of shortest-path
distances between all pairs of vertices in an edge-weighted directed graph G. Unfortunately,
you discover that you incorrectly entered the weight of a single edge u�v, so all that
precious CPU time was wasted. Or was it? Maybe your distances are correct after all!

In each of the following problems, let w(u�v) denote the weight that you used in your
distance computation, and let w′(u�v) denote the correct weight of u�v.

(a) Suppose w(u�v) > w′(u�v); that is, the weight you used for u�v was larger than
its true weight. Describe an algorithm that repairs the distance array in O(V2) time
under this assumption. [Hint: For every pair of vertices x and y, either u�v is on
the shortest path from x to y or it isn’t.]

(b) Maybe even that was too much work. Describe an algorithm that determines whether
your original distance array is actually correct in O(1) time, again assuming that
w(u�v)> w′(u�v). [Hint: Either u�v is the shortest path from u to v or it isn’t.]

(c) To think about later: Describe an algorithm that determines in O(VE) time whether
your distance array is actually correct, even if w(u�v)< w′(u�v).

(d) To think about later: Argue that when w(u�v) < w′(u�v), repairing the distance
array requires recomputing shortest paths from scratch, at least in the worst case.

2. You—yes, you—can cause a major economic collapse with the power of graph algorithms!1
The arbitrage business is a money-making scheme that takes advantage of differences in
currency exchange. In particular, suppose that 1 US dollar buys 120 Japanese yen; 1 yen
buys 0.01 euros; and 1 euro buys 1.2 US dollars. Then, a trader starting with $1 can
convert their money from dollars to yen, then from yen to euros, and finally from euros
back to dollars, ending with $1.44! The cycle of currencies $→ ¥→€→ $ is called an
arbitrage cycle. Of course, finding and exploiting arbitrage cycles before the prices are
corrected requires extremely fast algorithms.

Suppose n different currencies are traded in your currency market. You are given
the matrix R[1 .. n] of exchange rates between every pair of currencies; for each i and j,
one unit of currency i can be traded for R[i, j] units of currency j. (Do not assume that
R[i, j] · R[j, i] = 1.)

(a) Describe an algorithm that returns an array V [1 .. n], where V [i] is the maximum
amount of currency i that you can obtain by trading, starting with one unit of
currency 1, assuming there are no arbitrage cycles.

(b) Describe an algorithm to determine whether the given matrix of currency exchange
rates creates an arbitrage cycle.

?(c) To think about later: Modify your algorithm from part (b) to actually return an
arbitrage cycle, if such a cycle exists.

1No, you can’t.

1

CS/ECE 374 A Lab 11 — November 5 Fall 2019

1. Flappy Bird is a once-popular mobile game written by Nguyễn Hà Ðông, originally released
in May 2013.1 The game features a bird named “Faby”, who flies to the right at constant
speed. Whenever the player taps the screen, Faby is given a fixed upward velocity; between
taps, Faby falls due to gravity. Faby flies through a landscape of pipes until it touches either
a pipe or the ground, at which point the game is over. Your task, should you choose to
accept it, is to develop an algorithm to play Flappy Bird automatically.

Well, okay, not Flappy Bird exactly, but the following drastically simplified variant,
which I will call Flappy Pixel. Instead of a bird, Faby is a single point, specified by three
integers: horizontal position x (in pixels), vertical position y (in pixels), and vertical
speed y ′ (in pixels per frame). Faby’s environment is described by two arrays Hi[1 .. n] and
Lo[1 .. n], where for each index i, we have 0 < Lo[i] < Hi[i] < h for some fixed height
value h. The game is described by the following piece of pseudocode:

FlappyPixel(Hi[1 .. n], Lo[1 .. n]):
y ← dh/2e
y ′← 0
for x ← 1 to n

if the player taps the screen
y ′← 10 〈〈flap〉〉

else
y ′← y ′ − 1 〈〈fall〉〉

y ← y + y ′

if y < Lo[x] or y > Hi[x]
return False 〈〈player loses〉〉

return True 〈〈player wins〉〉

Notice that in each iteration of the main loop, the player has the option of tapping the
screen.

Describe and analyze an algorithm to determine the minimum number of times that the
player must tap the screen to win Flappy Pixel, given the integer h and the arrays Hi[1 .. n]
and Lo[1 .. n] as input. If the game cannot be won at all, your algorithm should return∞.
Describe the running time of your algorithm as a function of n and h.

[Problem 2 is on the back.]

1In 2015, Ðông pulled all official versions of Flappy Bird from all online app stores, expressing guilt for the addictive
behavior his game had encouraged. Unfortunately, dozens of unofficial clones had already been lunched by then, so
Ðông’s altruism was rendered moot. Although Flappy Bird has significantly waned in popularity as a mobile, you
can still find officially licensed arcade versions that give you tickets which you can exchange for prizes that cost
significantly less than the money you spent to win the tickets.

1

CS/ECE 374 A Lab 11 — November 5 Fall 2019

2. Racetrack (also known as Graph Racers and Vector Rally) is a two-player paper-and-pencil
racing game that Jeff played on the bus in 5th grade.2 The game is played with a track
drawn on a sheet of graph paper. The players alternately choose a sequence of grid points
that represent the motion of a car around the track, subject to certain constraints explained
below.

Each car has a position and a velocity, both with integer x- and y-coordinates. A subset
of grid squares is marked as the starting area, and another subset is marked as the finishing
area. The initial position of each car is chosen by the player somewhere in the starting area;
the initial velocity of each car is always (0, 0). At each step, the player optionally changes
each component of the velocity by at most 1. The car’s new position is then determined by
adding the new velocity to the car’s previous position. The new position must be inside the
track; otherwise, the car crashes and that player loses the race.3 The race ends when the
first car reaches a position inside the finishing area.

velocity position
(0,0) (1, 5)
(1,0) (2, 5)
(2,−1) (4,4)
(3,0) (7,4)
(2,1) (9,5)
(1,2) (10, 7)
(0,3) (10, 10)
(−1,4) (9,14)
(0,3) (9,17)
(1,2) (10, 19)
(2,2) (12, 21)
(2,1) (14, 22)
(2,0) (16, 22)
(1,−1) (17, 21)
(2,−1) (19, 20)
(3,0) (22, 20)
(3,1) (25, 21)

ST
A
RT

FIN
ISH

A 16-step Racetrack run, on a 25× 25 track. This is not the shortest run on this track.

Suppose the racetrack is represented by an n × n array of bits, where each 0 bit
represents a grid point inside the track, each 1 bit represents a grid point outside the track,
the “starting line” consists of all 0 bits in column 1, and the “finishing line” consists of all 0
bits in column n.

Describe and analyze an algorithm to find the minimum number of steps required to
move a car from the starting line to the finish line of a given racetrack.

[Hint: Your initial analysis can be improved.]

2The actual game is a bit more complicated than the version described here. See http://harmmade.com/vectorracer/
for an excellent online version.

3However, it is not necessary for the entire line segment between the old position and the new position to lie inside
the track. Sometimes Speed Racer has to push the A button.

2

CS/ECE 374 A Lab 11 — November 5 Fall 2019

To think about later:

3. Consider the following variant of Flappy Pixel. The mechanics of the game are unchanged,
but now the environment is specified by an array Points[1 .. n, 1 .. h] of integers, which could
be positive, negative, or zero. If Faby falls off the top or bottom edge of the environment,
the game immediately ends and the player gets nothing. Otherwise, at each frame, the
player earns Points[x , y] points, where (x , y) is Faby’s current position. The game ends
when Faby reaches the right end of the environment.

FlappyPixel2(Points[1 .. n]):
score← 0
y ← dh/2e
y ′← 0
for x ← 1 to n

if the player taps the screen
y ′← 10 〈〈flap〉〉

else
y ′← y ′ − 1 〈〈fall〉〉

y ← y + y ′

if y < 1 or y > h
return −∞ 〈〈fail〉〉

score← score+ Points[x , y]
return score

Describe and analyze an algorithm to determine the maximum possible score that a
player can earn in this game.

4. We can also consider a similar variant of Racetrack. Instead of bits, the “track” is
described by an array Points[1 .. n, 1 .. n] of numbers, which could be positive, negative, or
zero. Whenever the car lands on a grid cell (i, j), the player receives Points[i, j] points.
Forbidden grid cells are indicated by Points[i, j] = −∞.

Describe and analyze an algorithm to find the largest possible score that a player can
earn by moving a car from column 1 (the starting line) to column n (the finish line).

[Hint: Wait, what if all the point values are positive?]

3

CS/ECE 374 A Lab 12 — November 13 Fall 2018

1. Suppose you are given a magic black box that somehow answers the following decision
problem in polynomial time:

• Input: A boolean circuit K with n inputs and one output.

• Output: True if there are input values x1, x2, . . . , xn ∈ {True,False} that make K
output True, and False otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following related
search problem in polynomial time:

• Input: A boolean circuit K with n inputs and one output.

• Output: Input values x1, x2, . . . , xn ∈ {True,False} that make K output True, or
None if there are no such inputs.

[Hint: You can use the magic box more than once.]

2. An independent set in a graph G is a subset S of the vertices of G, such that no two vertices
in S are connected by an edge in G. Suppose you are given a magic black box that somehow
answers the following decision problem in polynomial time:

• Input: An undirected graph G and an integer k.

• Output: True if G has an independent set of size k, and False otherwise.

(a) Using this black box as a subroutine, describe algorithms that solves the following
optimization problem in polynomial time:

• Input: An undirected graph G.
• Output: The size of the largest independent set in G.

[Hint: You’ve seen this problem before.]

(b) Using this black box as a subroutine, describe algorithms that solves the following
search problem in polynomial time:

• Input: An undirected graph G.
• Output: An independent set in G of maximum size.

1

CS/ECE 374 A Lab 12 — November 13 Fall 2018

To think about later:

3. Formally, a proper coloring of a graph G = (V, E) is a function c : V → {1, 2, . . . , k}, for
some integer k, such that c(u) 6= c(v) for all uv ∈ E. Less formally, a valid coloring assigns
each vertex of G a color, such that every edge in G has endpoints with different colors. The
chromatic number of a graph is the minimum number of colors in a proper coloring of G.

Suppose you are given a magic black box that somehow answers the following decision
problem in polynomial time:

• Input: An undirected graph G and an integer k.

• Output: True if G has a proper coloring with k colors, and False otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following
coloring problem in polynomial time:

• Input: An undirected graph G.

• Output: A valid coloring of G using the minimum possible number of colors.

[Hint: You can use the magic box more than once. The input to the magic box is a graph
and only a graph, meaning only vertices and edges.]

2

CS/ECE 374 A Lab 12½ — November 15 Fall 2019

Proving that a problem X is NP-hard requires several steps:

• Choose a problem Y that you already know is NP-hard (because we told you so in class).

• Describe an algorithm to solve Y , using an algorithm for X as a subroutine. Typically this
algorithm has the following form: Given an instance of Y , transform it into an instance
of X , and then call the magic black-box algorithm for X .

• Prove that your algorithm is correct. This always requires two separate steps, which are
usually of the following form:

– Prove that your algorithm transforms “good” instances of Y into “good” instances
of X .

– Prove that your algorithm transforms “bad” instances of Y into “bad” instances of X .
Equivalently: Prove that if your transformation produces a “good” instance of X , then
it was given a “good” instance of Y .

• Argue that your algorithm for Y runs in polynomial time. (This is usually trivial.)

1. Recall the following kColor problem: Given an undirected graph G, can its vertices be
colored with k colors, so that every edge touches vertices with two different colors?

(a) Describe a direct polynomial-time reduction from 3Color to 4Color.

(b) Prove that kColor problem is NP-hard for any k ≥ 3.

2. A Hamiltonian cycle in a graph G is a cycle that goes through every vertex of G exactly
once. Deciding whether an arbitrary graph contains a Hamiltonian cycle is NP-hard.

A tonian cycle in a graph G is a cycle that goes through at least half of the vertices
of G. Prove that deciding whether a graph contains a tonian cycle is NP-hard.

To think about later:

3. Let G be an undirected graph with weighted edges. A Hamiltonian cycle in G is heavy if
the total weight of edges in the cycle is at least half of the total weight of all edges in G.
Prove that deciding whether a graph contains a heavy Hamiltonian cycle is NP-hard.

4

8

2

7

5

3

1

12
8

6

5

9

5

A heavy Hamiltonian cycle. The cycle has total weight 34; the graph has total weight 67.

1

CS/ECE 374 A Lab 13 — April 18 Spring 2018

Prove that each of the following problems is NP-hard.

1. Given an undirected graph G, does G contain a simple path that visits all but 374 vertices?

2. Given an undirected graph G, does G have a spanning tree in which every node has degree
at most 374?

3. Given an undirected graph G, does G have a spanning tree with at most 374 leaves?

1

CS/ECE 374 Lab 13½ — November 22 Fall 2019

1. Recall that a 5-coloring of a graph G is a function that assigns each vertex of G a “color”
from the set {0,1, 2,3, 4}, such that for any edge uv, vertices u and v are assigned different
“colors”. A 5-coloring is careful if the colors assigned to adjacent vertices are not only
distinct, but differ by more than 1 (mod 5). Prove that deciding whether a given graph
has a careful 5-coloring is NP-hard. [Hint: Reduce from the standard 5Color problem.]

3
4

0 4
2

23 0

1

A careful 5-coloring.

2. Prove that the following problem is NP-hard: Given an undirected graph G, find any
integer k > 374 such that G has a proper coloring with k colors but G does not have a
proper coloring with k− 374 colors.

3. A bicoloring of an undirected graph assigns each vertex a set of two colors. There are two
types of bicoloring: In a weak bicoloring, the endpoints of each edge must use different
sets of colors; however, these two sets may share one color. In a strong bicoloring, the
endpoints of each edge must use distinct sets of colors; that is, they must use four colors
altogether. Every strong bicoloring is also a weak bicoloring.

(a) Prove that finding the minimum number of colors in a weak bicoloring of a given
graph is NP-hard.

(b) Prove that finding the minimum number of colors in a strong bicoloring of a given
graph is NP-hard.

{1,2}

{3,4}

{5,1}{2,3}

{4,5}

{1,2}

{1,3}

{1,4}{2,3}

{2,4}

Le�: A weak bicoloring of a 5-clique with four colors.
Right A strong bicoloring of a 5-cycle with five colors.

1

CS/ECE 374 A Lab 14 — December 4 Fall 2019

Proving that a language L is undecidable by reduction requires several steps. (These are the
essentially the same steps you already use to prove that a problem is NP-hard.)

• Choose a language L′ that you already know is undecidable (because we told you so in
class). The simplest choice is usually the standard halting language

Halt :=
�

〈M , w〉
�

� M halts on w
	

• Describe an algorithm that decides L′, using an algorithm that decides L as a black box.
Typically your reduction will have the following form:

Given an arbitrary string x , construct a special string y ,
such that y ∈ L if and only if x ∈ L′.

In particular, if L = Halt, your reduction will have the following form:

Given the encoding 〈M , w〉 of a Turing machine M and a string w,
construct a special string y , such that
y ∈ L if and only if M halts on input w.

• Prove that your algorithm is correct. This proof almost always requires two separate steps:

– Prove that if x ∈ L′ then y ∈ L.
– Prove that if x 6∈ L′ then y 6∈ L.

Very important: Name every object in your proof, and always refer to objects by their names.
Never ever refer to “the Turing machine” or “the algorithm” or “the code” or “the input string”
or (gods forbid) “it” or “this”, even in casual conversation, even if you’re “just” explaining your
intuition, even when you’re “just” thinking about the reduction to yourself.

Prove that the following languages are undecidable.

1. AcceptIllini :=
�

〈M〉
�

� M accepts the string ILLINI
	

2. AcceptThree :=
�

〈M〉
�

� M accepts exactly three strings
	

3. AcceptPalindrome :=
�

〈M〉
�

� M accepts at least one palindrome
	

4. AcceptOnlyPalindromes :=
�

〈M〉
�

� Every string accepted by M is a palindrome
	

A solution for problem 1 appears on the next page; don’t look at it until you’ve thought a bit
about the problem first.

1

CS/ECE 374 A Lab 14 — December 4 Fall 2019

Solution (for problem 1): For the sake of argument, suppose there is an algorithm Decide-
AcceptIllini that correctly decides the language AcceptIllini. Then we can solve the
halting problem as follows:

DecideHalt(〈M , w〉):
Encode the following Turing machine M ′:

M ′(x):
run M on input w
return True

if DecideAcceptIllini(〈M ′〉)
return True

else
return False

We prove this reduction correct as follows:

=⇒ Suppose M halts on input w.

Then M ′ accepts every input string x .

In particular, M ′ accepts the string ILLINI.

So DecideAcceptIllini accepts the encoding 〈M ′〉.

So DecideHalt correctly accepts the encoding 〈M , w〉.

⇐= Suppose M does not halt on input w.

Then M ′ diverges on every input string x .

In particular, M ′ does not accept the string ILLINI.

So DecideAcceptIllini rejects the encoding 〈M ′〉.

So DecideHalt correctly rejects the encoding 〈M , w〉.

In both cases, DecideHalt is correct. But that’s impossible, because Halt is undecidable.
We conclude that the algorithm DecideAcceptIllini does not exist. �

As usual for undecidablility proofs, this proof invokes four distinct Turing machines:

• The hypothetical algorithm DecideAcceptIllini.

• The new algorithm DecideHalt that we construct in the solution.

• The arbitrary machine M whose encoding is part of the input to DecideHalt.

• The special machine M ′ whose encoding DecideHalt constructs (from the encoding
of M and w) and then passes to DecideAcceptIllini.

2

CS/ECE 374 Lab 14½ — December 6 Fall 2019

Rice’s Theorem. Let L be any set of languages that satisfies the following conditions:
• There is a Turing machine Y such that Accept(Y) ∈ L.
• There is a Turing machine N such that Accept(N) 6∈ L.

The language AcceptIn(L) :=
�

〈M〉
�

� Accept(M) ∈ L
	

is undecidable.

Prove that the following languages are undecidable using Rice’s Theorem:

1. AcceptRegular :=
�

〈M〉
�

� Accept(M) is regular
	

2. AcceptIllini :=
�

〈M〉
�

� M accepts the string ILLINI
	

3. AcceptPalindrome :=
�

〈M〉
�

� M accepts at least one palindrome
	

4. AcceptThree :=
�

〈M〉
�

� M accepts exactly three strings
	

5. AcceptUndecidable :=
�

〈M〉
�

� Accept(M) is undecidable
	

To think about later. Which of the following are undecidable? How would you prove that?

1. Accept{{ε}} :=
�

〈M〉
�

� M accepts only the string ε; that is, Accept(M) = {ε}
	

2. Accept{∅} :=
�

〈M〉
�

� M does not accept any strings; that is, Accept(M) =∅
	

3. Accept∅ :=
�

〈M〉
�

� Accept(M) is not an acceptable language
	

4. Accept=Reject :=
�

〈M〉
�

� Accept(M) = Reject(M)
	

5. Accept6=Reject :=
�

〈M〉
�

� Accept(M) 6= Reject(M)
	

6. Accept∪Reject :=
�

〈M〉
�

� Accept(M)∪Reject(M) = Σ∗
	

1

