CS/ECE 374 A 4 Fall 2021
o Midterm 1 Study Questions &

This is a “core dump” of potential questions for Midterm 1. This should give you a good idea
of the types of questions that we will ask on the exam—in particular, there will be a series of
True/False questions—but the actual exam questions may or may not appear in this handout.
This list intentionally includes a few questions that are too long or difficult for exam conditions;
most of these are indicated with a *star.

Questions from Jeff’s past exams are labeled with the semester they were used—((S14)) or
((F19)), for example. Questions from this semester’s homework (either written or on PrairieLearn)
are labeled ((HW)). Questions from this semester’s labs are labeled ((Lab)). Some unflagged
questions may have been used in exams by other instructors.

s How to Use These Problems &u

Solving every problem in this handout is not the best way to study for the exam. Memorizing
the solutions to every problem in this handout is the absolute worst way to study for the exam.

What we recommend instead is to work on a sample of the problems. Choose one or
two problems at random from each section and try to solve them from scratch under exam
conditions—by yourself, in a quiet room, with a 30-minute timer, without your notes, without
the internet, and if possible, even without your cheat sheet. If you're comfortable solving a few
problems in a particular section, you're probably ready for that type of problem on the exam.
Move on to the next section.

Discussing problems with other people (in your study groups, in the review sessions, in office
hours, or on Piazza) and/or looking up old solutions can be extremely helpful, but only after you
have (1) made a good-faith effort to solve the problem on your own, and (2) you have either a
candidate solution or some idea about where you’re getting stuck.

If you find yourself getting stuck on a particular type of problem, try to figure out why you’re
stuck. Do you understand the problem statement? Are you stuck on choosing the right high-level
approach, are you stuck on the technical details, or are you struggling to express your ideas
clearly?

Similarly, if feedback suggests that your solutions to a particular type of problem are incorrect
or incomplete, try to figure out what you missed. For induction proofs: Are you sure you have
the right induction hypothesis? Are your cases obviously exhaustive? For regular expressions,
DFAs, NFAs, and context-free grammars: Is your solution both exclusive and exhaustive? Did you
try a few positive examples and a few negative examples? For fooling sets: Are you imposing
enough structure? Are x and y really arbitrary strings from F? For language transformations:
Are you transforming in the right direction? Are you using non-determinism correctly? Do you
understand the formal notation for DFAs and NFAs?

Remember that your goal is not merely to “understand”—or worse, to remember—the solution
to any particular problem, but to become more comfortable with solving a certain type of problem
on your own. "Understanding" is a seductive trap; aim for mastery. If you can identify specific
steps that you find problematic, read more about those steps, focus your practice on those steps,
and try to find helpful information about those steps to write on your cheat sheet. Then work on
the next problem!
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Induction on Strings

Give complete, formal inductive proofs for the following claims. Your proofs must reply on the
formal recursive definitions of the relevant string functions, not on intuition. Recall that the
concatenation ¢ and length |- | functions are formally defined as follows:

y ifw=e
wey:= ]
a-(xey) ifw=ax forsomeaec and x € &*
Il 0 ifw=g
w|:=
1+ x| if w=ax for somea € ¥ and x € =*

1.1 The reversal wR of a string w is defined recursively as follows:

WR::{E ifw=¢e

xtea ifw=ax forsomeaec and x € =*

(@) Prove that (w * x)R = xR « w® for all strings w and x. ((Lab))
(b) Prove that (WR)R = w for every string w. ((Lab))
(©) Prove that |w| = |wR| for every string w. {(Lab))

1.2 Let #(a,w) denote the number of times symbol a appears in string w. For example,
#(X,WTF374) = 0 and #(0,000010101010010100) = 12.

(@) Give a formal recursive definition of #(a, w).((Lab))

(b) Prove that #(a,w * z) = #(a,w) + #(a,z) for all symbols a and all strings w and z.
({Lab))

(©) Prove that #(a, wR) = #(a, w) for all symbols a and all strings w, where w" denotes the
reversal of w. ((Lab))

1.3 For any string w and any non-negative integer n, let w™ denote the string obtained by
concatenating n copies of w; more formally, define

€ ifn=0
wh = )
wew' " otherwise

For example, (BLAH)® = BLAHBLAHBLAHBLAHBLAH and €374 = ¢.

(@) Prove that w™ * w" = w™*" for every string w and all non-negative integers n and m.
(b) Prove that (w™)™ = w™" for every string w and all non-negative integers n and m.
(¢) Prove that |w"| = n|w| for every string w and every integer n > 0.

(d) Prove that (w*)R = (WR)" for every string w and every integer n > 0.
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1.4 Consider the following pair of mutually recursive functions:

€ ifw=¢e ifw=e

evens(w) :=
odds(x) ifw=ax

€
odds(w) := {

a-evens(x) ifw=ax
For example, evens(0001101) = 010 and odds(0001101) = 0011.

(@) Prove the following identity for all strings w and x: ((HW))

evens(w) ¢ evens(x) if |w| is even,
evens(w ¢ x) =

evens(w) ¢ odds(x) if |w| is odd.

(b) State and prove a similar identity for odds(w * x).
(c) Prove the following identity for all strings w:
(evens(w))R if |w| is odd,

evens(wR) = {
(odds(w))®  if |w] is even.

(d) Prove that |w| = |evens(w)| + |odds(w)| for every string w.

1.5 The complement w*¢ of a string w € {0, 1}* is obtained from w by replacing every 0 in w with
a 1 and vice versa. The complement function can be defined recursively as follows:

€ ifw=¢
wei=+<1-x° ifw=0x
0-x¢ ifw=1x

(@) Prove that |[w| = |w°| for every string w.
(b) Prove that (x * y)¢ = x¢ ¢ y° for all strings x and y.
(c) Prove that #(1,w) = #(0, w°) for every string w.

1.6 Consider the following recursively defined function:

€ fw=¢

aa e stutter(x) if w=ax

stutter(w) := {

For example, stutter(MISSISSIPPI) =MMIISSSSIISSSSIIPPPPII.

(a) Prove that [stutter(w)| = 2|w| for every string w.
(b) Prove that evens(stutter(w)) = w for every string w.
(c) Prove that odds(stutter(w)) = w for every string w.

(d) Prove that w is a palindrome if and only if stutter(w) is a palindrome, for every string w.
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1.7 Consider the following recursive function:

ifw=¢e

a - shuffle(z,x) if w=ax

shuffle(w, z) := {Z

For example, shuffle(0011,0101) = 00011011.

(a) Prove that [shuffle(x, y)| = |x| + |y| for all strings x and y.
(b) Prove that shuffle(w, w) = stutter(w) for every string w.
(¢) Prove that shuffle(odds(w), evens(w)) = w for every string w. ((HW))

(d) Prove that evens(shuffle(w, z)) = z for all strings w and gz such that [w| = |z|. ((HW))
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Regular expressions

For each of the following languages over the alphabet ¥ = {0, 1}, give an equivalent regular
expression, and briefly argue why your expression is correct. (On exams, we will not ask for
justifications, but you should still justify your expressions in your head.)

2.1 Every string of length at most 3. [Hint: Don'’t try to be clever.]
2.2 All strings except 010.
2.3 All strings that end with the suffix 010.
2.4 All strings that do not start with the prefix 010.
2.5 All strings that contain the substring 010.
2.6 All strings that do not contain the substring 010.
2.7 All strings that contain the subsequence 010.
2.8 All strings that do not contain the subsequence 010.
2.9 All strings containing the substring 10 or the substring 01.
2.10 All strings containing either the substring 10 or the substring 01, but not both. ((F16))
2.11 All strings that do not contain either 991 or 110 as a substring. ((F19))
2.12 All strings containing the subsequence 10 or the subsequence @1 (or possibly both).
2.13 All strings containing the subsequence 10 or the subsequence @1, but not both.
2.14 All strings containing at least two 1s and at least one 0. ((Lab))
2.15 All strings containing at least two 1s or at least one @ (or possibly both).
2.16 All strings containing at least two 1s or at least one @, but not both.
2.17 All strings in which every run of consecutive 0s has even length. ((S21))

2.18 All strings in which every run of consecutive @s has even length and every run of consecutive
1s has odd length. ((F14))

2.19 All strings whose length is divisible by 3.

2.20 All strings in which the number of 1s is divisible by 3.
2.21 All strings in 0*1* whose length is divisible by 3. ((S14))
2.22 All strings in 0*10* whose length is divisible by 3. {(S18))
2.23 All strings in 0*1%0* whose length is even. {(S18))

2.24 {0"w1" |n> 1 and q € ©*} ((S18))
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Direct DFA construction.

Draw or formally describe a DFA that recognizes each of the following languages. Don’t forget to
describe the states of your DFA in English. Unless otherwise specified, all languages are over the
alphabet 3> = {0, 1}.

2.1 The language {LONG, LUG, LEGO, LEG, LUG, LOG, LINGO} .

2.2 The language MOO* + MEQO*W

2.3 Every string of length at most 3.

2.4 All strings except 010.

2.5 All strings that end with the suffix 010.

2.6 All strings that do not start with the prefix 010.

2.7 All strings that contain the substring 010.

2.8 All strings that do not contain the substring 010.

2.9 All strings that contain the subsequence 010.
2.10 All strings containing the substring 10 or the substring 01.

2.11 All strings containing either the substring 10 or the substring @1, but not both. ((F16))
2.12 All strings that do not contain either 001 or 110 as a substring. ((F19))
2.13 All strings containing the subsequence 10 or the subsequence @1 (or possibly both).
2.14 All strings containing at least two 1s and at least one 0. ((Lab))
2.15 All strings containing at least two 1s or at least one 0, but not both.
2.16 All strings in which the number of 0s is even or the number of 1s is not divisible by 3.
2.17 All strings in which every run of consecutive 0s has even length. ((S21))

2.18 All strings in which every run of consecutive 0s has even length and every run of consecutive
1s has odd length. ((F14))

2.19 All strings that end with @1 and that have odd length ((S21))
2.20 All strings in which the number of 1s is divisible by 3.

2.21 All strings that represent an integer divisible by 3 in binary.
2.22 All strings that represent an integer divisible by 5 in base 7.
2.23 All strings in 0*1* whose length is divisible by 3. ((S14))

2.24 All strings in 0*10* whose length is divisible by 3. {(S18))
2.25 All strings in 0*1*0* whose length is even. ((S18))

2.26 {0"w1" |n> 1 and q € ©*} ((S18))
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Fooling sets

Prove that each of the following languages is not regular. Unless specified otherwise, all languages
are over the alphabet X = {0, 1}.

4.1 All strings with more 0s than 1s. ((S14))

4.2 All strings with fewer 0s than 1s.

4.3 All strings with exactly twice as many 0s as 1s. {(Lab))
4.4 All strings with at least twice as many 0s as 1s.

4.5 {@2" | n> 0} ((Lab))

4.6 {0% | n >0} ((S21))

4.7 {@F nln> O}, where F,, is the nth Fibonacci number, defined recursively as follows:
0 ifn=0
F =141 ifn=1

F, 1+ F, 5 otherwise
[Hint: If F; + F; is a Fibonacci number, then eitheri = j+1 or min{i, j} < 2.]

4.8 {0 | n>0} (Lab))

4.9 {@“3 | n> 0}
410 {@2M1n | n >0} ((Lab))

4.11 {0™1" | m # 2n} ((Lab))

4.12 {oi1/ok \ 2i =k or i = 2k} ((S18))

413 {®i1j®k \ i+j= 2k} ((F19))

4.14 {x#y | x,y €{0,1}* and #(0,x) = #(1,y)}

4.15 {xxC | x € {0,1 }*}, where x¢ is the complement of x, obtained by replacing every 0 in x
with a 1 and vice versa. For example, 0001101¢ = 1110010.

4.16 Properly balanced strings of parentheses, described by the context-free grammar S — ¢ |
S5 (S). ({Lab))

4.17 Palindromes whose length is divisible by 3.

4.18 Strings in which at least two runs of consecutive s have the same length.
419 {(e1)*(10)"| n> 0}

4.20 {(01)’“(1@)” { n>mz2> 0}

4.21 {W#x#y | w,x,y € ¥* and w, x, y are not all equal}
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Regular or Not?

For each of the following languages, either prove that the language is regular (by describing a
DFA, NFA, or regular expression), or prove that the language is not regular (using a fooling set
argument). Unless otherwise specified, all languages are over the alphabet X = {0, 1}. Read the
language descriptions very carefully.

5.1 The set of all strings in {0, 1}* in which the substrings 01 and 10 appear the same number
of times. (For example, the substrings @1 and 01 each appear three times in the string
1100001101101.) ((F14))

5.2 The set of all strings in {0, 1}* in which the substrings 00 and 11 appear the same number
of times. (For example, the substrings 00 and 11 each appear three times in the string
1100001101101.) ((F14))

5.3 {www | w € T*} ((F14))
5.4 {wxw | w,x € T} ((F14))
5.5 All strings such that in every prefix, the number of 0s is greater than the number of 1s.

5.6 All strings such that in every non-empty prefix, the number of 0s is greater than the number
of 1s.

5.7 {0™" ] 0<m—n <374}

5.8 {0™1"| 0 <m+n <374}

5.9 The language generated by the following context-free grammar:
S —0Al|¢

A—1S0|¢

5.10 The language generated by the following free grammar S — 0S1|1S0 | ¢

5.11 {w#x | w, x € {0,1}* and no substring of w is also a substring of x}

5.12 {W#x | w, x € {0,1}* and no non-empty substring of w is also a substring of x}
5.13 {W#x | w, x € {0,1}* and every non-empty substring of w is also a substring of x}
5.14 {w#x | w,x € {0,1}* and w is a substring of x}

5.15 {w#x | w,x € {0,1}* and w is a proper substring of x}

5.16 {xy | x is a palindrome and y is a palindrome} ((F19))

5.17 {xy | x is not a palindrome} ((F19))

5.18 {xy | x is a palindrome and |x| > 1} ((F19))

5.19 {xy } #(0,x)=#(1,y) and #(1,x) = #(0,_)/)}

5.20 {xy \ #0,x)=#(1,y) or #(1,x) = #(Q,y)}
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Product/Subset Constructions

For each of the following languages L over the alphabet {0, 1}, formally describe a DFA M =
(Q,s,A, 6) that recognizes L. Do not attempt to draw the DFA. Do not use the phrase “product
construction”. Instead, give a complete, precise, and self-contained description of the state set
Q, the start state s, the accepting state A, and the transition function &.

6.1 ((S14)) All strings that satisfy all of the following conditions:

(a) the number of 0s is even
(b) the number of 1s is divisible by 3
(c) the total length is divisible by 5

6.2 All strings that satisfy at least one of the following conditions: . ..
6.3 All strings that satisfy exactly one of the following conditions: ...
6.4 All strings that satisfy exactly two of the following conditions: ...

6.5 All strings that satisfy an odd number of of the following conditions: ...

e Other possible conditions:

(a) The number of s in w is odd.

(b) The number of 1s in w is not divisible by 5.

(c) The length |w| is divisible by 7.

(d) The binary value of w is divisible by 7.

(e) w represents a number divisible by 5 in base 7.
(f) w contains the substring 00

(g) w does not contain the substring 11

(h) ww does not contain the substring 101
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Regular Language Transformations

Let L be an arbitrary regular language over the alphabet > = {0,1}. Prove that each of the
following languages is regular.

7.1
7.2
7-3
7.4
7-5
7.6
7-7
7.8

7-9

7.10

7.11

7.12

7.13

7.14

7-15

7.16

All strings in L whose length is divisible by 3.
ONEINFrRONT(L) := {1x | x € L}

ONLYONES(L) := {1#(1’“’) | we L}

ONLYONESY(L) := {w ’ 1#0m e 1}
MissSINGFIRSTONE(L) :={w e X* | 1lw e L}
MissINGONEONE(L) :={xy | x1y € L}
PrREFIXES(L) := {x | xy € L for some y € ¥*}
Surrixes(L) := {y | xy € L for some x € &*} ((F16))

EVENS(L) := {evens(w) | w € L}, where the functions evens and odds are recursively defined
as follows:

€ ifw=e¢ ifw=e¢

evens(w) := {odds(x) o ax

odds(w) := {8

a-evens(x) ifw=ax
For example, evens(0001101) = 010 and odds(0001101) = 0011. ((F14))

EVENs !(L) := {w | evens(w) € L}, where the functions evens and odds are recursively
defined as above. ((F14))

AppParITY(L) = {addparity(w) | w € L}, where ((S18))
ow if #(1,w) is even
addparity(w) = ] (1,w) ] v
1w if #(1,w) is odd
STRIPFINALOS(L) = {w | wo" € L for some n > 0}. Less formally, STRIPFINALOS(L) is the set

of all strings obtained by removing any number of final 0s from strings in L. {(S18))

OBLIVIATE(L) := {obliviate(w) | w € L}, where obliviate(w) is the string obtained from w by
deleting every 1. ((F19))

UNOBLIVIATE(L) := {w € X* | obliviate(w) € L}, where obliviate(w) is the string obtained
from w by deleting every 1. ((F19))

SamESLASH(w) = {sameslash(w) | w € L}, where sameslash(w) is the string in {0,1,/}
obtained from w by inserting a new symbol / between any two consecutive appearances of
the same symbol. ((F19))

DirrSLasH(w) = {diffslash(w) | w € L}, where diffslash(w) is the string in {0, 1, /} obtained
from w by inserting a new symbol / between any two consecutive symbols that are not equal.

((F19))

10
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Context-Free Grammars

Construct context-free grammars for each of the following languages, and give a brief explanation
of how your grammar works, including the language of each non-terminal. Unless specified
otherwise, all languages are over the alphabet {0, 1}. We explicitly do not want a formal proof of
correctness.

8.1 All strings in {0, 1}* whose length is divisible by 5.
8.2 All strings in which the substrings 01 and @1 appear the same number of times.
8.3 {0"1%" | n >0}

8.4 {0™" | n# 2m}

8.5 {0'170"" |i,j >0}

8.6 {0'ti#e/#0 |i,j > 0}

8.7 {01172% | j#£i+k}

8.8 {01172F | i = 2k or 2i = k} {(S18))

8.9 {01172F | i+ j =2k} ((F19))
8.10 {w#0*®W) | we {0,1}*}

8.11 {0/172F|i=jorj=kori=k}

8.12 {01172F | i # jorj#k}
8.13 {0%1%72% | i, j >0}

8.1 {x#yR | x,y €{0,1}* and x #y}

o

8.15 All strings in {0, 1}* that are not palindromes.

8.16 {0"1 an+b | n= 0}, where a and b are arbitrary fixed natural numbers.

8.17 {0”1 an—b | n>b/ a}, where a and b are arbitrary fixed natural numbers.

11
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True or False (sanity check)

For each statement below, check “Yes” if the statement is ALWAYS true and “No” otherwise, and
give a brief explanation of your answer. For example:

% No If 2 + 2 =5 then Jeff is the Queen of England.
The hypothesis is false, so the implication is true.

Yes X X + y is even.
Suppose x =1 and y = 0.

% No | The set of all binary strings with an even number of 1s is regular.
0*(10*10")*
Accepted by 2-state DFA, where current state = #1s mod 2.

Read each statement very carefully. Some of these are deliberately subtle. On the other hand,
you should not spend more than two minutes on any single statement.

Definitions

Al
A2
A.3
A4
A.5
A6

A7

A8

A.9

A.10

A1

A.12
A3

A4

Every language is regular.

Every finite language is regular.

Every infinite language is regular.

For every language L, if L is regular then L can be represented by a regular expression.
For every language L, if L is not regular then L cannot be represented by a regular expression.
For every language L, if L can be represented by a regular expression, then L is regular.

For every language L, if L cannot be represented by a regular expression, then L is not
regular.

For every language L, if there is a DFA that accepts every string in L, then L is regular.

For every language L, if there is a DFA that accepts every string not in L, then L is not
regular.

For every language L, if there is a DFA that rejects every string not in L, then L is regular.

For every language L, if for every string w € L there is a DFA that accepts w, then L is regular.

{(S14)

For every language L, if for every string w € L there is a DFA that rejects w, then L is regular.
For every language L, if some DFA recognizes L, then some NFA also recognizes L.

For every language L, if some NFA recognizes L, then some DFA also recognizes L.

12
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A.15

A.16
Ay

A.18

For every language L, if some NFA with e-transitions recognizes L, then some NFA without
e-transitions also recognizes L.

For every language L, and for every string w € L, there is a DFA that accepts w. ((F19))
Every regular language is recognized by a DFA with exactly 374 accepting states. ((F19))

Every regular language is recognized by an NFA with exactly 374 accepting states. ((F19))

Closure Properties of Regular Languages

B.1
B.2
B.3

B.4

B.5
B.6
B.7

B.8

B.g
B.10
B.11
B.12

B.13

B.14
B.15
B.16
B.17

B.18

B.19

B.20

B.21

For all regular languages L and L’, the language L N L’ is regular.
For all regular languages L and L’, the language L U L’ is regular.
For all regular languages L, the language L* is regular.

For all regular languages A, B, and C, the language (AU B) \ C is regular.

For all languages L C X%, if L is regular, then ¥* \ L is regular.
For all languages L C X%, if L is regular, then ¥* \ L is not regular.
For all languages L C ¥, if L is not regular, then %* \ L is regular.

For all languages L C ¥, if L is not regular, then * \ L is not regular.

((S14)) For all languages L and L’, the language L N L’ is regular.
((F14)) For all languages L and L', the language L U L’ is regular.
For every language L, the language L* is regular. ((F14, F16))
For every language L, if L* is regular, then L is regular.

For all languages A, B, and C, the language (AUB)\ C is regular.

For every language L, if L is finite, then L is regular.

For all languages L and L’, if L and L’ are finite, then L U L’ is regular.

For all languages L and L’, if L and L’ are finite, then L N L’ is regular.

For all languages L € ©*, if L contains infinitely many strings in 2*, then L is not regular.

For all languages L C %*, if L contains all but a finite number of strings of ©*, then L is
regular. ((S14))

For all languages L C {0, 1}*, if L contains a finite number of strings in 0*, then L is regular.

For all languages L C {9, 1}*, if L contains all but a finite number of strings in 0*, then L is
regular.

If L and L’ are not regular, then L N L’ is not regular.

13
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B.22
B.23
B.24
B.25
B.26
B.27
B.28
B.29
B.30
B.31
B.32
B.33
B.34
B.35
B.36
B.37

B.38

B.39

B.40

B.41

B.42

If L and L’ are not regular, then L U L’ is not regular.

If L is regular and L U L’ is regular, then L’ is regular. {(S14))
If L is regular and L U L’ is not regular, then L’ is not regular. {(S14))
If L is not regular and L U L’ is regular, then L’ is regular.

If L is regular and L N L’ is regular, then L’ is regular.

If L is regular and L N L’ is not regular, then L’ is not regular.
If L is regular and L' is finite, then L U L’ is regular. {(S14))

If L is regular and L’ is finite, then L N L’ is regular.

If L is regular and L N L’ is finite, then L’ is regular.

If L is regular and L N L’ = @&, then L’ is not regular.

If L is not regular and L N L’ = &, then L' is regular. {(F16))
If L is regular and L’ is not regular, then LN L' = &.

If L € L' and L is regular, then L’ is regular.

If L € L" and L’ is regular, then L is regular. ((F14))

If L € L" and L is not regular, then L’ is not regular.

If L €L and L’ is not regular, then L is not regular. {(F14))

Two languages L and L’ are regular if and only if L N L’ is regular. {(F19))

For all languages L C ¥, if L cannot be described by a regular expression, then some DFA
accepts ¥\ L.

For all languages L C ¥*, if no DFA accepts L, then the complement %* \ L can be described
by a regular expression.

For all languages L C »*, if no DFA accepts L, then the complement ¥* \ L cannot be
described by a regular expression.

For all languages L C X*, if L is recognized by a DFA, then * \ L can be described by a
regular expression. ((F16))

Properties of Context-free Languages

C.1 For all languages L C 3%, if L cannot be recognized by a DFA, then L is context-free.

C.2 For all languages L C %*, if L cannot be recognized by a DFA, then L is not context-free.

C.3 For all languages L C X*, if L can be recognized by a DFA, then L is context-free.

C.4 For all languages L € X, if L can be recognized by a DFA, then L is not context-free.

14
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C.5 For all languages L C &%, if L is not context-free, then L is regular.
C.6 For all languages L C X2*, if L is not context-free, then * \ L is regular.
C.7 For all languages L C X*, if L is not context-free, then L is not regular.
C.8 For all languages L C ¥, if L is not context-free, then %* \ L is not regular.
C.9 The empty language is context-free. {(F19))
C.10 Every finite language is context-free.
C.11 Every context-free language is regular. ((F14))
C.12 Every regular language is context-free.
C.13 Every non-context-free language is non-regular. ((F16))
C.14 Every language is either regular or context-free. ((F19))
C.15 For all context-free languages L and L', the language L * L’ is also context-free. ((F16))
C.16 For every context-free language L, the language L* is also context-free.
C.17 For all context-free languages A, B, and C, the language (AU B)* ¢ C is also context-free.
C.18 For every language L, the language L* is context-free.
C.19 For every language L, if L* is context-free then L is context-free.
Equivalence Classes. Recall that for any language L C ¥*, two strings x, y € ¥.* are equivalent
with respect to L if and only if, for every string z € ¥, either both xz and yz are in L, or neither

Xz nor yz is in L—or more concisely, if x and y have no distinguishing suffix with respect to L.
We denote this equivalence by x =; y.

D.1 For every language L, if L is regular, then =; has finitely many equivalence classes.

D.2 For every language L, if L is not regular, then =; has infinitely many equivalence classes.

((S14))

D.3 For every language L, if =; has finitely many equivalence classes, then L is regular.
D.4 For every language L, if =; has infinitely many equivalence classes, then L is not regular.
D.5 For all regular languages L, each equivalence class of =; is a regular language.

D.6 For every language L, each equivalence class of =; is a regular language.

15
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Fooling Sets

E.1 If a language L has an infinite fooling set, then L is not regular.

E.2 If a language L has an finite fooling set, then L is regular.

E.3 If a language L does not have an infinite fooling set, then L is regular.

E.4 If alanguage L is not regular, then L has an infinite fooling set.

E.5 If a language L is regular, then L has no infinite fooling set.

E.6 If a language L is not regular, then L has no finite fooling set. ((F14, F16))

E.7 If a language L has a fooling set of size 374, then L is not regular. {(F19))

E.8 If a language L does not have a fooling set of size 374, then L is regular. ((F19))

Specific Languages (Gut Check). Do not construct complete DFAs, NFAs, regular expressions,
or fooling-set arguments for these languages. You don’t have time.

Fa {01172 |i+ j—k =374} is regular. ((S14))

F.2 {01172K | i+ j—k < 374} is regular.

F.3 {01172F | i 4+ j 4+ k = 374} is regular.

F.a {01172K | i+ j + k > 374} is regular.

F.5 {0117 |i <374 < j} is regular. {(S14))

F.6 {0’“1 n | 0<m+n< 374} is regular. ((F14))

F.7 {om1" | 0 < m—n < 374} is regular. ((F14))

F.8 {0'17]i,j > 0} is not regular. ((F16))

F.9 {01/ | (i—j) is divisible by 374} is regular. {(S14))
F.10 {017 | (i + j) is divisible by 374} is regular.
F.1 {@”2 | n= 0} is regular.

Fa2 {o%7n+4 | n > 0} is regular.

F.13 {@”1@” | n> 0} is regular.

F.14 {®m1 o | m>0andn> O} is regular.

Fas {0%*"| n> 0} is regular. ((F19))
F.16 {0°7"1%" | n> 374} is regular. ((F19))

Fay {0%7m4n | n < 374} is regular. ((F19))
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F.18 {we {0,1}*| |w| is divisible by 374} is regular.
F.i9 {we {0,1}*| w represents a integer divisible by 374 in binary} is regular.

F.20 {w e {0,1}" | w represents a integer divisible by 374 in base 473} is regular.

F.21 {W e{0,1}* { |#(0,w)—#(1,w)| < 374} is regular.
F.22 {w e{0,1}* \ |#(0,x)—#(1,x)| < 374 for every prefix x of W} is regular.

F.23 {w e{0,1}* \ |#(0,x)—#(1,x)| < 374 for every substring x of w} is regular.

F.24 {WQ#(@’W) | we {0,1 }*} is regular.

F.25 {wo#(®w)mod374 | w € {0,1}*} is regular.

Playing with Automata

G.a Let M =(%,Q,s,A,6) and M’ = (%,Q,s,Q \ A, §) be arbitrary DFAs with identical alphabets,
states, starting states, and transition functions, but with complementary accepting states.
Then L(M)N L(M') = @. ((F16))

G.2 Let M =(%,Q,s,A,6) and M’ = (%,Q,s,Q \ A, &) be arbitrary NFAs with identical alphabets,
states, starting states, and transition functions, but with complementary accepting states.
Then L(M)N L(M') = @. ((F16))

G.3 Let M be a DFA over the alphabet 3. Let M’ be identical to M, except that accepting states
in M are non-accepting in M’ and vice versa. Each string in ©* is accepted by exactly one
of M and M’.

G.4 Let M be an NFA over the alphabet X. Let M’ be identical to M, except that accepting states
in M are non-accepting in M’ and vice versa. Each string in ©* is accepted by exactly one
of M and M’.

G.5 If a language L is recognized by a DFA with n states, then the complementary language
»*\ L is recognized by a DFA with at most n + 1 states.

G.6 If a language L is recognized by an NFA with n states, then the complementary language
»*\ L is recognized by a NFA with at most n + 1 states.

G.7 If a language L is recognized by a DFA with n states, then L* is recognized by a DFA with at
most n + 1 states.

G.8 If a language L is recognized by an NFA with n states, then L* is recognized by a NFA with
at most n + 1 states.
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Language Transformations
H.1 For every regular language L, the language {WR | we L} is also regular.
H.2 For every language L, if the language {WR \ we L} is regular, then L is also regular. ((F14))

H.3 For every language L, if the language {WR | we L} is not regular, then L is also not regular.

((F14))

H.4 For every regular language L, the language {w | wwk € L} is also regular.
H.5 For every regular language L, the language {WWR | we L} is also regular.

H.6 For every language L, if the language {w \ wwk € L} is regular, then L is also regular. [Hint:
Consider the language L = {0"1" | n > 0}.]

H.7 For every regular language L, the language {®|W| | we L} is also regular.
H.8 For every language L, if the language {@lwl \ we L} is regular, then L is also regular.

H.9 For every context-free language L, the language {WR | we L} is also context-free.
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Fake Midterm 1 Problem 1

For each statement below, check “Yes” if the statement is ALWAYS true and “No” otherwise, and give a
brief explanation of your answer.

(a) Every integer in the empty set is prime.

Yes No

(b) The language {0™1" | m +n < 374} is regular.

Yes No

() The language {0™1" | m —n < 374} is regular.

Yes No

(d) For all languages L, the language L* is regular.

Yes No

(e) For all languages L, the language L* is infinite.

Yes No

(f) For all languages L C ©*, if L can be represented by a regular expression, then ¥* \ L is recognized
by a DFA.

Yes No

(g) For all languages L and L', if LN L’ = & and L’ is not regular, then L is regular.

Yes No

(h) Every regular language is recognized by a DFA with exactly one accepting state.

Yes No

(i) Every regular language is recognized by an NFA with exactly one accepting state.

Yes No

(j) Every language is either regular or context-free.

Yes No
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Fake Midterm 1 Problem 2

For each of the following languages over the alphabet ¥ = {0, 1}, either prove that the language is regular
or prove that the language is not regular. Exactly one of these two languages is regular. Both of these
languages contain the string 00110100000110100.

1. {O”WQ” \ weXtandn> 0}

2. {W@“W| we Xt and n>0}
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Fake Midterm 1 Problem 3

The parity of a bit-string w is @ if w has an even number of 1s, and 1 if w has an odd number of 1s. For
example:
parity(e) =0 parity(0010100) = 0 parity(00101110100) =1

(@) Give a self-contained, formal, recursive definition of the parity function. (In particular, do not refer
to # or other functions defined in class.)

(b) Let L be an arbitrary regular language. Prove that the language OddParity(L) := {w € L | parity(w) = 1}
is also regular.

(¢) Let L be an arbitrary regular language. Prove that the language AddParity(L) := {parity(w)-w | w € L}
is also regular.

[Hint: Yes, you have enough room.]



CS/ECE 374 A 4 Fall 2021 | Name:
Fake Midterm 1 Problem 4

For each of the following languages L, give a regular expression that represents L and describe a DFA
that recognizes L. You do not need to prove that your answers are correct.

(@) All strings in (0 + 1)* that do not contain the substring 0110.

(b) All strings in 0*10* whose length is a multiple of 3.
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Fake Midterm 1 Problem 5

For any string w € {0, 1}*, let obliviate(w) denote the string obtained from w by removing every 1. For
example:

obliviate(¢) = ¢
obliviate(000000) = 000000
obliviate(111111) =¢
obliviate(010001101) = 00000

Let L be an arbitrary regular language.

1. Prove that the language OBLIVIATE(L) = {obliviate(w) | w € L} is regular.

2. Prove that the language UNOBLIVIATE(L) = {w € {0, 1}* | obliviate(w) € L} is regular.
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September 27, 2021

 Directions &y
Don’t panic!

If you brought anything except your writing implements, your hand-written double-sided
814" x 11" cheat sheet, please put it away for the duration of the exam. In particular, please
turn off and put away all medically unnecessary electronic devices.

The exam has five numbered questions.

Write your answers on blank white paper. Please start your solution to each numbered
question on a new sheet of paper.

You have 150 minutes to write, scan, and submit your solutions. The exam is designed to
take at most 120 minutes to complete. We are providing 30 minutes of slack to scan and
submit in case of unforeseen technology issues.

If you are ready to scan your solutions before 9:15pm, send a private message to the host
(“Ready to scan”) and wait for confirmation before leaving the Zoom call.

Please scan all paper that you used during the exam — first your solutions, in the correct
order, then your cheat sheet (if any), and finally any scratch paper.

Proofs are required for full credit if and only if we explicitly ask for them, using the word
prove in bold italics. In particular, if we ask you to show that a language is regular, you
can provide a regular expression, DFA, NFA, or boolean combination without justification.
Similarly, if we ask you to give a DFA or NFA, you to not have to name or describe the states.

Finally, if something goes seriously wrong, send email to jeffe@illinois.edu as soon as
possible explaining the situation. If you have already finished the exam but cannot submit
to Gradescope for some reason, include a complete scan of your exam in your email. If you
are in the middle of the exam, send Jeff email, finish the exam (if you can) within the time
limit, and then send a second email with your completed exam.
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1. For each of the following languages over the alphabet > = {0, 1}, either prove that the
language is regular (by constructing an appropriate DFA, NFA, or regular expression) or
prove that the language is not regular (by constructing an infinite fooling set and proving
that the set you construct is indeed a fooling set for that language).

@ {er17e" | r=p+gq}
(b) {0P190" | r = p +q mod 2}
[Hint: First think about the language {011 | g = p mod 2}]

2. Let L be any regular language over the alphabet X = {0, 1}.

Let take2skip2(w) be a function takes an input string w and returns the subsequence of
symbols at positions 1,2,5,6,9,10,...4i+1,4i+2,... in w. In other words, take2skip2(w)
takes the first two symbols of w, skip the next two, takes the next two, skips the next two,
and so on. For example:

take2skip2(1) =1
take2skip2(010) = 01
take2skip2(0100111100011) = 0111001

Choose exactly one of the following languages, and prove that your chosen language is
regular. (In fact, both languages are regular, but we only want a proof for one of them.)
Don’t forget to tell us which language you’ve chosen!

(@) L;={w e x*|take2skip2(w) € L}.
(b) L, = {take2skip2(w) |w € L}.

3. Prove that the following languages are not regular by building an infinite fooling set for
each of them. For each language, prove that the set you constructed is indeed a fooling set.

(@ {0P199" | r>0 and gmodr=0 and p modr =0}
(b) {0?19| g>0 and p=q?}

4. Consider the following recursive function:

Z ifw=e
MINGLE(w, 2) :=
MINGLE(x, aza) if w=a-x for some symbol a and string x

For example, MINGLE(21,10) = MINGLE(1,0100) = MINGLE(g,101001) = 101001.

(@) Prove that [MINGLE(w,2)| = 2|w| + |z| for all strings w and z.
(b) Prove that MINGLE(w, 2 * 2R) = (MINGLE(w, 2z * z®))R for all strings w and z.

(There’s one more question on the next page)
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5. For each statement below, write “Yes” if the statement is always true and write “No

7

otherwise, and give a brief (one short sentence) explanation of your answer. Read these
statements very carefully—small details matter!

@
(b)

©
(d)

©
®
(g)

(h)
@
Q)

If L is a regular language over the alphabet {0, 1}, then {wiw |w € L} is also regular.

If L is a regular language over the alphabet {0,1}, then {x1y | x,y € L} is also
regular.

The context-free grammar S — 051|150 | SS | 01 | 10 generates the language (0+1)"

Every regular expression that does not contain a Kleene star (or Kleene plus) represents
a finite language.

Let L, be a finite language and L, be an arbitrary language. Then L, N L, is regular.
Let L, be a finite language and L, be an arbitrary language. Then L, U L, is regular.

The regular expression (00 + 01+ 10+ 11)* represents the language of all strings over
{0,1} of even length.

The e-reach of any state in an NFA contains the state itself.
The language L = 0* over the alphabet > = {0, 1} has a fooling set of size 2.

Suppose we define an e-DFA to be a DFA that can additionally make e-transitions.
Any language that can be recognized by an e-DFA can also be recognized by a DFA
that does not make any e-transitions.
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September 28, 2021

 Directions &y
Don’t panic!

If you brought anything except your writing implements, your hand-written double-sided
814" x 11" cheat sheet, please put it away for the duration of the exam. In particular, please
turn off and put away all medically unnecessary electronic devices.

The exam has five numbered questions.

Write your answers on blank white paper. Please start your solution to each numbered
question on a new sheet of paper.

You have 150 minutes to write, scan, and submit your solutions. The exam is designed to
take at most 120 minutes to complete. We are providing 30 minutes of slack to scan and
submit in case of unforeseen technology issues.

If you are ready to scan your solutions before 9:15pm, send a private message to the host
(“Ready to scan”) and wait for confirmation before leaving the Zoom call.

Please scan all paper that you used during the exam — first your solutions, in the correct
order, then your cheat sheet (if any), and finally any scratch paper.

Proofs are required for full credit if and only if we explicitly ask for them, using the word
prove in bold italics. In particular, if we ask you to show that a language is regular, you
can provide a regular expression, DFA, NFA, or boolean combination without justification.
Similarly, if we ask you to give a DFA or NFA, you to not have to name or describe the states.

Finally, if something goes seriously wrong, send email to jeffe@illinois.edu as soon as
possible explaining the situation. If you have already finished the exam but cannot submit
to Gradescope for some reason, include a complete scan of your exam in your email. If you
are in the middle of the exam, send Jeff email, finish the exam (if you can) within the time
limit, and then send a second email with your completed exam.
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1. For each of the following languages over the alphabet > = {0, 1}, either prove that the
language is regular (by constructing an appropriate DFA, NFA, or regular expression) or
prove that the language is not regular (by constructing an infinite fooling set and proving
that the set you construct is indeed a fooling set for that language).

(@) {oP190" | p=(gq+r)mod 2}
(b) {0P190" | p=q+r}

2. Let L be any regular language over the alphabet ¥ = {0, 1}.
Let compress(w) be a function that takes a string w as input, and returns the string formed
by compressing every run of @s in w by half. Specifically, every run of 2n 0s is compressed
to length n, and every run of 2n + 1 0s is compressed to length n + 1. For example:
compress(00000110001) = 00011001
compress(11000010) = 110010
compress(11111)=11111

Choose exactly one of the following languages, and prove that your chosen language is
regular. (In fact, both languages are regular, but we only want a proof for one of them.)
Don’t forget to tell us which language you’ve chosen!

@ {w ex* | compress(w) € L}
(b) {compress(w) \ we L}

3. Recall that the greatest common divisor of two positive integers p and q, written ged(p, q),
is the largest positive integer r that divides both p and q. For example, ged(21,15) =3
and gecd(3,74) = 1.

Prove that the following languages are not regular by building an infinite fooling set for
each of them. For each language, prove that the set you constructed is indeed a fooling set.
(@) {eP190" | p>0and g > 0 and r = ged(p,q)}.
(b) {@?1P1| p> 0 and q > 0}

4. Consider the following recursive function, RO (short for remove-ones) that operates on any
string w € ¥, where 3 = {0, 1}:

€ ifw=e
RO(w) :=1 0-RO(x) if w=0"x for some string x

RO(x) if w=1"-x for some string x

(@) Prove that |RO(w)| < |w| for all strings w.
(b) Prove that RO (RO(w)) = RO(w) for all strings w.

(There’s one more question on the next page)
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5. For each statement below, write “Yes” if the statement is always true and write “No”
otherwise, and give a brief (one short sentence) explanation of your answer. Read these
statements very carefully—small details matter!

(@) {01 | n> 0} is the only infinite fooling set for the language {0"10™ | n > 0}.
(b) {0™10™ | n > 0} is a context-free language.
(c) The context-free grammar S — 00S | S11 | 01 generates the language 0™1".

(d) Any language that can be decided by an NFA with e-transitions can also be decided
by an NFA without e-transitions.

(e) For any string w € (0 + 1)*, let w¢ denote the string obtained by flipping every 0 in w
to 1, and every 1 in w to 0.

If L is a regular language over the alphabet {0, 1}, then {ww® | w € L} is also regular.

(f) For any string w € (04 1)*, let w© denote the string obtained by flipping every 0 in w
to 1, and every 1 in w to 0.

If L is a regular language over the alphabet {0,1}, then {xy°® | x,y € L} is also
regular.

(g) The e-reach of any state in an NFA contains the state itself.
(h) Let L, L, be two regular languages. The language (L, + L,)* is also regular.

(i) The regular expression (00 + 11)* represents the language of all strings over {0, 1} of
even length.

() The language {0?? | p is prime} is regular.
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This is a “core dump” of potential questions for Midterm 2. This should give you a good idea
of the types of questions that we will ask on the exam, but the actual exam questions may or may
not appear in this list. This list intentionally includes a few questions that are too long or difficult
for exam conditions; most of these are indicated with a *star.

Questions from Jeff’s past exams are labeled with the semester they were used, for example,
((S18)) or ((F19)). Questions from this semester’s homework are labeled ((HW)). Questions from
this semester’s labs are labeled ((Lab)). Some unflagged questions may have been used in exams
by other instructors.

s How to Use These Problems eu

Solving every problem in this handout is not the best way to study for the exam. Memorizing
the solutions to every problem in this handout is the absolute worst way to study for the exam.

What we recommend instead is to work on a sample of the problems. Choose one or
two problems at random from each section and try to solve them from scratch under exam
conditions—by yourself, in a quiet room, with a 30-minute timer, without your notes, without
the internet, and if possible, even without your cheat sheet. If you're comfortable solving a few
problems in a particular section, you're probably ready for that type of problem on the exam.
Move on to the next section.

Discussing problems with other people (in your study groups, in the review sessions, in office
hours, or on Piazza) and/or looking up old solutions can be extremely helpful, but only after you
have (1) made a good-faith effort to solve the problem on your own, and (2) you have either a
candidate solution or some idea about where you’re getting stuck.

If you find yourself getting stuck on a particular type of problem, try to figure out why you’re
stuck. Do you understand the problem statement? Have you tried several example inputs to see
what the correct output should be? Are you stuck on choosing the right high-level approach, are
you stuck on the details, or are you struggling to express your ideas clearly?

Similarly, if feedback suggests that your solutions to a particular type of problem are incorrect
or incomplete, try to figure out what you missed. For recursion/dynamic programming: Are you
solving the right recursive generalization of the stated problem? Are you having trouble writing
a specification of the function, as opposed to a description of the algorithm? Are you struggling
to find a good evaluation order? Are you trying to use a greedy algorithm? [Hint: Don’t.] For
graph algorithms: Are you aiming for the right problem? Are you having trouble figuring out the
interesting states of the problem (otherwise known as vertices) and the transitions between them
(otherwise known as edges)? Do you keep trying to modify the algorithm instead of modifying
the graph?

Remember that your goal is not merely to “understand” the solution to any particular
problem, but to become more comfortable with solving a certain type of problem on your own.
"Understanding" is a trap; aim for mastery. If you can identify specific steps that you find
problematic, read more about those steps, focus your practice on those steps, and try to find helpful
information about those steps to write on your cheat sheet. Then work on the next problem!
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Recursion and Dynamic Programming

Elementary Recursion/Divide and Conquer
1. {(Lab))

(@) Suppose A[1..n] is an array of n distinct integers, sorted so that A[1] < A[2] < --- <
A[n]. Each integer A[i] could be positive, negative, or zero. Describe a fast algorithm
that either computes an index i such that A[i] =i or correctly reports that no such
index exists..

(b) Now suppose A[1..n] is a sorted array of n distinct positive integers. Describe an
even faster algorithm that either computes an index i such that A[i] =i or correctly
reports that no such index exists. [Hint: This is really easy.]

2. {(Lab)) Suppose we are given an array A[1..n] such that A[1] > A[2] and Aln—1] < A[n].
We say that an element A[ x ] is a local minimum if bothA[x—1] > A[x] and A[x] < A[x+1].
For example, there are exactly six local minima in the following array:

[ol717]2]1]s[7][5]4]7|3]3[4][8]6]9]
A A A A A A

Describe and analyze a fast algorithm that returns the index of one local minimum. For
example, given the array above, your algorithm could return the integer 5, because A[5] is
a local minimum. [Hint: With the given boundary conditions, any array must contain at
least one local minimum. Why?]

3. ((Lab)) Suppose you are given two sorted arrays A[1..n] and B[1..n] containing distinct
integers. Describe a fast algorithm to find the median (meaning the nth smallest element)
of the union AU B. For example, given the input

Al1..81=[0,1,6,9,12,13,18,20]  B[1..8]=[2,4,5,8,17,19,21,23]

your algorithm should return the integer 9. [Hint: What can you learn by comparing one
element of A with one element of B?]

4. ((F14, S14)) An array A[0..n—1] of n distinct numbers is bitonic if there are unique indices i
and j such that A[(i —1) mod n] < A[i] > A[(i + 1) mod n] and A[(j —1) mod n] > A[j] <
A[(j + 1) mod n]. In other words, a bitonic sequence either consists of an increasing
sequence followed by a decreasing sequence, or can be circularly shifted to become so. For
example,

|4:6:9:8:7:5:1:2:3]| isbitonic, but

[3:6:9:8:7:5:1:2:4]| isnot bitonic.

Describe and analyze an algorithm to find the index of the smallest element in a given
bitonic array A[0..n— 1] in O(logn) time. You may assume that the numbers in the input
array are distinct. For example, given the first array above, your algorithm should return 6,
because A[6] = 1 is the smallest element in that array.
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5. ((F16)) Suppose you are given a sorted array A[1..n] of distinct numbers that has been
rotated k steps, for some unknown integer k between 1 and n — 1. That is, the prefix
A[1..k] is sorted in increasing order, the suffix A[k + 1..n] is sorted in increasing order,
and A[n] < A[1]. For example, you might be given the following 16-element array (where
k=10):

| 9:13 16:18:19 2328 31:37:42(—4:0:2 5:7 8

Describe and analyze an efficient algorithm to determine if the given array contains a
given number x. The input to your algorithm is the array A[1..n] and the number x; your
algorithm is not given the integer k.

6. ((F16)) Suppose you are given two unsorted arrays A[1..n] and B[1..n] containing 2n
distinct integers, such that A[1] < B[1] and A[n] > B[n]. Describe and analyze an efficient
algorithm to compute an index i such that A[i] < B[i] and A[i+ 1] > B[i+1]. [Hint: Why
does such an index i always exist?]

7. Suppose you are given a stack of n pancakes of different sizes. You want to sort the
pancakes so that smaller pancakes are on top of larger pancakes. The only operation
you can perform is a flip—insert a spatula under the top k pancakes, for some integer k
between 1 and n, and flip them all over.

<

/\’ \(\

e

Figure 1. Flipping the top four pancakes.

(@) Describe an algorithm to sort an arbitrary stack of n pancakes using as few flips as
possible. Exactly how many flips does your algorithm perform in the worst case?

(b) Now suppose one side of each pancake is burned. Describe an algorithm to sort an
arbitrary stack of n pancakes, so that the burned side of every pancake is facing down,
using as few flips as possible. Exactly how many flips does your algorithm perform in
the worst case?

[Hint: This problem has nothing to do with the Tower of Hanoi!]

8. (a) Describe an algorithm to determine in O(n) time whether an arbitrary array A[1..n]
contains more than n/4 copies of any value.

(b) Describe and analyze an algorithm to determine, given an arbitrary array A[1..n]
and an integer k, whether A contains more than k copies of any value. Express the
running time of your algorithm as a function of both n and k.

Do not use hashing, or radix sort, or any other method that depends on the precise
input values, as opposed to their order.
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9.

For this problem, a subtree of a binary tree means any connected subgraph. A binary tree is
complete if every internal node has two children, and every leaf has exactly the same depth.
Describe and analyze a recursive algorithm to compute the largest complete subtree of a
given binary tree. Your algorithm should return both the root and the depth of this subtree.

The largest complete subtree of this binary tree has depth 2.

. Suppose you have an integer array A[1..n] that used to be sorted, but Swedish hackers

have overwritten k entries of A with random numbers. Because you carefully monitor your
system for intrusions, you know how many entries of A are corrupted, but not which entries
or what the values are.

Describe an algorithm to determine whether your corrupted array A contains an
integer x. Your input consists of the array A, the integer k, and the target integer x. For
example, if A is the following array, k = 4, and x = 17, your algorithm should return TRUE.
(The corrupted entries of the array are shaded.)

[27379977711113717'19125:29:31 —5 41.43 47538 61.67.71|

Assume that x is not equal to any of the the corrupted values, and that all n array
entries are distinct. Report the running time of your algorithm as a function of n and k. A
solution only for the special case k = 1 is worth 5 points; a complete solution for arbitrary k
is worth 10 points. [Hint: First consider k = O; then consider k = 1.]
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Dynamic Programming

1. ((Lab)) Describe and analyze efficient algorithms for the following problems.

(@) Given an array A[1..n] of integers, compute the length of a longest increasing
subsequence of A. A sequence B[1..{] is increasing if B[i] > B[i — 1] for every index
i>2.

(b) Given an array A[1..n] of integers, compute the length of a longest decreasing
subsequence of A. A sequence B[1..£] is decreasing if B[i] < B[i — 1] for every index
i>2.

(c) Given an array A[1..n] of integers, compute the length of a longest alternating
subsequence of A. A sequence B[1..£] is alternating if B[i] < B[i — 1] for every even
index i > 2, and B[i] > B[i — 1] for every odd index i > 3.

(d) GivenanarrayA[1..n]of integers, compute the length of a longest convex subsequence
of A. A sequence B[1..{] is convex if B[i]—B[i—1] > B[i — 1] — B[i — 2] for every
index i > 3.

(e) Given an array A[1..n], compute the length of a longest palindrome subsequence
of A. Recall that a sequence B[1..£] is a palindrome if B[i] = B[{ —i + 1] for every
index i.

2. ({F19))

(@) Recall that a palindrome is any string that is equal to its reversal, like REDIVIDER or
POOP. Describe an algorithm to find the length of the longest subsequence of a given
string that is a palindrome.

(b) Adouble palindrome is the concatenation of two non-empty palindromes, like AREDIVIDER
or POOPPOOP. Describe an algorithm to find the length of the longest subsequence of a
given string that is a double palindrome. [Hint: Use your algorithm from part (a).]

For both algorithms, the input is an array A[1..n], and the output is an integer. For
example, given the string MAYBEDYNAMICPROGRAMMING as input, your algorithm for part (a)
should return 7 (for the palindrome subsequence NMRORMN), and your algorithm for part
(b) should return 12 (for the double palindrome subsequence MAYBYAMIRORI).

3. ((S14)) Recall that a palindrome is any string that is the same as its reversal. For example, I,
DAD, HANNAH, ATIBOHPHOBIA (fear of palindromes), and the empty string are all palindromes.

(@) Describe and analyze an algorithm to find the length of the longest substring (not
subsequence!) of a given input string that is a palindrome. For example, BASEESAB
is the longest palindrome substring of BUBBASEESABANANA (“Bubba sees a banana.”).
Thus, given the input string BUBBASEESABANANA, your algorithm should return the
integer 8.

(b) Any string can be decomposed into a sequence of palindrome substrings. For example,
the string BUBBASEESABANANA can be broken into palindromes in the following ways
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(and many others):

BUB + BASEESAB + ANANA
B+U+BB+ A+ SEES + ABA+ NAN + A
B+U+BB+ A+ SEES+ A+ B+ ANANA

B+U+B+B+A+S+E+E+S+A+B+A+N+A+N+A

Describe and analyze an algorithm to find the smallest number of palindromes that
make up a given input string. For example:

e Given the string BUBBASEESABANANA, your algorithm should return the integer 3.
e Given the string PALINDROME, your algorithm should return the integer 10.
e Given the string RACECAR, your algorithm should return the integer 1.

(©) A metapalindrome is a decomposition of a string into a sequence of non-empty
palindromes, such that the sequence of palindrome lengths is itself a palindrome. For
example, the decomposition

BUB * B ® ALA ® SEES * ABA * N * ANA

is a metapalindrome for the string BUBBALASEESABANANA, with the palindromic length
sequence (3,1,3,4,3,1,3). Describe and analyze an efficient algorithm to find the
length of the shortest metapalindrome for a given string. For example:

 Given the string BUBBALASEESABANANA, your algorithm should return the integer 7.
e Given the string PALINDROME, your algorithm should return the integer 10.
* Given the string DEPOPED, your algorithm should return the integer 1.

4. ((F16)) It’s almost time to show off your flippin’ sweet dancing skills! Tomorrow is the big
dance contest you’ve been training for your entire life, except for that summer you spent
with your uncle in Alaska hunting wolverines. You've obtained an advance copy of the the
list of n songs that the judges will play during the contest, in chronological order.

You know all the songs, all the judges, and your own dancing ability extremely well.
For each integer k, you know that if you dance to the kth song on the schedule, you will be
awarded exactly Score[ k] points, but then you will be physically unable to dance for the
next Wait[ k] songs (that is, you cannot dance to songs k + 1 through k + Wait[k]). The
dancer with the highest total score at the end of the night wins the contest, so you want
your total score to be as high as possible.

Describe and analyze an efficient algorithm to compute the maximum total score you
can achieve. The input to your sweet algorithm is the pair of arrays Score[1..n] and
Wait[1..n].

5. ((S16)) After the Revolutionary War, Alexander Hamilton’s biggest rival as a lawyer was
Aaron Burr. (Sir!) In fact, the two worked next door to each other. Unlike Hamilton, Burr
cannot work non-stop; every case he tries exhausts him. The bigger the case, the longer he
must rest before he is well enough to take the next case. (Of course, he is willing to wait
for it.) If a case arrives while Burr is resting, Hamilton snatches it up instead.

Burr has been asked to consider a sequence of n upcoming cases. He quickly computes
two arrays profit[1..n] and skip[1..n], where for each index i,
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* profit[i] is the amount of money Burr would make by taking the ith case, and

e skip[i] is the number of consecutive cases Burr must skip if he accepts the ith case.
That is, if Burr accepts the ith case, he cannot accept cases i + 1 through i + skip[i].

Design and analyze an algorithm that determines the maximum total profit Burr can secure
from these n cases, using his two arrays as input.

6. ((F16)) A shuffle of two strings X and Y is formed by interspersing the characters into a
new string, keeping the characters of X and Y in the same order. For example, the string
BANANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways.

BANANA BAN, \ ,ANA B, nAN, A NA

ANANAS ANA""TNAS ANTTATNATT'S

Similarly, the strings PRODGYRNAMAMMI INCG and DYPRONGARMAMMICING are both shuffles of
DYNAMIC and PROGRAMMING:

PrOPGYRNAMaMMI INCG DYpRoNGARMAMMICING

Describe and analyze an efficient algorithm to determine, given three strings A[1..m],
B[1..n], and C[1..m+ n], whether C is a shuffle of A and B.

7. Suppose we are given an n-digit integer X. Repeatedly remove one digit from either end
of X (your choice) until no digits are left. The square-depth of X is the maximum number
of perfect squares that you can see during this process. For example, the number 32492
has square-depth 3, by the following sequence of removals:
572 182 22
32492 — 3249 — 324 -5 24 — 4 —> ¢.
Describe and analyze an algorithm to compute the square-depth of a given integer X,
represented as an array X[1..n] of n decimal digits. Assume you have access to a subroutine
IsSQUARE that determines whether a given k-digit number (represented by an array of
digits) is a perfect square in O(k?) time.

8. Suppose you are given a sequence of non-negative integers separated by + and x signs; for
example:
2x3+0x6x1+4x2

You can change the value of this expression by adding parentheses in different places. For
example:

2x(3+(0x(6x(1+(4x%x2)))=6
(((((2x3)+0)x6)x1)+4)x2=80
((2x3)+(0x6))x(1+(4x%x2)=108
(((2%x3)+0)x6)x((1+4)x2)=2360
Describe and analyze an algorithm to compute, given a list of integers separated by + and
x signs, the smallest possible value we can obtain by inserting parentheses.

Your input is an array A[O..2n] where each A[i] is an integer if i is even and + or x if i
is odd. Assume any arithmetic operation in your algorithm takes O(1) time.
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9.

10.

11.

12.

Suppose you are given three strings A[1..n], B[1..n], and C[1..n].

(@) Describe and analyze an algorithm to find the length of the longest common sub-
sequence of all three strings. For example, given the input strings

A = AxxBxxCDxEF, B = yyABCDyEyFy, C = zAzzBCDzEFz,

your algorithm should output the number 6, which is the length of the longest common
subsequence ABCDEF.

(b) Describe and analyze an algorithm to find the length of the shortest common
supersequence of all three strings. For example, given the input strings

A = AxxBxxCDxEF, B = yyABCDyEyFy, C = zAzzBCDzEFz,

your algorithm should output the number 21, which is the length of the shortest
common supersequence yzyAxzzxBxxCDxyzEyFzy.

(@) Suppose we are given a set L of n line segments in the plane, where each segment
has one endpoint on the line y = 0 and one endpoint on the line y =1, and all 2n
endpoints are distinct. Describe and analyze an algorithm to compute the largest
subset of L in which no pair of segments intersects.

(b) Suppose we are given a set L of n line segments in the plane, where each segment
has one endpoint on the line y = 0 and one endpoint on the line y =1, and all 2n
endpoints are distinct. Describe and analyze an algorithm to compute the largest
subset of L in which every pair of segments intersects.

((S18)) Suppose we want to split an array A[1..n] of integers into k contiguous intervals
that partition the sum of the values as evenly as possible. Specifically, define the cost of
such a partition as the maximum, over all k intervals, of the sum of the values in that
interval; our goal is to minimize this cost. Describe and analyze an algorithm to compute
the minimum cost of a partition of A into k intervals, given the array A and the integer k as
input.

For example, given the arrayA=[1,6,—1,8,0,3,3,9,8,8,7,4,9,8,9,4,8,4,8,2] and
the integer k = 3 as input, your algorithm should return the integer 37, which is the cost
of the following partition:

37 36 35
A ~ A
[1,6,-1,8,0,3,3,9,8|8,7,4,9,89,4,8,4,8,2 |

The numbers above each interval show the sum of the values in that interval.

((S18)) The City Council of Sham-Poobanana needs to partition Purple Street into voting
districts. A total of n people live on Purple Street, at consecutive addresses 1,2,...,n.
Each voting district must be a contiguous interval of addresses i,i + 1,...,j for some
1 <i < j < n. Bylaw, each Purple Street address must lie in exactly one district, and the
number of addresses in each district must be between k and 2k, where k is some positive
integer parameter.
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13.

14.

15.

Every election in Sham-Poobanana is between two rival factions: Oceania and Eurasia.
A majority of the City Council are from Oceania, so they consider a district to be good
if more than half the residents of that district voted for Oceania in the previous election.
Naturally, the City Council has complete voting records for all n residents.

For example, the figure below shows a legal partition of 22 addresses into 4 good districts
and 3 bad districts, where k = 2 (so each district contains either 2, 3, or 4 addresses). Each
O indicates a vote for Oceania, and each X indicates a vote for Eurasia.

O X OX O X XOXOX X X0 OO XOX X KXK

Describe an algorithm to find the largest possible number of good districts in a legal
partition. Your input consists of the integer k and a boolean array GoobVoTE[1..n]
indicating which residents previously voted for Oceania (TRUE) or Eurasia (FALSE). You
can assume that a legal partition exists. Analyze the running time of your algorithm in
terms of the parameters n and k.

Suppose you are given an m x n bitmap, represented by an array M[1..n,1..n] of Os and
1s. A solid square block in M is a subarray of the form M[i..i+w,j..j+w] containing only
1-bits. Describe and analyze an algorithm to find the largest solid square block in M.

You and your eight-year-old nephew Elmo decide to play a simple card game. At the
beginning of the game, the cards are dealt face up in a long row. Each card is worth a
different number of points. After all the cards are dealt, you and Elmo take turns removing
either the leftmost or rightmost card from the row, until all the cards are gone. At each
turn, you can decide which of the two cards to take. The winner of the game is the player
that has collected the most points when the game ends.

Having never taken an algorithms class, Elmo follows the obvious greedy strategy—
when it’s his turn, Elmo always takes the card with the higher point value. Your task is to
find a strategy that will beat Elmo whenever possible. (It might seem mean to beat up on a
little kid like this, but Elmo absolutely hates it when grown-ups let him win.)

(a) Prove that you should not also use the greedy strategy. That is, show that there is
a game that you can win, but only if you do not follow the same greedy strategy as
Elmo.

(b) Describe and analyze an algorithm to determine, given the initial sequence of cards,
the maximum number of points that you can collect playing against Elmo.

(c) Five years later, thirteen-year-old Elmo has become a much stronger player. Describe
and analyze an algorithm to determine, given the initial sequence of cards, the
maximum number of points that you can collect playing against a perfect opponent.

((S16)) Your nephew Elmo is visiting you for Christmas, and he’s brought a different card
game. Like your previous game with Elmo, this game is played with a row of n cards, each
labeled with an integer (which could be positive, negative, or zero). Both players can see
all n card values. Otherwise, the game is almost completely different.
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16.

17.

On each turn, the current player must take the leftmost card. The player can either
keep the card or give it to their opponent. If they keep the card, their turn ends and their
opponent takes the next card; however, if they give the card to their opponent, the current
player’s turn continues with the next card. In short, the player that does not get the ith
card decides who gets the (i + 1)th card. The game ends when all cards have been played.
Each player adds up their card values, and whoever has the higher total wins.

For example, suppose the initial cards are [3,—1,4,1,5,9], and Elmo plays first. Then
the game might proceed as follows:

e Elmo keeps the 3, ending his turn.

* You give Elmo the —1.

* You keep the 4, ending your turn.

e Elmo gives you the 1.

* Elmo gives you the 5.

* Elmo keeps the 9, ending his turn. All cards are gone, so the game is over.

¢ Your scoreis 1 +4+5 =10 and Elmo’s score is 3—1+ 9 = 11, so Elmo wins.
Describe an algorithm to compute the highest possible score you can earn from a given
row of cards, assuming Elmo plays first and plays perfectly. Your input is the array C[1..n]

of card values. For example, if the input is [3,—1,4,1,5, 9], your algorithm should return
the integer 10.

((F14)) The new mobile game Candy Swap Saga XIII involves n cute animals numbered 1
through n. Each animal holds one of three types of candy: circus peanuts, Heath bars, and
Cioccolateria Gardini chocolate truffles. You also have a candy in your hand; at the start of
the game, you have a circus peanut.

To earn points, you visit each of the animals in order from 1 to n. For each animal,
you can either keep the candy in your hand or exchange it with the candy the animal is
holding.

* If you swap your candy for another candy of the same type, you earn one point.

* If you swap your candy for a candy of a different type, you lose one point. (Yes, your
score can be negative.)

* If you visit an animal and decide not to swap candy, your score does not change.

You must visit the animals in order, and once you visit an animal, you can never visit it
again.

Describe and analyze an efficient algorithm to compute your maximum possible score.
Your input is an array C[1..n], where C[i] is the type of candy that the ith animal is
holding.

((F14)) Farmers Boggis, Bunce, and Bean have set up an obstacle course for Mr. Fox. The
course consists of a row of n booths, each with an integer painted on the front with bright
red paint, which could be positive, negative, or zero. Let A[i] denote the number painted
on the front of the ith booth. Everyone has agreed to the following rules:

10
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18.

* At each booth, Mr. Fox must say either “Ring!” or “Ding!”.

* If Mr. Fox says “Ring!” at the ith booth, he earns a reward of A[i] chickens. (If
A[i] < 0, Mr. Fox pays a penalty of —A[i] chickens.)

e If Mr. Fox says “Ding!” at the ith booth, he pays a penalty of A[i] chickens. (IfA[i] <O,
Mr. Fox earns a reward of —A[i] chickens.)

* Mr. Fox is forbidden to say the same word more than three times in a row. For
example, if he says “Ring!” at booths 6, 7, and 8, then he must say “Ding!” at booth 9.

* All accounts will be settled at the end; Mr. Fox does not actually have to carry chickens
through the obstacle course.

 If Mr. Fox violates any of the rules, or if he ends the obstacle course owing the farmers
chickens, the farmers will shoot him.

Describe and analyze an algorithm to compute the largest number of chickens that Mr. Fox
can earn by running the obstacle course, given the array A[1..n] of booth numbers as
input.

((F19)) Satya is in charge of establishing a new testing center for the Standardized
Awesomeness Test (SAT), and he found an old conference hall that is perfect. The
conference hall has n rooms of various sizes along a single long hallway, numbered in order
from 1 through n. Satya knows exactly how many students fit into each room, and he
wants to use a subset of the rooms to host as many students as possible for testing.

Unfortunately, there have been several incidents of students cheating at other testing
centers by tapping secret codes through walls. To prevent this type of cheating, Satya can
use two adjacent rooms only if he demolishes the wall between them. For example, if
Satya wants to use rooms 1, 3, 4, 5, 7, 8, and 10, he must demolish three walls: between
rooms 3 and 4, between rooms 4 and 5, and between rooms 7 and 8.

(@) The city’s chief architect has determined that demolishing the walls on both sides
of the same room would threaten the building’s structural integrity. For this reason,
Satya can never host students in three consecutive rooms.

Describe an efficient algorithm that computes the largest number of students that
Satya can host for testing without using three consecutive rooms.

The input to your algorithm is an array S[1..n], where each S[i] is the (non-
negative integer) number of students that can fit in room i.

(b) The city’s chief architect has determined that demolishing more than k walls would
threaten the structural integrity of the building.

Describe an efficient algorithm that computes the largest number of students that
Satya can host for testing without demolishing more than k walls.

The input to your algorithm is the integer k and an array S[1..n], where each
S[i] is the (non-negative integer) number of students that can fit in room i. Analyze
your algorithm as a function of both n and k.

Parts (@) and (b) appeared as complete problems in different versions of the same exam.

11
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Graph Algorithms

Sanity Check

1. ((S14, F14, F16, F19)) Indicate the following structures in the example graphs below.

* To indicate a subgraph (such as a path, a spanning tree, or a cycle), draw over every
edge in the subgraph with a heavy black line. Your subgraph should be visible from
across the room.

* To indicate a subset of vertices, either draw a heavy black line around the entire
subset, completely blacken the vertices in the subset, or list the vertex labels.

e If the requested structure does not exist, just write the word NONE.

(@) A depth-first spanning tree rooted at node s.

(b) A breadth-first spanning tree rooted at node s.

() A shortest-path tree rooted at node s.

(d) The set of all vertices reachable from node c.

(e) The set of all vertices that can reach node c.

(f) The strong components. (Circle each strong component.)

(g) A simple cycle containing vertex s.

(h) A directed cycle with the minimum number of edges.

(i) A directed cycle with the smallest total weight.

(j) A walk from s to d with the maximum number of edges.

(k) A walk from s to d with the largest total weight.

(1) A depth-first pre-ordering of the vertices. (List the vertices in order.)
(m) A depth-first post-ordering of the vertices. (List the vertices in order.)
(n) A topological ordering of the vertices. (List the vertices in order.)

(o) A breadth-first ordering of the vertices. (List the vertices in order.)

(p) Draw the strong-component graph.

[On an actual exam, we would only ask about one graph, and we would ask for only a few
of these structures. If the exam is given on paper, we would give you several copies of the
graph on which to mark your answers. ]

12
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Reachability/Connectivity/Traversal

1. Describe and analyze algorithms for the following problems; in each problem, you are
given a graph G = (V, E) with unweighted edges, which may be directed or undirected.
You may or may not need different algorithms for directed and undirected graphs.

(@) Find two vertices that are (strongly) connected.

(b) Find two vertices that are not (strongly) connected.

(¢) Find two vertices, such that neither vertex can reach the other.
(d) Find all vertices reachable from a given vertex s.

(e) Find all vertices that can reach a given vertex s.

(f) Find all vertices that are strongly connected to a given vertex s.

(g) Find a simple cycle, or correctly report that the graph has no cycles. (A simple cycle
is a closed walk that visits each vertex at most once.)

(h) Find the shortest simple cycle, or correctly report that the graph has no cycles.
(i) Determine whether deleting a given vertex v would disconnect the graph.

[On an actual exam, we would ask for at most a few of these structures, and we would
specity whether the input graph is directed or undirected.]

2. {(F14)) Suppose you are given a directed graph G = (V, E) and two vertices s and t. Describe
and analyze an algorithm to determine if there is a walk in G from s to t (possibly repeating
vertices and/or edges) whose length is divisible by 3.

For example, given the graph below, with the indicated vertices s and t, your algorithm
should return TRUE, because the walk s—w—y—x—s—w—t has length 6.

[Hint: Build a (different) graph.]

3. ((Lab)) Snakes and Ladders is a classic board game, originating in India no later than
the 16th century. The board consists of an n x n grid of squares, numbered consecutively
from 1 to n?, starting in the bottom left corner and proceeding row by row from bottom to
top, with rows alternating to the left and right. Certain pairs of squares, always in different
rows, are connected by either “snakes” (leading down) or “ladders” (leading up). Each
square can be an endpoint of at most one snake or ladder.

13
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Atypical Snakes and Ladders board.
Upward straight arrows are ladders; downward wavy arrows are snakes.

You start with a token in cell 1, in the bottom left corner. In each move, you advance
your token up to k positions, for some fixed constant k (typically 6). If the token ends the
move at the top end of a snake, you must slide the token down to the bottom of that snake.
If the token ends the move at the bottom end of a ladder, you may move the token up to
the top of that ladder.

Describe and analyze an algorithm to compute the smallest number of moves required
for the token to reach the last square of the grid.

4. Let G be a connected undirected graph. Suppose we start with two coins on two arbitrarily
chosen vertices of G, and we want to move the coins so that they lie on the same vertex
using as few moves as possible. At every step, each coin must move to an adjacent vertex.

(@) ((Lab)) Describe and analyze an algorithm to compute the minimum number of
steps to reach a configuration where both coins are on the same vertex, or to report
correctly that no such configuration is reachable. The input to your algorithm consists
of the graph G = (V, E) and two vertices u, v € V (which may or may not be distinct).

(b) {{Lab)) Now suppose there are forty-two coins. Describe and analyze an algorithm
to determine whether it is possible to move all 42 coins to the same vertex. Again,
every coin must move at every step. The input to your algorithm consists of the graph
G = (V,E) and an array of 42 vertices (which may or may not be distinct). For full
credit, your algorithm should run in O(V + E) time.

5. A graph (V, E) is bipartite if the vertices V can be partitioned into two subsets L and R,
such that every edge has one vertex in L and the other in R.

(@) Prove that every tree is a bipartite graph.

(b) Describe and analyze an efficient algorithm that determines whether a given undi-
rected graph is bipartite.

6. ((F14, S18)) A number mage is an n x n grid of positive integers. A token starts in the
upper left corner; your goal is to move the token to the lower-right corner. On each turn,
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you are allowed to move the token up, down, left, or right; the distance you may move the
token is determined by the number on its current square. For example, if the token is on a
square labeled 3, then you may move the token three steps up, three steps down, three
steps left, or three steps right. However, you are never allowed to move the token off the
edge of the board.

Describe and analyze an efficient algorithm that either returns the minimum number
of moves required to solve a given number maze, or correctly reports that the maze has
no solution. For example, given the maze shown below, your algorithm would return the

number 8.
@) s5|7(4]6 OE 7| 6
5[3|1]5]3 5 | s oS
28314 2|8 ]3|]1]4
als|7]2]3 4|s]7)]9] 3
3[1[3]2]% 3 | <& LY

A5 x 5 number maze that can be solved in eight moves.

7. ((F16)) The following puzzle appeared in my daughter’s math workbook several years ago.!
(I've put the solution on the right so you don’t waste time solving it during the exam.)

For problem 12, trace a path from start to finish that
has only obtuse angles.

Start
Start

Finish
Finish

Describe and analyze an algorithm to solve arbitrary obtuse-angle mazes.

You are given a connected undirected graph G, whose vertices are points in the plane
and whose edges are line segments. Edges do not intersect, except at their endpoints. For
example, a drawing of the letter X would have five vertices and four edges; the maze above
has 17 vertices and 26 edges. You are also given two vertices Start and Finish.

Your algorithm should return TRUE if G contains a walk from Start to Finish that
has only obtuse angles, and FaLse otherwise. Formally, a walk through G is valid if
/2 < Zuvw < 1 for every pair of consecutive edges u—v—w in the walk. Assume you
have a subroutine that can determine whether the angle between any two segments is
acute, right, obtuse, or straight in O(1) time.

8. The famous puzzle-maker Kaniel the Dane invented a solitaire game played with two
tokens on an n x n square grid. Some squares of the grid are marked as obstacles, and one

1Jason Batterson and Shannon Rogers, Beast Academy Math: Practice 3A, 2012. See https://www.beastacademy.
com/resources/printables.php for more examples.
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grid square is marked as the target. In each turn, the player must move one of the tokens
from is current position as far as possible upward, downward, right, or left, stopping just
before the token hits (1) the edge of the board, (2) an obstacle square, or (3) the other
token. The goal is to move either of the tokens onto the target square.

For example, in the instance below, we move the red token down until it hits the
obstacle, then move the green token left until it hits the red token, and then move the red
token left, down, right, and up. In the last move, the red token stops at the target because
the green token is on the next square above.

O

O 3L V1 2‘__@
. f
H 'l

An instance of the Kaniel Dane puzzle that can be solved in six moves.
Circles indicate the initial token positions; black squares are obstacles; the center square is the target.

Describe and analyze an algorithm to determine whether an instance of this puzzle
is solvable. Your input consist of the integer n, a list of obstacle locations, the target
location, and the initial locations of the tokens. The output of your algorithm is a single
boolean: TRUE if the given puzzle is solvable and FALSE otherwise. The running time of
your algorithm should be a small polynomial in n. [Hint: Don’t forget about the time
required to construct the graph!]

9. ((F16)) Suppose you have a collection of n lockboxes and m gold keys. Each key unlocks at
most one box; however, each box might be unlocked by one key, by multiple keys, or by no
keys at all. There are only two ways to open each box once it is locked: Unlock it properly
(which requires having a matching key in your hand), or smash it to bits with a hammer.

Your baby brother, who loves playing with shiny objects, has somehow managed to lock
all your keys inside the boxes! Luckily, your home security system recorded everything, so
you know exactly which keys (if any) are inside each box. You need to get all the keys back
out of the boxes, because they are made of gold. Clearly you have to smash at least one
box.

(@) Your baby brother has found the hammer and is eagerly eyeing one of the boxes.
Describe and analyze an algorithm to determine if smashing the box your brother has
chosen would allow you to retrieve all m keys.

(b) Describe and analyze an algorithm to compute the minimum number of boxes that
must be smashed to retrieve all the keys. [Hint: This subproblem should really be in
the next section. ]
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Depth-First Search, Dags, Strong Connectivity

1. ((Lab)) Inspired by an earlier question, you decided to organize a Snakes and Ladders
competition with n participants. In this competition, each game of Snakes and Ladders
involves three players. After the game is finished, they are ranked first, second and third.
Each player may be involved in any (non-negative) number of games, and the number
needs not be equal among players.

At the end of the competition, m games have been played. You realized that you had
forgotten to implement a proper rating system, and therefore decided to produce the
overall ranking of all n players as you see fit. However, to avoid being too suspicious, if
player A ranked better than player B in any game, then A must rank better than B in the
overall ranking.

You are given the list of players involved and the ranking in each of the m games.
Describe and analyze an algorithm to produce an overall ranking of the n players that
satisfies the condition, or correctly reports that it is impossible.

2. Let G be a directed acyclic graph with a unique source s and a unique sink t.

(@) A Hamiltonian path in G is a directed path in G that contains every vertex in G.
Describe an algorithm to determine whether G has a Hamiltonian path.

(b) Suppose the vertices of G have weights. Describe an efficient algorithm to find the
path from s to t with maximum total weight.

(c) Suppose we are also given an integer £. Describe an efficient algorithm to find the
maximum-weight path from s to t, such that the path contains at most ¢ edges.
(Assume there is at least one such path.)

(d) Suppose several vertices in G are marked essential, and we are given an integer k.
Design an efficient algorithm to determine whether there is a path from s to t that
passes through at least k essential vertices.

(e) Suppose the vertices of G have integer labels, where label(s) = —oo and label(t) = oo.
Describe an algorithm to find the path from s to ¢t with the maximum number of
edges, such that the vertex labels define an increasing sequence.

(f) Describe an algorithm to compute the number of distinct paths from s to t in G.
(Assume that you can add arbitrarily large integers in O(1) time.)

3. Suppose you are given a directed acyclic graph G whose nodes represent jobs and whose
edges represent precedence constraints: Each edge u—v indicates that job u must be
completed before job v begins. Each node v stores a non-negative number v.duration
indicating the time required to execute job v. All jobs are executed in parallel; any job can
start or end while any number of other jobs are executing, provided all the precedence
constraints are satisfied. You’d like to get all these jobs done as quickly as possible.

Describe an algorithm to determine, for every vertex v in G, the earliest time that job v
can begin, assuming the first job starts at time 0 and no precedence constraints are violated.
Your algorithm should record the answer for each vertex v in a new field v.earliest.
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4. Let G be a directed acyclic graph whose vertices have labels from some fixed alphabet. Any
directed path in G has a label, which is a string obtained by concatenating the labels of its
vertices. Recall that a palindrome is a string that is equal to its reversal.

Describe and analyze an algorithm to find the length of the longest palindrome that is
the label of a path in G. For example, given the dag below, your algorithm should return
the integer 6, which is the length of the palindrome HANNAH.

5. ((S18)) Let G be a directed graph, where every vertex v has an associated height h(v), and
for every edge u—v we have the inequality h(u) > h(v). Assume all heights are distinct.
The span of a path from u to v is the height difference h(u) —h(v).

Describe and analyze an algorithm to find the minimum span of a path in G with at
least k edges. Your input consists of the graph G, the vertex heights h(+), and the integer k.
Report the running time of your algorithm as a function of V, E, and k.

For example, given the following labeled graph and the integer k = 3 as input, your
algorithm should return the integer 4, which is the span of the path 8—-7—-6—-4.

6. ((S18)) Let G be an arbitrary (not necessarily acyclic) directed graph in which every vertex v
has an integer label ¢(v). Describe an algorithm to find the longest directed path in G
whose vertex labels define an increasing sequence. Assume all labels are distinct.

For example, given the following graph as input, your algorithm should return the
integer 5, which is the length of the increasing path 1-2—4—-6—-7-8.
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Shortest Paths
1. Suppose you are given a directed graph G with weighted edges and a vertex s of G.

(@) ((F14)) Suppose every vertex v # s stores a pointer pred(v) to another vertex in G.
Describe and analyze an algorithm to determine whether these predecessor pointers
correctly define a single-source shortest path tree rooted at s.

(b) Suppose every vertex v stores a finite real value dist(v). (In particular, dist(v) is never
equal to oo or —00.) Describe and analyze an algorithm to determine whether these
real values are correct shortest-path distances from s.

Do not assume that G has no negative cycles.

2. ((F14)) Suppose we are given an undirected graph G in which every vertex has a positive
weight.

(@) Describe and analyze an algorithm to find a spanning tree of G with minimum total
weight. (The total weight of a spanning tree is the sum of the weights of its vertices.)

(b) Describe and analyze an algorithm to find a path in G from one given vertex s to
another given vertex t with minimum total weight. (The total weight of a path is the
sum of the weights of its vertices.)

3. ((S14, S18, Lab)) You just discovered your best friend from elementary school on Twitbook.
You both want to meet as soon as possible, but you live in two different cites that are far
apart. To minimize travel time, you agree to meet at an intermediate city, and then you
simultaneously hop in your cars and start driving toward each other. But where exactly
should you meet?

You are given a weighted graph G = (V, E), where the vertices V represent cities and
the edges E represent roads that directly connect cities. Each edge e has a weight w(e)
equal to the time required to travel between the two cities. You are also given a vertex p,
representing your starting location, and a vertex ¢, representing your friend’s starting
location.

Describe and analyze an algorithm to find the target vertex t that allows you and your
friend to meet as quickly as possible.

4. ((F16)) There are n galaxies connected by m intergalactic teleport-ways. Each teleport-way
joins two galaxies and can be traversed in both directions. Also, each teleport-way uv
has an associated cost of c(uv) galactic credits, for some positive integer c(uv). The same
teleport-way can be used multiple times in either direction, but the same toll must be paid
every time it is used.

Judy wants to travel from galaxy s to galaxy t, but teleportation is rather unpleasant, so
she wants to minimize the number of times she has to teleport. However, she also wants the
total cost to be a multiple of 10 galactic credits, because carrying small change is annoying.

Describe and analyze an algorithm to compute the minimum number of times Judy
must teleport to travel from galaxy s to galaxy t so that the total cost of all teleports is an
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integer multiple of 10 galactic credits. Your input is a graph G = (V, E) whose vertices are
galaxies and whose edges are teleport-ways; every edge uv in G stores the corresponding
cost c(uv).

[Hint: This is not the same Intergalactic Judy problem that you saw in lab.]

5. {(Lab)) A looped tree is a weighted, directed graph built from a binary tree by adding an
edge from every leaf back to the root. Every edge has non-negative weight.

@ 7{; )

16

Figure 2. A looped tree.

(a) How much time would Dijkstra’s algorithm require to compute the shortest path from
one vertex s to another vertex t in a looped tree with n nodes?

(b) Describe and analyze a faster algorithm.

6. ((F17, Lab)) Suppose you are given a directed graph G with weighted edges, where exactly
one edge has negative weight and all other edge weights are positive, along with two
vertices s and t. Describe and analyze an algorithm that either computes a shortest path
in G from s to t, or reports correctly that the G contains a negative cycle. (As always, faster
algorithms are worth more points.)

7. When there is more than one shortest path from one node s to another node t, it is often
convenient to choose a shortest path with the fewest edges; call this the best path from s
to t. Suppose we are given a directed graph G with positive edge weights and a source
vertex s in G. Describe and analyze an algorithm to compute best paths in G from s to
every other vertex.

8. After graduating you accept a job with Aerophobes--Us, the leading traveling agency
for people who hate to fly. Your job is to build a system to help customers plan airplane
trips from one city to another. All of your customers are afraid of flying (and by extension,
airports), so any trip you plan needs to be as short as possible. You know all the departure
and arrival times of all the flights on the planet.

Suppose one of your customers wants to fly from city X to city Y. Describe an algorithm
to find a sequence of flights that minimizes the total time in transit—the length of time from
the initial departure to the final arrival, including time at intermediate airports waiting for
connecting flights.
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9.

10.

11.

((S18)) Suppose you are given a directed graph G where some edges are red and the
remaining edges are blue. Describe an algorithm to find the shortest walk in G from one
vertex s to another vertex t in which no three consecutive edges have the same color. That
is, if the walk contains two red edges in a row, the next edge must be blue, and if the walk
contains two blue edges in a row, the next edge must be red.

For example, if you are given the graph below (where single arrows are red and double
arrows are blue), your algorithm should return the integer 7, because the shortest legal
walk from s to t is s=a—b=>d—c=>a—b—-c.

((S18)) Suppose you are given a directed graph G in which every edge is either red or blue,
and a subset of the vertices are marked as special. A walk in G is legal if color changes
happen only at special vertices. That is, for any two consecutive edges u—v—w in a legal
walk, if the edges u—v and v—w have different colors, the intermediate vertex v must be
special.

Describe and analyze an algorithm that either returns the length of the shortest legal
walk from vertex s to vertex t, or correctly reports that no such walk exists.>?

For example, if you are given the following graph below as input (where single arrows
are red, double arrows are blue), with special vertices x and y, your algorithm should return
the integer 8, which is the length of the shortest legal walk s—=x—a—b—-x=>y=b=c=t.
The shorter walk s—a—b=>c=>t is not legal, because vertex b is not special.

Suppose you are given an undirected graph G in which every edge is either red, green, or
blue, along with two vertices s and t. Call a walk from s to t awesome if the walk does not
contain three consecutive edges with the same color.

Describe and analyze an algorithm to find the length of the shortest awesome walk
from s to t. For example, given either the left or middle input below, your algorithm should
return the integer 6, and given the input on the right, your algorithm should return oo.

2If you've read China Miéville’s excellent novel The City & the City, this problem should look familiar. If you haven’t
read The City & the City, I can’t tell you why this problem should look familiar without spoiling the book.
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12.

13.

14.

S
GRRGGB RBBGGB

((S18)) Let G be a directed graph with weighted edges, in which every vertex is colored
either red, green, or blue. Describe and analyze an algorithm to compute the length of
the shortest walk in G that starts at a red vertex, then visits any number of vertices of any
color, then visits a green vertex, then visits any number of vertices of any color, then visits a
blue vertex, then visits any number of vertices of any color, and finally ends at a red vertex.
Assume all edge weights are positive.

((F19)) During her walk to work every morning, Rachel likes to buy a cappuccino at a local
coffee shop, and a croissant at a local bakery. Her home town has lots of coffee shops
and lots of bakeries, but strangely never in the same building. Punctuality is not Rachel’s
strongest trait, so to avoid losing her job, she wants to follow the shortest possible route.

Rachel has a map of her home town in the form of an undirected graph G, whose
vertices represent intersections and whose edges represent roads between them. A subset
of the vertices are marked as bakeries; another disjoint subset of vertices are marked as
coffee shops. The graph has two special nodes s and t, which represent Rachel’s home and
work, respectively.

Describe an algorithm that computes the shortest path in G from s to t that visits both
a bakery and a coffee shop, or correctly reports that no such path exists.

((F19)) As the days get shorter in winter, Eggsy Hutmacher is increasingly worried about his
walk home from work. The city has recently been invaded by the notorious Antimilliner
gang, whose members hang out on dark street corners and steal hats from unwary passers-
by, and a gentleman is simply not seen out in public without a hat. The city council is
slowly installing street lamps at intersections to deter the Antimilliners, whose uncovered
faces can be easily identified in the light. Eggsy keeps k extra hats in his briefcase in case
of theft or other millinery emergencies.

Eggsy has a map of the city in the form of an undirected graph G, whose vertices
represent intersections and whose edges represent streets between them. A subset of the
vertices are marked to indicate that the corresponding intersections are lit. Every edge e
has a non-negative length £(e). The graph has two special nodes s and t, which represent
Eggsy’s work and home, respectively.

Describe an algorithm that computes the shortest path in G from s to t that visits at
most k unlit vertices, or correctly reports that no such path exists. Analyze your algorithm
as a function of the parameters V, E, and k.
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15. {(F19)) You and your friends are planning a hiking trip in Jellystone National Park over
winter break. You have a map of the park’s trails that lists all the scenic views in the park
but also warns that certain trail segments have a high risk of bear encounters. To make the
hike worthwhile, you want to see at least three scenic views. You also don’t want to get
eaten by a bear, so you are willing to hike at most one high-bear-risk segment. Because the
trails are narrow, each trail segment allows traffic in only one direction.

Your friend has converted the map into a directed graph G = (V, E), where V is the set
of intersections and E is the set of trail segments. A subset S of the edges are marked as
Scenic; another subset B of the edges are marked as high-Bear-risk. You may assume that
SNB = @. Each segment e € E is also labeled with a positive length £(e) in miles. Your
campsite appears on the map as a particular vertex s € V, and the visitor center is another
vertex t € V.

Describe and analyze an algorithm to compute the shortest hike from your campsite s
to the visitor center t that includes at least three scenic trail segments and at most one
high-bear-risk trail segment. You may assume such a hike exists.
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Clearly indicate the following structures in the directed graph below, or write NONE if the indicated
structure does not exist. Don’t be subtle; to indicate a collection of edges, draw a heavy black line along
the entire length of each edge.

1 6
) (y)——2)
A
3 7 2 8

(@) A depth-first tree rooted at x. (b) A breadth-first tree rooted at y.

1 6
(X )——(y)—2)
A
3 7 2 8

[scratch] [scratch]
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A vertex v in a (weakly) connected graph G is called a cut vertex if the subgraph G — v is disconnected.
For example, the following graph has three cut vertices, which are shaded in the figure.

Suppose you are given a (weakly) connected dag G with one source and one sink. Describe and analyze
an algorithm that returns TRUE if G has a cut vertex and FALSE otherwise.
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You decide to take your next hiking trip in Jellystone National Park. You have a map of the park’s trails
that lists all the scenic views in the park, but also warns that certain trail segments have a high risk of
bear encounters. To make the hike worthwhile, you want to see at least three scenic views. You also
don’t want to get eaten by a bear, so you are willing to hike along at most one high-bear-risk segment.
Because the trails are narrow, each trail segment allows traffic in only one direction.

Your friend has converted the map into a directed graph G = (V, E), where V is the set of intersections
and E is the set of trail segments. A subset S of the edges are marked as Scenic; another subset B of the
edges are marked as high-Bear-risk. You may assume that S N B = &. Each segment e € E is also labeled
with a positive length £(e) in miles. Your campsite appears on the map as a particular vertex s € V, and
the visitor center is another vertex t € V.

Describe and analyze an algorithm to compute the shortest hike from your campsite s to the visitor
center t that includes at least three scenic trail segments and at most one high-bear-risk trail segment.
You may assume such a hike exists.
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During a family reunion over Thanksgiving break, your ultra-competitive thirteen-year-old nephew Elmo
challenges you to a card game. At the beginning of the game, Elmo deals a long row of cards. Each card
shows a number of points, which could be positive, negative, or zero. After the cards are dealt, you and
Elmo alternate taking either the leftmost card or the rightmost card from the row, until all the cards are
gone. The player that collects the most points is the winner.

For example, is the initial card values are [4, 6,1, 2], the game might proceed as follows:

* You take the 4 on the left, leaving [6, 1, 2].

e Elmo takes the 6 on the left, leaving [1, 2].

* You take the 2 on the right, leaving [1].

e Elmo takes the last 1, ending the game.

* You took 4 + 2 = 6 points, and Elmo took 6 + 1 = 7 points, so Elmo wins!

Describe and analyze an algorithm to determine, given the initial sequence of cards, the maximum

number of points that you can collect playing against a perfect opponent. Assume that Elmo generously
lets you move first.
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For this problem, a subtree of a binary tree means any connected subgraph. A binary tree is complete if
every internal node has two children, and every leaf has exactly the same depth.

Describe and analyze a recursive algorithm to compute the largest complete subtree of a given binary
tree. Your algorithm should return both the root and the depth of this subtree. For example, given the
following tree T as input, your algorithm should return the left child of the root of T and the integer 2.
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 Directions &y
Don’t panic!

If you brought anything except your writing implements, your hand-written double-sided
814" x 11" cheat sheet, please put it away for the duration of the exam. In particular, please
turn off and put away all medically unnecessary electronic devices.

We strongly recommend reading the entire exam before trying to solve anything. If
you think a question is unclear or ambiguous, please ask for clarification as soon as possible.

The exam has five numbered questions, each worth 10 points. (Subproblems are not
necessarily worth the same number of points.)

Write your answers on blank white paper using a dark pen. Please start your solution to
each numbered question on a new sheet of paper.

You have 120 minutes to write your solutions, after which you have 30 minutes to scan
your solutions, convert your scan to a PDF file, and upload your PDF file to Gradescope.

If you are ready to scan your solutions before 9:0opm, send a private message to the host
of your Zoom call (“Ready to scan”) and wait for confirmation before leaving the Zoom call.

Gradescope will only accept PDF submissions. Please do not scan your cheat sheets or
scratch paper. Please make sure your solution to each numbered problem starts on a new
page of your PDF file. Low-quality scans will be penalized.

Proofs are required for full credit if and only if we explicitly ask for them, using the word
prove in bold italics.

Finally, if something goes seriously wrong, send email to jeffe@illinois.edu as soon as
possible explaining the situation. If you have already finished the exam but cannot submit
to Gradescope for some reason, include a complete scan of your exam as a PDF file in your
email. If you are in the middle of the exam, send Jeff email, continue working until the
time limit, and then send a second email with your completed exam as a PDF file. Please
do not email raw photos.
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1. Short answers:

(@) Solve the recurrence T(n) =2T(n/3)+ O(/n).
(b) Solve the recurrence T(n) = 2T (n/7)+ O(y/n).
(@) Solve the recurrence T(n) =2T(n/4)+ O(+/n).

(d) Draw a connected undirected graph G with at most ten vertices, such that every vertex
has degree at least 2, and no spanning tree of G is a path.

(e) Draw a directed acyclic graph with at most ten vertices, exactly one source, exactly
one sink, and more than one topological order.

(f) Describe an appropriate memoization structure and evaluation order for the following
(meaningless) recurrence, and give the running time of the resulting iterative algorithm
to compute Pibby(1,n). (Assume all array accesses are legal.)

0 ifi >k
Ali] ifi=k
Pibby(i. k) = 1 Pibby(i +1,k—1)+A[i]+Alk] ifAli]=A[k]
Pibby(i + 2, k),
max < Pibby(i +1,k—1), otherwise
Pibby(i, k —2)

2. Your company has two offices, one in San Francisco and the other in New York. Each week
you decide whether you want to work in the San Francisco office or in the New York office.
Depending on the week, your company makes more money by having you work at one
office or the other. You are given a schedule of the profits you can earn at each office for the
next n weeks. You’d obviously prefer to work each week in the location with higher profit,
but there’s a catch: Flying from one city to the other costs $1000. Your task is to design a
travel schedule for the next n weeks that yields the maximum total profit, assuming you
start in San Francisco.

For example: suppose you are given the following schedule:

SF | $800 | $200 | $500 ;| $400  $1200

NY | $300 §$900 §$7oo §$2ooo § $200

If you spend the first week in San Francisco, the next three weeks in New York, and the
last week in San Francisco, your total profit for those five weeks is $800 — $1000 + $900 +
$700 + $2000 — $1000 + $1200 = $3600.

(@) Prove that the obvious greedy strategy (each week, fly to the city with more profit)
does not always yield the maximum total profit.

(b) Describe and analyze an algorithm to compute the maximum total profit you can
earn, assuming you start in San Francisco. The input to your algorithm is a pair of
arrays NY[1..n] and SF[1..n], containing the profits in each city for each week.
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3. Suppose you are given a directed graph G = (V, E), whose vertices are either red, green, or
blue. Edges in G do not have weights, and G is not necessarily a dag. The remoteness of a
vertex v is the maximum of three shortest-path lengths:

e The length of a shortest path to v from the closest red vertex

* The length of a shortest path to v from the closest blue vertex

* The length of a shortest path to v from the closest green vertex
In particular, if v is not reachable from vertices of all three colors, then v is infinitely
remote.

Describe and analyze an algorithm to find a vertex of G whose remoteness is smallest.

4. Suppose you are given an array A[1..n] of integers such that A[i] +A[i + 1] is even for
exactly one index i. In other words, the elements of A alternate between even and odd,
except for exactly one adjacent pair that are either both even or both odd.

Describe and analyze an efficient algorithm to find the unique index i such that
Ali]+A[i + 1] is even. For example, given the following array as input, your algorithm
should return the integer 6, because A[6]+A[7] = 88 + 62 is even. (Cells containing even
integers are shaded blue.)

|17 40 23172 39 .88 62 13:40 53.92:21 10:73 68

5. A zigzag walk in in a directed graph G is a sequence of vertices connected by edges in G,
but the edges alternately point forward and backward along the sequence. Specifically, the
first edge points forward, the second edge points backward, and so on. The length of a
zigzag walk is the sum of the weights of its edges, both forward and backward.

For example, the following graph contains the zigzag walk a—b+d—f «c—e. Assuming
every edge in the graph has weight 1, this zigzag walk has length 5.

@@ (0

L& %

Suppose you are given a directed graph G with non-negatively weighted edges, along
with two vertices s and t. Describe and analyze an algorithm to find the shortest zigzag
walk from s to ¢t in G.



CS/ECE 374 A 4 Fall 2021
s Conflict Midterm 2 &u

November 9, 2021

s Directions ey
Don’t panic!

If you brought anything except your writing implements, your hand-written double-sided
874" x 11" cheat sheet, please put it away for the duration of the exam. In particular, please
turn off and put away all medically unnecessary electronic devices.

We strongly recommend reading the entire exam before trying to solve anything. If
you think a question is unclear or ambiguous, please ask for clarification as soon as possible.

The exam has five numbered questions, each worth 10 points. (Subproblems are not
necessarily worth the same number of points.)

Write your answers on blank white paper using a dark pen. Please start your solution to
each numbered question on a new sheet of paper.

You have 120 minutes to write your solutions, after which you have 30 minutes to scan
your solutions, convert your scan to a PDF file, and upload your PDF file to Gradescope.

If you are ready to scan your solutions before 9:0opm, send a private message to the host
of your Zoom call (“Ready to scan”) and wait for confirmation before leaving the Zoom call.

Gradescope will only accept PDF submissions. Please do not scan your cheat sheets or
scratch paper. Please make sure your solution to each numbered problem starts on a new
page of your PDF file. Low-quality scans will be penalized.

Proofs are required for full credit if and only if we explicitly ask for them, using the word
prove in bold italics.

Finally, if something goes seriously wrong, send email to jeffe@illinois.edu as soon as
possible explaining the situation. If you have already finished the exam but cannot submit
to Gradescope for some reason, include a complete scan of your exam as a PDF file in your
email. If you are in the middle of the exam, send Jeff email, continue working until the
time limit, and then send a second email with your completed exam as a PDF file. Please
do not email raw photos.
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1. Short answers:

(@) Solve the recurrence T(n) = 3T(n/2) + 0(n?).
(b) Solve the recurrence T(n) = 7T(n/2) + 0(n?).
(©) Solve the recurrence T(n) = 4T (n/2)+ 0(n?).

(d) Draw a directed acyclic graph with at most ten vertices, exactly one source, exactly
one sink, and more than one topological order.

(e) Draw a directed graph with at most ten vertices, with distinct edge weights, that has
more than one shortest path from some vertex s to some other vertex t.

(f) Describe an appropriate memoization structure and evaluation order for the following
(meaningless) recurrence, and give the running time of the resulting iterative algorithm
to compute Huh(1, n).

(0 ifi>nork<0
- (Huh(i+1,k—2)
min
Huh(i+2,k—1)
Huh(i+1,k—2)
max
\ Huh(i+2,k—1)

} +A[i, k] if A[i, k] is even
Huh(i, k) = {

} —Ali, k] ifAli, k] is odd

2. Quadhopper is a solitaire game played on a row of n squares. Each square contains four
positive integers. The player begins by placing a token on the leftmost square. On each
move, the player chooses one of the numbers on the token’s current square, and then moves
the token that number of squares to the right. The game ends when the token moves past
the rightmost square. The object of the game is to make as many moves as possible before
the game ends.

1 8][5 2] [2 7][3 8][7 2]{@®38]|[6 9][4 8|[5 7|[1 4|[5 9] [0 2]|[3 5
(2)2||3 6| |1 8||9 4|{D)6||4 9|7 10/|6 3|{2)9]|3 8||7Q)|7 6|(D)4

A quadhopper puzzle that allows six moves. (This is not the longest legal sequence of moves.)

(@) Prove that the obvious greedy strategy (always choose the smallest number) does not
give the largest possible number of moves for every quadhopper puzzle.

(b) Describe and analyze an efficient algorithm to find the largest possible number of
legal moves for a given quadhopper puzzle.
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3. Suppose you are given a directed graph G = (V, E), each of whose vertices is either red,
green, or blue. Edges in G do not have weights, and G is not necessarily a dag.

Describe and analyze an algorithm to find a shortest path in G that contains at least
one vertex of each color. (In particular, your algorithm must choose the best start and end
vertices for the path.)

4. Your grandmother dies and leaves you her treasured collection of n radioactive Beanie
Babies. Her will reveals that one of the Beanie Babies is a rare specimen worth 374
million dollars, but all the others are worthless. All of the Beanie Babies are equally
radioactive, except for the valuable Beanie Baby, which is is either slightly more or slightly
less radioactive, but you don’t know which. Otherwise, as far as you can tell, the Beanie
Babies are all identical.

You have access to a state-of-the-art Radiation Comparator at your job. The Comparator
has two chambers. You can place any two disjoint sets of Beanie Babies in Comparator’s
two chambers; the Comparator will then indicate which subset emits more radiation, or
that the two subsets are equally radioactive. (Two subsets are equally radioactive if and
only if they contain the same number of Beanie Babies, and they are all worthless.) The
Comparator is slow and consumes a lot of power, and you really aren’t supposed to use it
for personal projects, so you really want to use it as few times as possible.

Describe an efficient algorithm to identify the valuable Beanie Baby. How many times
does your algorithm use the Comparator in the worst case, as a function of n?

5. Ronnie and Hyde are a professional robber duo who plan to rob a house in the Leverwood
neighborhood of Sham-Poobanana. They have managed to obtain a map of the neighbor-
hood in the form of a directed graph G, whose vertices represent houses, whose edges
represent one-way streets.

* One vertex s represents the house that Ronnie and Hyde plan to rob.

* A set X of special vertices designate eXits from the neighborhood.

* Each directed edge u—v has a non-negative weight w(u—v), indicating the time
required to drive directly from house u to house v.

* Thanks to Leverwood’s extensive network of traffic cameras, speeding or driving
backwards along any one-way street would mean certain capture.

Describe and analyze an algorithm to compute the shortest time needed to exit the
neighborhood, starting at house s. The input to your algorithm is the directed graph
G = (V,E), with clearly marked subset of exit vertices X C V, and non-negative weights
w(u—v) for every edge u—v.
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This is a “core dump” of potential questions for the final exam. This should give you a good
idea of the types of questions that we will ask on the exam. In particular, there will be a series of
True/False or short-answer questions—but the actual exam questions may or may not appear in
this handout. This list intentionally includes a few questions that are too long or difficult for
exam conditions; these are indicated with a *star.

Don’t forget to review the study problems for Midterms 1 and 2; the final exam is
cumulative!

s How to Use These Problems &u

Solving every problem in this handout is not the best way to study for the exam. Memorizing
the solutions to every problem in this handout is the absolute worst way to study for the exam.

What we recommend instead is to work on a sample of the problems. Choose one or
two problems at random from each section and try to solve them from scratch under exam
conditions—by yourself, in a quiet room, with a 30-minute timer, without your notes, without
the internet, and if possible, even without your cheat sheet. If you're comfortable solving a few
problems in a particular section, you're probably ready for that type of problem on the exam.
Move on to the next section.

Discussing problems with other people (in your study groups, in the review sessions, in office
hours, or on Piazza) and/or looking up old solutions can be extremely helpful, but only after you
have (1) made a good-faith effort to solve the problem on your own, and (2) you have either a
candidate solution or some idea about where you’re getting stuck.

If you find yourself getting stuck on a particular type of problem, try to figure out why you’re
stuck. Do you understand the problem statement? Are you stuck on choosing the right high-level
approach? Are you stuck on the technical details? Or are you struggling to express your ideas
clearly? (We strongly recommend writing solutions that follow the homework grading rubrics
bullet-by-bullet.)

Similarly, if feedback from other people suggests that your solutions to a particular type of
problem are incorrect or incomplete, try to figure out what you missed. For NP-hardness proofs:
Are you choosing a good problem to reduce from? Are you reducing in the correct direction?
Are you designing your reduction with both good instances and bad instances in mind? You're
not trying solve the problem, are you? For undecidability proofs: Does the problem have the
right structure to apply Rice’s theorem? If you are arguing by reduction, are you reducing in the
correct direction? You're not using pronouns, are you?

Remember that your goal is not merely to “understand” the solution to any particular
problem, but to become more comfortable with solving a certain type of problem on your own.
“Understanding” is a trap; aim for mastery. If you can identify specific steps that you find
problematic, read more about those steps, focus your practice on those steps, and try to find helpful
information about those steps to write on your cheat sheet. Then work on the next problem!
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True or False? (All from previous final exams)

For each statement below, write “YES” or “True” if the statement is always true and “NO” or
“False” otherwise, and give a brief (at most one short sentence) explanation of your answer.
Assume P # NP. If there is any other ambiguity or uncertainty about an answer, write “NO” or
“False”. For example:

* X+y=5
NO — Suppose x =3 and y =4.

* 3SAT can be solved in polynomial time.
NO — 3SAT is NP-hard.

e If P = NP then Jeff is the Queen of England.
YES — The hypothesis is false, so the implication is true.

1. Which of the following are clear English specifications of a recursive function that could
possibly be used to compute the edit distance between two strings A[1..n] and B[1..n]?

(a) Edit(i,j) is the answer for i and j.
(b) Edit(i, j) is the edit distance between A[i] and B[j].

(i ifj=0
j ifi=0
© Editfi, j]= - Edit[i—1,j—1] if A[i] =B[j]
1+ Edit[i,j—1]
max 1+ Edit[i—1,j] otherwise
\ 1+Edit[i—1,j—1]

(d) Edit[1..n,1..n] stores the edit distances for all prefixes.
(e) Edit(i, j) is the edit distance between A[i..n] and B[j..n].
(f) Edit[i, j] is the value stored at row i and column j of the table.

(g) Edit(i,j) is the edit distance between the last i characters of A and the last j characters
of B.

(h) Edit(i, j) is the edit distance when i and j are the current characters in A and B.
(i) Iterate through both strings and update Edit[-, -] at each character.
() Edit(i, j, k,1) is the edit distance between substrings Ali .. j] and B[k ..1].

(k) [I don’t need an English description; my pseudocode is clear enough!]

2. Which of the following statements is true for every directed graph G = (V, E)?

@@ E#Q.
(b) Given the graph G as input, Floyd-Warshall runs in O(E?) time.
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(c) If G has at least one source and at least one sink, then G is a dag.
(d) We can compute a spanning tree of G using whatever-first search.

(e) If the edges of G are weighted, we can compute the shortest path from any node s to any
node t in O(E log V') time using Dijkstra’s algorithm.

3. Which of the following statements are true for every language L C {0,1}*?

(@) L is non-empty.

(b) L is infinite.

(¢) L contains the empty string &.

(d) L* is infinite.

(e) L*isregular.

(f) L is accepted by some DFA if and only if L is accepted by some NFA.

(g) L is described by some regular expression if and only if L is rejected by some NFA.

(h) L is accepted by some DFA with 42 states if and only if L is accepted by some NFA with 42
states.

(1) If L is decidable, then L is infinite.
() If L is not decidable, then L is infinite.
(k) If L is not regular, then L is undecidable.
(1) If L has an infinite fooling set, then L is undecidable.
(m) If L has a finite fooling set, then L is decidable.
(n) If L is the union of two regular languages, then its complement L is regular.
(0) If L is the union of two regular languages, then its complement L is context-free.
(p) If L is the union of two decidable languages, then L is decidable.
(@) If L is the union of two undecidable languages, then L is undecidable.
(r) If L ¢ P, then L is not regular.
(s) L is decidable if and only if its complement L is undecidable.

(t) Both L and its complement L are decidable.

4. Which of the following statements are true for at least one language L C {0, 1}*?

(@) L is non-empty.

(b) L is infinite.

() L contains the empty string e.
(d) L* is finite.

(e) L* is not regular.

(f) L is not regular but L* is regular.

(g) L is finite and L is undecidable.



CS/ECE 374 A Final Exam Study Problems Fall 2021

(h) L is decidable but L* is not decidable.

(i) L is not decidable but L* is decidable.

() L is the union of two decidable languages, but L is not decidable.

(k) L is the union of two undecidable languages, but L is decidable.

(1) L is accepted by an NFA with 374 states, but L is not accepted by a DFA with 374 states.
(m) L is accepted by an DFA with 374 states, but L is not accepted by a NFA with 374 states.
(n) L isregular and L & P.

(0) There is a Turing machine that accepts L.

(p) There is an algorithm to decide whether an arbitrary given Turing machine accepts L.

5. Which of the following languages over the alphabet {0, 1} are regular?

@ {0™"| m=0andn=0}

(b) All strings with the same number of s and 1s

(c) Binary representations of all positive integers divisible by 17
(d) Binary representations of all prime numbers less than 101%°
@) {ww \ wisa palindrome}

(3] {wxw | w is a palindrome and x € {9, 1 }*}

(€3] {(M ) | M accepts a regular language}

(h) {(M ) | M accepts a finite number of non-palindromes}

6. Which of the following languages/decision problems are decidable?

@@

(b) {0"12"e"12" | n >0}

© {ww ’ wisa palindrome}

(d) {(M) | M accepts (M) (M)}

®) {(M ) | M accepts a finite number of non-palindromes}
® {(M)ew | M accepts WW}

(€3) {(M yeow | M accepts ww after at most |w|? steps}

(h) Given an NFA N, is the language L(N) infinite?

G

(j) Given an undirected graph G, does G contain a Hamiltonian cycle?

) CIRCUITSAT

—

(k) Given encodings of two Turing machines M and M’, is there a string w that is accepted
by both M and M’?
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7. Which of the following languages can be proved undecidable using Rice’s Theorem?

@ o
(b) {0"12%"1?" | n> 0}

© {ww \ wisa palindrome}

(d) M ) | M accepts an infinite number of strmgs}

e (M ) | M accepts a finite number of strmgs}

(3] {(M ) | M accepts either (M R}

() {(M ) | M accepts both (M) and (M R}

(h) {(M ) | M does not accept exactly 374 palindromes}

@ {(M ) | M accepts some string w after at most |w|? steps}

6)) {(M oW | M rejects w after at most |w|? steps}

(k) Given the encodings of two Turing machines M and M’, is there a string w that is accepted
by both M and M'?

8. Recall the halting language HarLt = {(M) * w | M halts on input w}. Which of the following
statements about its complement Hart = ¥* \ HALT are true?

(a) HALT is empty.
(b) HALT is regular.
(¢) HALT is infinite.
(d) HALT is in NP.

(e) Hart is decidable.

9. Suppose some language A € {9, 1}* reduces to another language B € {0, 1}*. Which of the
following statements must be true?

(@) A Turing machine that recognizes A can be used to construct a Turing machine that
recognizes B.

(b) Ais decidable.

(c) If B is decidable then A is decidable.

(d) If Ais decidable then B is decidable.

() If B is NP-hard then A is NP-hard.

(f) If A has no polynomial-time algorithm then neither does B.
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10.

Suppose there is a polynomial-time reduction from problem A to problem B. Which of the
following statements must be true?

(a) Problem B is NP-hard.

(b) A polynomial-time algorithm for B can be used to solve A in polynomial time.
(c) If B has no polynomial-time algorithm then neither does A.

(d) If Ais NP-hard and B has a polynomial-time algorithm then P = NP.

(@) If B is NP-hard then A is NP-hard.

(f) If B is undecidable then A is undecidable.

11.

Consider the following pair of languages:

* HamPATH := {G | G is an undirected graph with a Hamiltonian path}

* CONNECTED := {G | G is a connected undirected graph}

(For concreteness, assume that in both of these languages, graphs are represented by their
adjacency matrices.) Which of the following must be true, assuming P#ANP?

(a) CONNECTED € NP

(b) HAMPATH € NP

(c) HamPatH is decidable.

(d) There is no polynomial-time reduction from HAMPATH to CONNECTED.

(e) There is no polynomial-time reduction from CONNECTED to HAMPATH.

12.

Consider the following pair of languages:
* DiRHAMPATH := {G | G is a directed graph with a Hamiltonian path}
* AcycLIC := {G | G is a directed acyclic graph}

(For concreteness, assume that in both of these languages, graphs are represented by their
adjacency matrices.) Which of the following must be true, assuming P#NP?

(@) Acycric € NP

(b) Acycric N DIRHAMPATH € P

() DIrRHAMPATH is decidable.

(d) There is a polynomial-time reduction from DIRHAMPATH to ACYCLIC.

(e) There is a polynomial-time reduction from AcycLic to DIRHAMPATH.

13. Consider the following pair of languages:

* 3COLOR := {G | G is a 3-colorable undirected graph}

* TREE := {G | G is a connected acyclic undirected graph}

6
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(For concreteness, assume that in both of these languages, graphs are represented by adjacency
matrices.) Which of the following must be true, assuming P#ANP?

(@) TreE is NP-hard.

(b) TREEN 3CoLOR € P

(c) 3CoLor is undecidable.

(d) There is a polynomial-time reduction from 3COLOR to TREE.

(e) There is a polynomial-time reduction from TREE to 3COLOR.
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NP-hardness

1. A boolean formula is in disjunctive normal form (or DNF) if it consists of a disjunction (OR) or
several terms, each of which is the conjunction (AND) of one or more literals. For example,
the formula

XAYyAZDIV(YA2)V(XAYAZ)

is in disjunctive normal form. DNF-Sat asks, given a boolean formula in disjunctive normal
form, whether that formula is satisfiable.

(a) Describe a polynomial-time algorithm to solve DNF-SAT.
(b) What is the error in the following argument that P=NP?

Suppose we are given a boolean formula in conjunctive normal form with at most three
literals per clause, and we want to know if it is satisfiable. We can use the distributive law
to construct an equivalent formula in disjunctive normal form. For example,

(xVyVa)A(xVYy) <= (xAY)V(YAX)VEAX)V(ZAY)

Now we can use the algorithm from part (a) to determine, in polynomial time, whether the
resulting DNF formula is satisfiable. We have just solved 3SAT in polynomial time. Since
3SAT is NP-hard, we must conclude that P=NP!

2. A relaxed 3-coloring of a graph G assigns each vertex of G one of three colors (for example,
red, green, and blue), such that at most one edge in G has both endpoints the same color.

(a) Give an example of a graph that has a relaxed 3-coloring, but does not have a proper
3-coloring (where every edge has endpoints of different colors).

(b) Prove that it is NP-hard to determine whether a given graph has a relaxed 3-coloring.

3. An ultra-Hamiltonian tour in G is a closed walk W that visits every vertex of G exactly once,
except for at most one vertex that W visits more than once.

(a) Give an example of a graph that contains a ultra-Hamiltonian tour, but does not contain a
Hamiltonian cycle (which visits every vertex exactly once).

(b) Prove that it is NP-hard to determine whether a given graph contains a ultra-Hamiltonian
tour.

4. An infra-Hamiltonian cycle in G is a closed walk W that visits every vertex of G exactly once,
except for at most one vertex that W does not visit at all.

(a) Give an example of a graph that contains a infra-Hamiltonian cycle, but does not contain
a Hamiltonian cycle (which visits every vertex exactly once).

(b) Prove that it is NP-hard to determine whether a given graph contains a infra-Hamiltonian
cycle.

5. A quasi-satisfying assignment for a 3CNF boolean formula & is an assignment of truth values
to the variables such that at most one clause in ¢ does not contain a true literal. Prove that
it is NP-hard to determine whether a given 3CNF boolean formula has a quasi-satisfying
assignment.
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6. A subset S of vertices in an undirected graph G is half-independent if each vertex in S

is adjacent to at most one other vertex in S. Prove that finding the size of the largest
half-independent set of vertices in a given undirected graph is NP-hard.

A subset S of vertices in an undirected graph G is sort-of-independent if if each vertex in S
is adjacent to at most 374 other vertices in S. Prove that finding the size of the largest
sort-of-independent set of vertices in a given undirected graph is NP-hard.

8. A subset S of vertices in an undirected graph G is almost independent if at most 374 edges in

10.

11.

12.

G have both endpoints in S. Prove that finding the size of the largest almost-independent set
of vertices in a given undirected graph is NP-hard.

Let G be an undirected graph with weighted edges. A heavy Hamiltonian cycle is a cycle C
that passes through each vertex of G exactly once, such that the total weight of the edges
in C is more than half of the total weight of all edges in G. Prove that deciding whether a
graph has a heavy Hamiltonian cycle is NP-hard.

A heavy Hamiltonian cycle. The cycle has total weight 34; the graph has total weight 67.

(a) A tonian path in a graph G is a path that goes through at least half of the vertices of G.
Show that determining whether a graph has a tonian path is NP-hard.

(b) A tonian cycle in a graph G is a cycle that goes through at least half of the vertices
of G. Show that determining whether a graph has a tonian cycle is NP-hard. [Hint: Use
part (a). Or not.]

Prove that the following variants of SAT is NP-hard. [Hint: Describe reductions from 3SAT.]

(a) Given a boolean formula @ in conjunctive normal form, where each variable appears in
at most three clauses, determine whether ® has a satisfying assignment. [Hint: First
consider the variant where each variable appears in at most five clauses.]

(b) Given a boolean formula ® in conjunctive normal form and given one satisfying assignment
for ®, determine whether ® has at least one other satisfying assignment.

Jerry Springer and Maury Povich have decided not to compete with each other over scheduling
guests during the next talk-show season. There is only one set of Weird People who either
host would consider having on their show. The hosts want to divide the Weird People into
two disjoint subsets: those to appear on Jerry’s show, and those to appear on Maury’s show.
(Neither wants to “recycle” a guest that appeared on the other’s show.)
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13.

14.

Both Jerry and Maury have preferences about which Weird People they are particularly
interested in. For example, Jerry wants at least one guest who fits the description “was
abducted by a flying saucer”. Thus, on his list of preferences, he writes “w; or ws or wys”,
since weird people numbered 1, 3, and 45 are the only ones who fit that description. Jerry
has other preferences as well, so he lists those also. Similarly, Maury might like to include at
least one guest who “really enjoys Rice’s theorem”. Each potential guest may fall into any
number of different categories, such as the person who enjoys Rice’s theorem more than their
involuntary flying-saucer voyage.

Jerry and Maury each prepare a list reflecting all of their preferences. Each list contains a
collection of statements of the form “(w; or w; or w;)”. Your task is to prove that it is NP-hard
to find an assignment of weird guests to the two shows that satisfies all of Jerry’s preferences

and all of Maury’s preferences.

(@) The problem NoMixEDCLAUSES3SAT is the special case of 3SaT where the input formula
cannot contain a clause with both a negated variable and a non-negated variable. Prove
that NoMixEDpCLAUSES3SAT is NP-hard. [Hint: Reduce from the standard 3SAT problem.]

(b) Describe a polynomial-time reduction from NOMIXEDCLAUSES3SAT to 3SAT.

The president of Sham-Poobanana University is planning An Unofficial St. Brigid’s Day party
for the university staff.’ His staff has a hierarchical structure; that is, the supervisor relation
forms a directed, acyclic graph, with the president as the only source, and with an edge
from person i to person j in the graph if and only if person i is an immediate supervisor of
person j. (Many staff members have multiple positions, and thus have several immediate
supervisors.) In order to make the party fun for all guests, the president wants to ensure that
if a person i attends, then none of i’s immediate supervisors can attend.

By mining each staff member’s email and social media accounts, Sham-Poobanana
University Human Resources has determined a “party-hound” rating for each staff member,
which is a non-negative real number reflecting how likely it is that the person will leave the
party wearing a monkey suit and a lampshade.

Show that it is NP-hard to determine a guest-list that maximizes the sum of the party-hound
ratings of all invited guests, subject to the supervisor constraint.

[Hint: This problem can be solved in polynomial time when the input graph is a tree!]

Prove that the following problem (which we call MatcH) is NP-hard. The input is a finite set S
of strings, all of the same length n, over the alphabet {0, 1,2}. The problem is to determine
whether there is a string w € {0, 1}" such that for every string s € S, the strings s and w have
the same symbol in at least one position.

For example, given the set S = {01220, 21110, 21120, 00211, 11101}, the correct output
is TRUE, because the string w = 01001 matches the first three strings of S in the second
position, and matches the last two strings of S in the last position. On the other hand, given
the set S = {00, 11, 01, 10}, the correct output is FALSE.

[Hint: Describe a reduction from SAT (or 3SAT)]

1As 'm sure you already know;, St. Brigid of Kildare is one of the patron saints of Ireland, chicken and dairy farmers,

and academics.

10
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15.

16.

17.

18.

Consider the following solitaire game. The puzzle consists of an n x m grid of squares, where
each square may be empty, occupied by a red stone, or occupied by a blue stone. The goal of
the puzzle is to remove some of the given stones so that the remaining stones satisfy two
conditions:

(1) Every row contains at least one stone.

(2) No column contains stones of both colors.

For some initial configurations of stones, reaching this goal is impossible; see the example
below.

Prove that it is NP-hard to determine, given an initial configuration of red and blue stones,
whether this puzzle can be solved.

Q0O Ol 1O
OlR|IN DS
R 10O O] @)
O] |88 O] |8 G

A solvable puzzle and one of its many solutions. An unsolvable puzzle.

@)
&

RIO|OR

To celebrate the end of the semester, Professor Jarling wants to treat himself to an ice-cream
cone at the Polynomial House of Flavors. For a fixed price, he can build a cone with as many
scoops as he’d like. Because he has good balance (and because we want this problem to work
out), Prof. Jarling can balance any number of scoops on top of the cone without it tipping
over. He plans to eat the ice cream one scoop at a time, from top to bottom, and doesn’t want
more than one scoop of any flavor.

However, he realizes that eating a scoop of bubblegum ice cream immediately after the
scoop of potatoes-and-gravy ice cream would be unpalatable; these two flavors clearly should
not be placed next to each other in the stack. He has other similar constraints; certain pairs
of flavors cannot be adjacent in the stack.

He’d like to get as much ice cream as he can for the one fee by building the tallest cone
possible that meets his flavor-incompatibility constraints. Prove that Prof. Jarling’s problem is
NP-hard.

Prove that the following problems are NP-hard.

(a) Given an undirected graph G, does G contain a simple path that visits all but 17 vertices?

(b) Given an undirected graph G, does G have a spanning tree in which every node has
degree at most 23?

() Given an undirected graph G, does G have a spanning tree with at most 42 leaves?

Prove that the following problems are NP-hard.

(a) Given an undirected graph G, is it possible to color the vertices of G with three different
colors, so that at most 31337 edges have both endpoints the same color?

11
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19.

20.

(b) Given an undirected graph G, is it possible to color the vertices of G with three different
colors, so that each vertex has at most 8675309 neighbors with the same color?

At the end of every semester, Jeff needs to solve the following ExAMDESIGN problem. He
has a list of problems, and he knows for each problem which students will really enjoy that
problem. He needs to choose a subset of problems for the exam such that for each student
in the class, the exam includes at least one question that student will really enjoy. On the
other hand, he does not want to spend the entire summer grading an exam with dozens
of questions, so the exam must also contain as few questions as possible. Prove that the
ExaMDESIGN problem is NP-hard.

Which of the following results would resolve the P vs. NP question? Justify each answer with
a short sentence or two.

(@) The construction of a polynomial time algorithm for some problem in NP.
(b) A polynomial-time reduction from 3SAT to the language {0"1" | n > 0}.
(¢) A polynomial-time reduction from {0"1" | n > 0} to 3SAT.

(d) A polynomial-time reduction from 3CoLOR to MINVERTEXCOVER.

(e) The construction of a nondeterministic Turing machine that cannot be simulated by any
deterministic Turing machine with the same running time.

12
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Some useful NP-hard problems. You are welcome to use any of these in your own NP-hardness proofs,
except of course for the specific problem you are trying to prove NP-hard. The final exam will include
a copy of this list.

CircurTSAT: Given a boolean circuit, are there any input values that make the circuit output TRUE?

3SaT: Given aboolean formula in conjunctive normal form, with exactly three distinct literals per clause,
does the formula have a satisfying assignment?

MaxXINDEPENDENTSET: Given an undirected graph G, what is the size of the largest subset of vertices
in G that have no edges among them?

MaxCLIQUE: Given an undirected graph G, what is the size of the largest complete subgraph of G?

MINVERTEXCOVER: Given an undirected graph G, what is the size of the smallest subset of vertices
that touch every edge in G?

MinSETCoOVER: Given a collection of subsets S;,S,,...,S,, of aset S, what is the size of the smallest
subcollection whose union is S?

MiNHITTINGSET: Given a collection of subsets §;,S,,...,S,, of aset S, what is the size of the smallest
subset of S that intersects every subset S;?

3CoLor: Given an undirected graph G, can its vertices be colored with three colors, so that every edge
touches vertices with two different colors?

HamirLtoniaNPaTH: Given graph G (either directed or undirected), is there a path in G that visits every
vertex exactly once?

HamiLTonIANCYCLE: Given a graph G (either directed or undirected), is there a cycle in G that visits
every vertex exactly once?

TRAVELINGSALESMAN: Given a graph G (either directed or undirected) with weighted edges, what is
the minimum total weight of any Hamiltonian path/cycle in G?

LonGESTPATH: Given a graph G (either directed or undirected, possibly with weighted edges), what is
the length of the longest simple path in G?

STEINERTREE: Given an undirected graph G with some of the vertices marked, what is the minimum
number of edges in a subtree of G that contains every marked vertex?

SuBseTSUM: Given a set X of positive integers and an integer k, does X have a subset whose elements
sum to k?

ParTITION: Given asetX of positive integers, can X be partitioned into two subsets with the same
sum?

3ParTITION: Given a set X of 3n positive integers, can X be partitioned into n three-element subsets,
all with the same sum?

INTEGERLINEARPROGRAMMING: GivenamatrixA € Z"™? andtwovectors b € Z"and c € Z¢, compute
max{c-x |Ax < b,x >0, x € Z%}.

FeaSIBLEILP: Given a matrix A € Z"™< and a vector b € Z", determine whether the set of feasible
integer points max{x € Z? | Ax < b, x > 0} is empty.

DrauGHTs: Given ann x n international draughts configuration, what is the largest number of pieces
that can (and therefore must) be captured in a single move?

SteaMEDHAMS: Aurora borealis? At this time of year, at this time of day, in this part of the country,
localized entirely within your kitchen? May | see it?

13
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Turing Machines and Undecidability

The only undecidability questions on this semester’s final exam will be True/False or short-
answer, but the following problems might still be useful to build intuition.

For each of the following languages, either sketch an algorithm to decide that language or
prove that the language is undecidable, using a diagonalization argument, a reduction argument,
Rice’s theorem, closure properties, or some combination of the above. Recall that w® denotes the
reversal of string w.

1. &

N

. {om1m2" | n> 0}

. {A e {0,1}™" | n > 0 and A is the adjacency matrix of a dag with n vertices}

w

. {A e {0,1}" | n > 0 and A is the adjacency matrix of a 3-colorable graph with n vertices}

N

5. {(M) | M accepts (M)R}

6. {(M) | M accepts (M)} n {(M) | M rejects (M)R}
7. {(M)#w | M accepts ww?}

8. {(M) | M accepts RICESTHEOREM}

9. {{M) | M rejects RICESTHEOREM}

10. {(M) | M accepts at least one palindrome}

1. 3\ {(M) | M accepts at least one palindrome }

12. {(M) | M rejects at least one palindrome}

13. {(M ) | M accepts exactly one string of length £, for each integer £ > O}
14. {{M) | AccepT(M) has an infinite fooling set}
15. {(M)#(M") | AccepT(M) N AccerT(M') # @}

16. {(M)#(M’) | AccepT(M) ® REJECT(M) # @} — Here & means exclusive-or.

14
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SELFREJECT :=
SELFACCEPT :
SELFHALT :

SELFDIVERGE :

REJECT :
ACCEPT :
HaLT :

DIVERGE :

NEVERREJECT :
NEVERACCEPT :
NEVERHALT :

NEVERDIVERGE :

Some useful undecidable problems. You are welcome to use any of these in your own undecidability
proofs, except of course for the specific problem you are trying to prove undecidable.

{(m | M rejects (M)}

M | M accepts (M)}

M | M halts on (M)}

| M does not halt on (M)}

S

{(m)
(M)
(M)
(M)

S

#w | M rejects w}

S

#w | M accepts w}
#w | M halts on w}
#w | M does not halt on w}

M

S

(M)
(M)
(M)
(M)

(M) | REJECT(M) = @}
(M) | AccepT(M) = @}
(M) |
(M) |

M) | Hatt(M) = @}
M) | Diverce(M) = @'}

{
{
{
{
{
{
{
{
{
{
{

15



CS/ECE 374 A 4 Fall 2021
s Final Exam &

December 15, 2021

 Directions &y
Don’t panic!

If you brought anything except your writing implements, your two hand-written double-
sided 8'%" x 11" cheat sheets, please put it away for the duration of the exam. In particular,
please turn off and put away all medically unnecessary electronic devices.

We strongly recommend reading the entire exam before trying to solve anything. If
you think a question is unclear or ambiguous, please ask for clarification as soon as possible.

The exam has six numbered questions, each worth 10 points. (Subproblems are not
necessarily worth the same number of points.)

You have 150 minutes to write your solutions, after which you have 30 minutes to scan
your solutions, convert your scan to a PDF file, and upload your PDF file to Gradescope.
(Both of these times are extended if you have time accommodations through DRES.)

Proofs are required for full credit if and only if we explicitly ask for them, using the word
prove in bold italics.

Write your answers on blank white paper using a dark pen. Please start your solution to
each numbered question on a new sheet of paper.

If you are ready to scan your solutions and there are more than 15 minutes of writing time
remaining, send a private message to the host of your Zoom call (“Ready to scan”) and
wait for confirmation before leaving the Zoom call.

Gradescope will only accept PDF submissions. Please do not scan your cheat sheets or
scratch paper. Please make sure your solution to each numbered problem starts on a new
page of your PDF file.

Finally, if something goes seriously wrong, send email to jeffe@illinois.edu as soon as
possible explaining the situation. If you have already finished the exam but cannot submit
to Gradescope for some reason, include a complete scan of your exam as a PDF file in your
email. If you are in the middle of the exam, send Jeff email, continue working until the
time limit, and then send a second email with your completed exam as a PDF file. Please
do not email raw photos.




Some useful NP-hard problems. You are welcome to use any of these in your own NP-hardness proofs,
except of course for the specific problem you are trying to prove NP-hard.

CircurTSAT: Given a boolean circuit, are there any input values that make the circuit output TRUE?

3SaT: Given aboolean formula in conjunctive normal form, with exactly three distinct literals per clause,
does the formula have a satisfying assignment?

MaxXINDEPENDENTSET: Given an undirected graph G, what is the size of the largest subset of vertices
in G that have no edges among them?

MaxCLIQUE: Given an undirected graph G, what is the size of the largest complete subgraph of G?

MiINVERTEXCOVER: Given an undirected graph G, what is the size of the smallest subset of vertices
that touch every edge in G?

MinSETCoOVER: Given a collection of subsets S;,S,,...,S,, of aset S, what is the size of the smallest
subcollection whose union is S?

MINHITTINGSET: Given a collection of subsets S;,S,,...,S,, of asetS, what is the size of the smallest
subset of S that intersects every subset S;?

3CoLor: Given an undirected graph G, can its vertices be colored with three colors, so that every edge
touches vertices with two different colors?

HamirtoniaNPaTH: Given graph G (either directed or undirected), is there a path in G that visits every
vertex exactly once?

HamiLTonIANCYCLE: Given a graph G (either directed or undirected), is there a cycle in G that visits
every vertex exactly once?

TRAVELINGSALESMAN: Given a graph G (either directed or undirected) with weighted edges, what is
the minimum total weight of any Hamiltonian path/cycle in G?

LonGESTPATH: Given a graph G (either directed or undirected, possibly with weighted edges), what is
the length of the longest simple path in G?

STEINERTREE: Given an undirected graph G with some of the vertices marked, what is the minimum
number of edges in a subtree of G that contains every marked vertex?

SuBseTSUM: Given a set X of positive integers and an integer k, does X have a subset whose elements
sum to k?

ParTITION: Given asetX of positive integers, can X be partitioned into two subsets with the same
sum?

3ParTITION: Given a set X of 3n positive integers, can X be partitioned into n three-element subsets,
all with the same sum?

INTEGERLINEARPROGRAMMING: GivenamatrixA € Z"™? and twovectors b € Z"and ¢ € Z¢, compute
max{c-x |Ax < b,x >0, x € Z%}.

FeasIBLEILP: Given a matrix A € Z"™< and a vector b € Z", determine whether the set of feasible
integer points max{x € Z? | Ax < b, x > 0} is empty.

DrauGHTs: Given ann x n international draughts configuration, what is the largest number of pieces
that can (and therefore must) be captured in a single move?

SteaMEDHAMS: Aurora borealis? At this time of year, at this time of day, in this part of the country,
localized entirely within your kitchen? May | see it?
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1. For each statement below, write “YES” if the statement is always true and “NO” otherwise,
and give a brief (at most one short sentence) explanation of your answer. Assume P # NP.
If there is any other ambiguity or uncertainty about an answer, write “NO”. For example:

e x+y=5
NO — Suppose x =3 and y =4.

* 3SAT can be solved in polynomial time.
NO — 3SAT is NP-hard.

e If P = NP then Jeff is the Queen of England.
YES — The hypothesis is false, so the implication is true.

Read each statement very carefully; some of these are deliberately subtle!

Which of the following statements are true?

(@) The solution to the recurrence T(n) = 4T (n/2)+ 0(n?) is T(n) = 0(n?).
(b) The solution to the recurrence T(n) = 2T (n/4) + 0(n?) is T(n) = 0(n?).
() Every directed acyclic graph contains at least one sink.

(d) Given any undirected graph G, we can compute a spanning tree of G in O(V + E)
time using whatever-first search.

(e) Suppose we want to iteratively evaluate the following recurrence:

0 ifi>norj<o0
What(i, j— 1)
max What(i+ 1, j) otherwise
Ali]-A[j]+What(i +1,j—1)

What(i, j) =

We can fill the array What[0..n,0..n] in O(n?) time, by decreasing i in the outer
loop and decreasing j in the inner loop.

Which of the following statements are true for at least one language L C {0,1}*?

) L*= (L")

(g) L is decidable, but L* is undecidable.

(h) L is neither regular nor NP-hard.

(i) L isin P, and L has an infinite fooling set.

() The language {(M) | M accepts L} is undecidable.
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2. For each statement below, write “YES” if the statement is always true and “NO” otherwise,
and give a brief (at most one short sentence) explanation of your answer. Assume P # NP.
If there is any other ambiguity or uncertainty about an answer, write “NO”.

Read each statement very carefully; some of these are deliberately tricky!

(Please remember to start your answers to this problem on a new page. Yes, this is really
just a continuation of problem 1; we split it into two problems to make grading easier.)

Consider the following pair of languages:

* AcycLic := {undirected graph G | G contains no cycles}

e HALFIND := {undirected graph G = (V,E) | G has an independent set of size |V|/ 2}

(For concreteness, assume that in both of these languages, graphs are represented by their
adjacency matrices.) The language HALFIND is actually NP-hard; you do not need to
prove that fact.

Which of the following statements are true, assuming P # NP?

(@) Acyciric is NP-hard.

(b) HaLFIND \ AcycLiC €P
(Recall that X \ Y is the subset of elements of X that are notin Y.)

(¢) HaLFIND is decidable.
(d) A polynomial-time reduction from HALFIND to AcycLic would imply P=NP.

(e) A polynomial-time reduction from Acycric to HALFIND would imply P=NP.

Suppose there is a polynomial-time reduction from some language A over the alphabet
{0, 1} to some other language B over the alphabet {0, 1}. Which of the following statements
are true, assuming P # NP?

(f) Ais a subset of B.

(g) f BeEP,thenA€cP.

(h) If B is NP-hard, then A is NP-hard.
(i) If B is decidable, then A is decidable.
(j) If B is regular, then A is decidable.
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3. Suppose you are asked to tile a 2 x n grid of squares with dominos (1 x 2 rectangles). Each
domino must cover exactly two grid squares, either horizontally or vertically, and each grid
square must be covered by exactly one domino.

Each grid square is worth some number of points, which could be positive, negative, or
zero. The value of a domino tiling is the sum of the points in squares covered by vertical
dominos, minus the sum of the points in squares covered by horizontal dominos.

Describe and analyze an efficient algorithm to compute the largest possible value of
a domino tiling of a given 2 x n grid. Your input is an array Points[1..2,1..n] of point
values.

As an example, here are three domino tilings of the same 2 x 6 grid, along with their
values. The third tiling is optimal; no other tiling of this grid has larger value. Thus, given
this 2 x 6 grid as input, your algorithm should return the integer 16.

5(2(-3(2|-7|3

1|-6/0|-1|4]|-2

)2 G [2)|G2)E]3) Im(z 3)2)@[3)

anEaga
AW EEER JEWED

value=—6 value=2 value =16

4. Submit a solution to exactly one of the following problems. Don'’t forget to tell us which
problem you’ve chosen!

(@) Let ® be a boolean formula in conjunctive normal form, with exactly three literals per
clause (or in other words, an instance of 3SAT). Prove that it is NP-hard to decide
whether & has a satisfying assignment in which exactly half of the variables are TRUE.

(b) Let G =(V,E) be an arbitrary undirected graph. Recall that a proper 3-coloring of G
assigns each vertex of G one of three colors—red, blue, or green—so that every edge
in G has endpoints with different colors. Prove that it is NP-hard to decide whether G
has a proper 3-coloring in which exactly half of the vertices are red.

(In fact, both of these problems are NP-hard, but we only want a proof for one of them.)

5. Suppose you are given a height map of a mountain, in the form of an n x n grid of evenly
spaced points, each labeled with an elevation value. You can safely hike directly from any
point to any neighbor immediately north, south, east, or west, but only if the elevations of
those two points differ by at most A. (The value of A depends on your hiking experience
and your physical condition.)

Describe and analyze an algorithm to determine the longest hike from some point s
to some other point t, where the hike consists of an uphill climb (where elevations must
increase at each step) followed by a downhill climb (where elevations must decrease at
each step). Your input consists of an array Elevation[1..n,1..n] of elevation values, the
starting point s, the target point t, and the parameter A.
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6. Recall that a run in a string w € {0, 1}* is a maximal substring of w whose characters are
all equal. For example, the string 0011111110000 is the concatenation of three runs:

00011111110000 =000 1111111 * 0000

(@) Let L, denote the set of all strings in {0, 1}* where every 0 is followed immediately
by at least one 1.

For example, L, contains the strings 70111 and 1111 and the empty string ¢, but
does not contain either 201100 or 1111110.
* Describe a DFA or NFA that accepts L, and
* Give a regular expression that describes L.
(You do not need to prove that your answers are correct.)
(b) Let L, denote the set of all strings in {0, 1}* whose run lengths are increasing; that is,
every run except the last is followed immediately by a longer run.

For example, L, contains the strings 0110001111 and 1100000 and 000 and the
empty string &, but does not contain either 000111 or 100011.

Prove that L; is not a regular language.
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Don’t panic!

If you brought anything except your writing implements, your two hand-written double-
sided 8" x 11" cheat sheets, please put it away for the duration of the exam. In particular,
please turn off and put away all medically unnecessary electronic devices.

We strongly recommend reading the entire exam before trying to solve anything. If
you think a question is unclear or ambiguous, please ask for clarification as soon as possible.

The exam has six numbered questions, each worth 10 points. (Subproblems are not
necessarily worth the same number of points.)

You have 150 minutes to write your solutions, after which you have 30 minutes to scan
your solutions, convert your scan to a PDF file, and upload your PDF file to Gradescope.
(Both of these times are extended if you have time accommodations through DRES.)

Proofs are required for full credit if and only if we explicitly ask for them, using the word
prove in bold italics.

Write your answers on blank white paper using a dark pen. Please start your solution to
each numbered question on a new sheet of paper.

If you are ready to scan your solutions and there are more than 15 minutes of writing
time, send a private message to the host of your Zoom call (“Ready to scan”) and wait for
confirmation before leaving the Zoom call.

Gradescope will only accept PDF submissions. Please do not scan your cheat sheets or
scratch paper. Please make sure your solution to each numbered problem starts on a new
page of your PDF file.

Finally, if something goes seriously wrong, send email to jeffe@illinois.edu as soon as
possible explaining the situation. If you have already finished the exam but cannot submit
to Gradescope for some reason, include a complete scan of your exam as a PDF file in your
email. If you are in the middle of the exam, send Jeff email, continue working until the
time limit, and then send a second email with your completed exam as a PDF file. Please
do not email raw photos.




Some useful NP-hard problems. You are welcome to use any of these in your own NP-hardness proofs,
except of course for the specific problem you are trying to prove NP-hard.

CircurTSAT: Given a boolean circuit, are there any input values that make the circuit output TRUE?

3SaT: Given aboolean formula in conjunctive normal form, with exactly three distinct literals per clause,
does the formula have a satisfying assignment?

MaxXINDEPENDENTSET: Given an undirected graph G, what is the size of the largest subset of vertices
in G that have no edges among them?

MaxCLIQUE: Given an undirected graph G, what is the size of the largest complete subgraph of G?

MiINVERTEXCOVER: Given an undirected graph G, what is the size of the smallest subset of vertices
that touch every edge in G?

MinSETCoOVER: Given a collection of subsets S;,S,,...,S,, of aset S, what is the size of the smallest
subcollection whose union is S?

MINHITTINGSET: Given a collection of subsets S;,S,,...,S,, of asetS, what is the size of the smallest
subset of S that intersects every subset S;?

3CoLor: Given an undirected graph G, can its vertices be colored with three colors, so that every edge
touches vertices with two different colors?

HamirtoniaNPaTH: Given graph G (either directed or undirected), is there a path in G that visits every
vertex exactly once?

HamiLTonIANCYCLE: Given a graph G (either directed or undirected), is there a cycle in G that visits
every vertex exactly once?

TRAVELINGSALESMAN: Given a graph G (either directed or undirected) with weighted edges, what is
the minimum total weight of any Hamiltonian path/cycle in G?

LonGESTPATH: Given a graph G (either directed or undirected, possibly with weighted edges), what is
the length of the longest simple path in G?

STEINERTREE: Given an undirected graph G with some of the vertices marked, what is the minimum
number of edges in a subtree of G that contains every marked vertex?

SuBseTSUM: Given a set X of positive integers and an integer k, does X have a subset whose elements
sum to k?

ParTITION: Given asetX of positive integers, can X be partitioned into two subsets with the same
sum?

3ParTITION: Given a set X of 3n positive integers, can X be partitioned into n three-element subsets,
all with the same sum?

INTEGERLINEARPROGRAMMING: GivenamatrixA € Z"™? and twovectors b € Z"and ¢ € Z¢, compute
max{c-x |Ax < b,x >0, x € Z%}.

FeasIBLEILP: Given a matrix A € Z"™< and a vector b € Z", determine whether the set of feasible
integer points max{x € Z? | Ax < b, x > 0} is empty.

DrauGHTs: Given ann x n international draughts configuration, what is the largest number of pieces
that can (and therefore must) be captured in a single move?

SteaMEDHAMS: Aurora borealis? At this time of year, at this time of day, in this part of the country,
localized entirely within your kitchen? May | see it?
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1. For each statement below, write “YES” if the statement is always true and “NO” otherwise,
and give a brief (at most one short sentence) explanation of your answer. Assume P # NP.
If there is any other ambiguity or uncertainty about an answer, write “NO”. For example:

e x+y=5
NO — Suppose x =3 and y =4.

* 3SAT can be solved in polynomial time.
NO — 3SAT is NP-hard.

e If P = NP then Jeff is the Queen of England.
YES — The hypothesis is false, so the implication is true.

Read each statement very carefully; some of these are deliberately subtle!

Which of the following statements are true?

(@) The solution to the recurrence T(n) = 2T (n/4) + 0(n?) is T(n) = 0(n?).
(b) The solution to the recurrence T(n) = 4T (n/2) + 0(n?) is T(n) = 0(n?).
(c) For every directed graph G, if G has at least one source, then G has at least one sink.

(d) Given any undirected graph G, we can compute a spanning tree of G in O(V + E)
time using whatever-first search.

(e) Suppose we want to iteratively evaluate the following recurrence:
0 ifi<Oorj<o
What(i,j—1)
max What(i — 1, j) otherwise
Ali]-Alj]+ What(i—1,j—1)

What(i, j) =

We can fill the array What[0..n,0..n] in O(n?) time, by decreasing i in the outer
loop and decreasing j in the inner loop.

Which of the following statements are true for all languages L C {0, 1}*?

) L*= (L")

(g) If L is decidable, then L* is decidable.

(h) L is either regular or NP-hard.

(i) If L is undecidable, then L has an infinite fooling set.

() The language {(M) | M decides L} is undecidable.
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2. For each statement below, write “YES” if the statement is always true and “NO” otherwise,
and give a brief (at most one short sentence) explanation of your answer. Assume P # NP.
If there is any other ambiguity or uncertainty about an answer, write “NO”.

Read each statement very carefully; some of these are deliberately tricky!

(Please remember to start your answers to this problem on a new page. Yes, this is really
just a continuation of problem 1; we split it into two problems to make grading easier.)

Consider the following pair of languages:
* DIRHAMPATH := {G | G is a directed graph with a Hamiltonian path}
* AcycLiC := {G | G is a directed acyclic graph}

(For concreteness, assume that in both of these languages, graphs are represented by their
adjacency matrices.) Which of the following statements are true, assuming P # NP?

(@) Acycric € NP

(b) Acycric N DIRHAMPATH € P

(¢) DirHaMPaATH is decidable.

(d) A polynomial-time reduction from DIRHAMPATH to AcycLic would imply P=NP.

(e) A polynomial-time reduction from Acycric to DIRHAMPATH would imply P=NP.

Suppose there is a polynomial-time reduction from some language A C {0, 1} reduces to
some other language B € {0, 1}. Which of the following statements are true, assuming
P # NP?

() ACB.

(g) There is an algorithm to transform any Python program that solves B in polynomial
time into a Python program that solves A in polynomial time.

(h) If Ais NP-hard then B is NP-hard.
(1) If Ais decidable then B is decidable.

(j) If a Turing machine M accepts B, the same Turing machine M also accepts A.
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3. Aladdin and Badroulbadour are playing a cooperative game. Each player has an array of
positive integers, arranged in a row of squares from left to right. Each player has a token,
which starts at the leftmost square of their row; their goal is to move both tokens to the
rightmost squares.

On each turn, both players move their tokens in the same direction, either left or right.
The distance each token travels is equal to the number under that token at the beginning
of the turn. For example, if a token starts on a square labeled 5, then it moves either five
squares to the right or five squares to the left. If either token moves past either end of its
row, then both players immediately lose.

For example, if Aladdin and Badroulbadour are given the arrays

A7 5 41 233 23 1 42|
B:[5 17247 352463 1]

they can win the game by moving right, left, left, right, right, left, right. On the other hand,
if they are given the arrays

A:}2:3i5 1:3|
B:[3:4:1 21|

they cannot win the game. (The first move must be to the right; then Aladdin’s token
moves out of bounds on the second turn.)

Describe and analyze an algorithm to determine whether Aladdin and Badroulbadour
can solve their puzzle, given the input arrays A[1..n] and B[1..n].

4. Submit a solution to exactly one of the following problems. Don’t forget to tell us which
problem you'’ve chosen!

(@) Let G = (V,E) be an arbitrary undirected graph. A subset S C V of vertices is mostly
independent if less than half the vertices of S have a neighbor that is also in S. Prove
that finding the largest mostly independent set in G is NP-hard.

(b) Let G = (V,E) be an arbitrary directed graph with colored edges. A rainbow
Hamiltonian cycle in G is a cycle that visits every vertex of G exactly one, in which
no pair of consecutive edges have the same color. Prove that it is NP-hard to decide
whether G has a rainbow Hamiltonian cycle.

(In fact, both of these problems are NP-hard, but we only want a proof for one of them.)
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5. Suppose we are given an n-digit integer X. Repeatedly remove one digit from either end
of X (your choice) until no digits are left. The square-depth of X is the maximum number
of perfect squares that you can see during this process. For example, the number 32492
has square-depth 3, by the following sequence of removals:

572 182 22
32492 — 3249 —- 324 -5 24 — 4 — €.

Describe and analyze an algorithm to compute the square-depth of a given integer X,
represented as an array X[ 1..n] of n decimal digits. Assume you have access to a subroutine
IsSQUARE that determines whether a given k-digit number (represented by an array of
digits) is a perfect square in O(k?2) time.

6. Recall that a run in a string w € {0, 1}* is a maximal substring of w whose characters are
all equal. For example, the string 00011111110000 is the concatenation of three runs:

00011111110000 =000 1111111 * 0000

(@) Let L, denote the set of all strings in {0, 1}* in which every run of 1s has even length
and every run of 0s has odd length.

e Describe a DFA or NFA that accepts L, and
* Give a regular expression that describes L.

(You do not need to prove that your answers are correct.)

(b) Let Lj denote the set of all strings in {0, 1}* in which every run of 9s is immediately
followed by a longer run of 1s. Prove that L; is not a regular language.

Both of these languages contain the strings 0111100011 and 110001111 and 111111 and
the empty string €, but neither language contains 000111 or 100011 or 0000.



