
CS/ECE 374 A = Fall 2021
9 Homework 1 :

Due Tuesday, August 31, 2021 at 8pm Central Time

• Submit your written solutions electronically to Gradescope as PDF files. Submit
a separate PDF file for each numbered problem. If you plan to typeset your solutions,
please use the LATEX solution template on the course web site. If you must submit scanned
handwritten solutions, please use a black pen on blank white paper and a high-quality
scanner app (or an actual scanner).

• Groups of up to three people can submit joint solutions on Gradescope. Exactly one student
in each group should upload the solution and indicate their other group members. All
group members must be already registered on Gradescope.

• You are not required to sign up on Gradescope or Piazza with your real name and your
illinois.edu email address; you may use any email address and alias of your choice. However,
to give you credit for the homework, we need to know who Gradescope thinks you are.
Please fill out the web form linked from the course web page.

• You may use any source at your disposal—paper, electronic, or human—but you must
cite every source that you use, and you must write everything yourself in your own words.
See the academic integrity policies on the course web site for more details.

• Written homework will be due every Tuesday at 8pm, except in weeks with exams. In
addition, guided problems sets on PrairieLearn are due every Monday at 8pm; each student
must do these individually. In particular, Guided Problem Set 1 is due Monday, August 30!
Each Guided Problem Set has the same weight as one numbered homework problem.

See the course web site for more information.

If you have any questions about these policies,
please don’t hesitate to ask in class, in office hours, or on Piazza.

CS/ECE 374 A Homework 1 (due August 31) Fall 2021

1. Consider the following pair of mutually recursive functions on strings:

odds(w) :=

(

ϵ if w= ϵ

a · evens(x) if w= ax
evens(w) :=

(

ϵ if w= ϵ

odds(x) if w= ax

For example, the following derivation shows that evens(PARITY) = AIY:

evens(PARITY) = odds(ARITY)
= A · evens(RITY)
= A · odds(ITY)
= A · (I · evens(TY))
= A · (I · odds(Y))
= A · (I · (Y · evens(ϵ)))
= A · (I · (Y · ϵ)))
= AIY

A similar derivation implies that odds(PARITY) = PRT.

(a) Give a self-contained recursive definition for the function evens that does not involve
the function odds.

(b) Prove the following identity for all strings w and x:

evens(w • x) =

(

evens(w) • evens(x) if |w| is even,
evens(w) • odds(x) if |w| is odd.

You may assume without proof any result proved in class, in lab, or in the lecture notes.
Otherwise, your proofs must be formal and self-contained, and they must invoke the formal
definitions of concatenation •, length |·|, and the evens and odds functions. Do not appeal
to intuition!

1

CS/ECE 374 A Homework 1 (due August 31) Fall 2021

2. Consider the following recursive function that perfectly shuffles two strings together:

shuffle(w, z) :=

(

z if w= ϵ

a · shuffle(z, x) if w= ax

For example, the following derivation shows that shuffle(PRT,AIY) = PARITY:

shuffle(PRT,AIY) = P · shuffle(AIY,RT)

= P · (A · shuffle(RT,IY))

= P · (A · (R · shuffle(IY,T)))

= P · (A · (R · (I · shuffle(T,Y))))

= P · (A · (R · (I · (T · shuffle(Y,ϵ)))))

= P · (A · (R · (I · (T · (Y · shuffle(ϵ,ϵ))))))
= P · (A · (R · (I · (T · (Y · ϵ)))))
= PARITY

(a) Prove that shuffle(odds(w), evens(w)) = w for every string w.
(b) Prove evens(shuffle(w, z)) = z for all strings w and z such that |w|= |z|.

You may assume without proof any result proved in class, in lab, or in the lecture notes.
Otherwise, your proofs must be formal and self-contained, and they must invoke the formal
definitions of concatenation • and the functions shuffle, evens, and odds. Do not appeal to
intuition!

2

CS/ECE 374 A Homework 1 (due August 31) Fall 2021

Rubrics

We will announce standard grading rubrics for common question types, which we will apply on all
homeworks and exams. However, please remember that some homework and exam questions may
fall outside the scope of these standard rubrics.

Standard induction rubric. For problems worth 10 points:

+ 1 for explicitly considering an arbitrary object.
+ 2 for a valid strong induction hypothesis

– Deadly Sin! No credit here for stating a weak induction hypothesis, unless the rest of the
proof is absolutely perfect.

+ 2 for explicit exhaustive case analysis

– No credit here if the case analysis omits an infinite number of objects. (For example: all
odd-length palindromes.)

– −1 if the case analysis omits an finite number of objects. (For example: the empty string.)
– −1 for making the reader infer the case conditions. Spell them out!
– No penalty if the cases overlap (for example: even length at least 2, odd length at least 3,

and length at most 5.)

+ 1 for cases that do not invoke the inductive hypothesis (“base cases”)

– No credit here if one or more “base cases” are missing.

+ 2 for correctly applying the stated inductive hypothesis

– No credit here for applying a different inductive hypothesis, even if that different inductive
hypothesis would be valid.

+ 2 for other details in cases that invoke the inductive hypothesis (“inductive cases”)

– No credit here if one or more “inductive cases” are missing.

For (sub)problems worth less than 10 points, scale and round to the nearest half-integer.

Solved Problems

Each homework assignment will include at least one fully solved problem, similar to the problems
assigned in that homework, together with the grading rubric we would apply if this problem appeared
on a homework or exam. These model solutions illustrate our recommendations for structure,
presentation, and level of detail in your homework solutions. Of course, the actual content of your
solutions won’t match the model solutions, because your problems are different!

4. For any string w ∈ {0,1}∗, let swap(w) denote the string obtained from w by swapping
the first and second symbols, the third and fourth symbols, and so on. For any string
w ∈ {0,1}∗, let swap(w) denote the string obtained from w by swapping the first and
second symbols, the third and fourth symbols, and so on. For example:

swap(10 11 00 01 10 1) = 01 11 00 10 01 1.

3

CS/ECE 374 A Homework 1 (due August 31) Fall 2021

The swap function can be formally defined as follows:

swap(w) :=











ϵ if w= ϵ
w if w= 0 or w= 1

ba • swap(x) if w= abx for some a, b ∈ {0,1} and x ∈ {0,1}∗

(a) Prove that |swap(w)|= |w| for every string w.

Solution: Let w be an arbitrary string.
Assume |swap(x)|= |x | for every string x that is shorter than w.
There are three cases to consider (mirroring the definition of swap):
• If w= ϵ, then

|swap(w)|= |swap(ϵ)| because w= ϵ

= |ϵ| by definition of swap
= |w| because w= ϵ

• If w= 0 or w= 1, then

|swap(w)|= |w| by definition of swap

• Finally, if w= abx for some a, b ∈ {0,1} and x ∈ {0,1}∗ , then

|swap(w)|= |swap(abx)| because w= abx

= |ba • swap(x)| by definition of swap
= |ba|+ |swap(x)| because |y • z|= |y|+ |z|
= |ba|+ |x | by the induction hypothesis
= 2+ |x | by definition of | · |
= |ab|+ |x | by definition of | · |
= |ab • x | because |y • z|= |y|+ |z|
= |abx | by definition of •
= |w| because w= abx

In all cases, we conclude that |swap(w)|= |w|. ■

Rubric: 5 points: Standard induction rubric (scaled). This is more detail than necessary
for full credit.

4

CS/ECE 374 A Homework 1 (due August 31) Fall 2021

(b) Prove that swap(swap(w)) = w for every string w.

Solution: Let w be an arbitrary string.
Assume swap(swap(x)) = x for every string x that is shorter than w.
There are three cases to consider (mirroring the definition of swap):
• If w= ϵ, then

swap(swap(w)) = swap(swap(ϵ)) because w= ϵ

= swap(ϵ) by definition of swap
= ϵ by definition of swap
= w because w= ϵ

• If w= 0 or w= 1, then

swap(swap(w)) = swap(w) by definition of swap
= w by definition of swap

• Finally, if w= abx for some a, b ∈ {0,1} and x ∈ {0,1}∗ , then

swap(swap(w)) = swap(swap(abx)) because w= abx

= swap(ba • swap(x)) by definition of swap
= swap(ba • z) where z = swap(x)
= swap(baz) by definition of •
= ab • swap(z) by definition of swap
= ab • swap(swap(x)) because z = swap(x)
= ab • x by the induction hypothesis
= abx by definition of •
= w because w= abx

In all cases, we conclude that swap(swap(w)) = w. ■

Rubric: 5 points: Standard induction rubric (scaled). This is more detail than necessary
for full credit.

5

CS/ECE 374 A Homework 1 (due August 31) Fall 2021

5. The reversal wR of a string w is defined recursively as follows:

wR :=

(

ϵ if w= ϵ

xR • a if w= a · x

A palindrome is any string that is equal to its reversal, like AMANAPLANACANALPANAMA,
RACECAR, POOP, I, and the empty string.

(a) Give a recursive definition of a palindrome over the alphabet Σ.

Solution: A string w ∈ Σ∗ is a palindrome if and only if either
• w= ϵ, or
• w= a for some symbol a ∈ Σ, or
• w= axa for some symbol a ∈ Σ and some palindrome x ∈ Σ∗.

■

Rubric: 2 points = ½ for each base case + 1 for the recursive case. No credit for the rest of
the problem unless this part is correct.

(b) Prove w= wR for every palindrome w (according to your recursive definition).
You may assume the following facts about all strings x , y , and z:
• Reversal reversal: (xR)R = x
• Concatenation reversal: (x • y)R = yR • xR

• Right cancellation: If x • z = y • z, then x = y .

Solution: Let w be an arbitrary palindrome.
Assume that x = xR for every palindrome x such that |x |< |w|.
There are three cases to consider (mirroring the definition of “palindrome”):

• If w= ϵ, then wR = ϵ by definition, so w= wR.
• If w= a for some symbol a ∈ Σ, then wR = a by definition, so w= wR.
• Finally, if w = axa for some symbol a ∈ Σ and some palindrome x ∈ P,

then

wR = (a · x • a)R

= (x • a)R • a by definition of reversal
= aR • xR • a by concatenation reversal
= a • xR • a by definition of reversal
= a • x • a by the inductive hypothesis
= w by assumption

In all three cases, we conclude that w= wR. ■

Rubric: 4 points: standard induction rubric (scaled)

6

CS/ECE 374 A Homework 1 (due August 31) Fall 2021

(c) Prove that every string w such that w = wR is a palindrome (according to your
recursive definition).
Again, you may assume the following facts about all strings x , y , and z:
• Reversal reversal: (xR)R = x
• Concatenation reversal: (x • y)R = yR • xR

• Right cancellation: If x • z = y • z, then x = y .

Solution: Let w be an arbitrary string such that w= wR.
Assume that every string x such that |x |< |w| and x = xR is a palindrome.
There are three cases to consider (mirroring the definition of “palindrome”):
• If w= ϵ, then w is a palindrome by definition.
• If w= a for some symbol a ∈ Σ, then w is a palindrome by definition.
• Otherwise, we have w= ax for some symbol a and some non-empty string x .

The definition of reversal implies that wR = (ax)R = xRa.
Because x is non-empty, its reversal xR is also non-empty.
Thus, xR = b y for some symbol b and some string y .
It follows that wR = b ya, and therefore w= (wR)R = (b ya)R = a yR b.
[At this point, we need to prove that a = b and that y is a palindrome.]

Our assumption that w= wR implies that b ya = a yR b.
The recursive definition of string equality immediately implies a = b.
Because a = b, we have w= a yRa and wR = a ya.
The recursive definition of string equality implies yRa = ya.
Right cancellation implies that yR = y .
The inductive hypothesis now implies that y is a palindrome.
We conclude that w is a palindrome by definition.

In all three cases, we conclude that w is a palindrome. ■

Rubric: 4 points: standard induction rubric (scaled).

7

CS/ECE 374 A = Fall 2021
9 Homework 2 :

Due Tuesday, September 7, 2021 at 8pm

• Submit your written solutions electronically to Gradescope as PDF files. Submit a
separate PDF file for each numbered problem. If you plan to typeset your solutions,
please use the LATEX solution template on the course web site. If you must submit scanned
handwritten solutions, please use a black pen on blank white paper and a high-quality
scanner app (or an actual scanner).

• You may use any source at your disposal—paper, electronic, or human—but you must
cite every source that you use, and you must write everything yourself in your own words.
See the academic integrity policies on the course web site for more details.

1. Let L be the set of all strings w in {A,B}∗ for which #(ABBA, w)≥ 2. Here #(x , w) denotes
the number of occurences of the substring x in the string w.

(a) Give a regular expression for L, and briefly argue why your expression is correct.
(b) Describe a DFA over the alphabet Σ= {A,B} that accepts the language L.

You may either draw the DFA or describe it formally, but the states Q, the start
state s, the accepting states A, and the transition function δ must be clearly specified.
(See the standard DFA rubric for more details.)

Argue that your DFA is correct by explaining what each state in your DFA means.
Drawings or formal descriptions without English explanations will be heavily penalized,
even if they are perfectly correct.

[Hint: The shortest string in L has length 7.]

CS/ECE 374A Homework 2 (due September 7) Fall 2021

2. Let L denote the set of all strings w ∈ {0,1}∗ that satisfy at most two of the following
conditions:

• The number of times the substring 01 appears in w is not divisible by 31.
• The length of w is even.
• The binary value of w equals 2 (mod 3).

For example: The string 0101 satisfies all three conditions, so 0101 is not in L, and the
empty string ε satisfies only the second condition, so ε ∈ L. (01 appears in ε zero times,
and the binary value of ε is 0, because what else could it be?)

Formally describe a DFA with input alphabet Σ= {0,1} that accepts the language L, by
explicitly describing the states Q, the start state s, the accepting states A, and the transition
function δ. Do not attempt to draw your DFA; the smallest DFA for this language has 36
states, which is far too many for a drawing to be understandable.

Argue that your machine is correct by explaining what each state in your DFA means.
Formal descriptions without English explanations will be heavily penalized, even if they
are perfectly correct. (See the standard DFA rubric for more details.)

This is an exercise in clear communication. We are not only asking you to design a
correct DFA. We are also asking you to clearly, precisely, and convincingly explain your DFA
to another human being who understands DFAs but has not thought about this particular
problem. Excessive formality and excessive brevity could be as problematic as imprecision
and handwaving.

1Recall that a is divisible by b if and only if a ≡ 0 (mod b).

2

CS/ECE 374A Homework 2 (due September 7) Fall 2021

Standard regular expression rubric. For problems worth 10 points:

• 2 points for a syntactically correct regular expression.

• Homework only: 4 points for a brief English explanation of your regular expression. This is how
you argue that your regular expression is correct.

– For longer expressions, you should explain each of the major components of your expres-
sion, and separately explain how those components fit together.

– We do not want a transcription; don’t just translate the regular-expression notation into
English.

• 4 points for correctness. (8 points on exams, with all penalties doubled)

– −1 for a single mistake: one typo, excluding exactly one string in the target language, or
including exactly one string not in the target language.

– −2 for incorrectly including/excluding more than one but a finite number of strings.
– −4 for incorrectly including/excluding an infinite number of strings.

• Regular expressions that are more complex than necessary may be penalized. Regular expres-
sions that are significantly too complex may get no credit at all. On the other hand, minimal
regular expressions are not required for full credit.

3

CS/ECE 374A Homework 2 (due September 7) Fall 2021

Standard DFA design rubric. For problems worth 10 points:

• 2 points for an unambiguous description of a DFA, including the states set Q, the start state s, the
accepting states A, and the transition function δ.

– Drawings:
∗ Use an arrow from nowhere to indicate s.
∗ Use doubled circles to indicate accepting states A.
∗ If A=∅, you must say so explicitly.
∗ If your drawing omits a junk/trash/reject state, you must say so explicitly.
∗ Draw neatly! If we can’t read your solution, we can’t give you credit for it.

– Text descriptions: You can describe the transition function either using a 2d array, using
mathematical notation, or using an algorithm. But you must still give an explicit descrip-
tion of the states Q, the start state s, and the accepting states A.

– Product constructions: You must give a complete description of each the DFAs you are
combining (as either drawings, text, or recursive products), together with the accepting
states of the product DFA.

• Homework only: 4 points for briefly explaining the purpose of each state in English. This is how
you argue that your DFA is correct.

– In particular, each state must have a mnemonic name.
– For product constructions, explaining the states in the factor DFAs is both necessary and

su�icient.
– Yes, we mean it: A perfectly correct drawing of a perfectly correct DFA with no state expla-

nation is worth at most 6 points.

• 4 points for correctness. (8 points on exams, with all penalties doubled)

– −1 for a single mistake: a single misdirected transition, a single missing or extra accepting
state, rejecting exactly one string that should be accepted, or accepting exactly one string
that should be accepted.

– −2 for incorrectly accepting/rejecting more than one but a finite number of strings.
– −4 for incorrectly accepting/rejecting an infinite number of strings.

• DFAs that are more complex than necessary may be penalized. DFAs that are significantly more
complex than necessary may get no credit at all. On the other hand, minimal DFAs are not re-
quired for full credit, unless the problem explicitly asks for them.

• Half credit for describing an NFA when the problem asks for a DFA.

4

CS/ECE 374A Homework 2 (due September 7) Fall 2021

Solved problem

3. C comments are the set of strings over alphabet Σ = {*,/,A,�, �} that form a proper
comment in the C program language and its descendants, like C++ and Java. Here �

represents the newline character, � represents any other whitespace character (like the
space and tab characters), and A represents any non-whitespace character other than * or /.2
There are two types of C comments:

• Line comments: Strings of the form // · · · �

• Block comments: Strings of the form /* · · ·*/

Following the C99 standard, we explicitly disallow nesting comments of the same type.
A line comment starts with // and ends at the first �after the opening //. A block comment
starts with /* and ends at the the first */ completely after the opening /*; in particular,
every block comment has at least two *s. For example, each of the following strings is a
valid C comment:

/***/ //�//� � /*///�*� �**/ /*�//� ��*/

On the other hand, none of the following strings is a valid C comment:

/*/ //�//� �� � /*�/*�*/�*/

(Questions about C comments start on the next page.)

2The actual C commenting syntax is considerably more complex than described here, because of character and
string literals.

• The opening /* or // of a comment must not be inside a string literal (" · · ·") or a (multi-)character literal
(' · · ·').

• The opening double-quote of a string literal must not be inside a character literal ('"') or a comment.
• The closing double-quote of a string literal must not be escaped (\")
• The opening single-quote of a character literal must not be inside a string literal (" · · ·' · · ·") or a comment.
• The closing single-quote of a character literal must not be escaped (\’)
• A backslash escapes the next symbol if and only if it is not itself escaped (\\) or inside a comment.

For example, the string "/*\\\"*/"/*"/*\"/*"*/ is a valid string literal (representing the 5-character string /*\"*/,
which is itself a valid block comment!) followed immediately by a valid block comment.

For this homework question, pretend that the characters ', ", and \ do not exist.
Commenting in C++ is even more complicated, thanks to the addition of raw string literals. Don’t ask.
Some C and C++ compilers do support nested block comments, in violation of the language specification. A few

other languages, like OCaml, explicitly allow nesting block comments.

5

CS/ECE 374A Homework 2 (due September 7) Fall 2021

(a) Describe a regular expression for the set of all C comments.

Solution:

//(/+ *+ A+ �)∗ � + /*
�

/+ A+ �+ �+ **∗(A+ �+ �)
�∗

∗/

The first subexpression matches all line comments, and the second subexpression
matches all block comments. Within a block comment, we can freely use any
symbol other than *, but any run of *s must be followed by a character in
(A+ �+ �) or by the closing slash of the comment. �

Rubric: Standard regular expression rubric. This is not the only correct solution.

(b) Describe a regular expression for the set of all strings composed entirely of blanks (�),
newlines (�), and C comments.

Solution:
�

�+ �+ //(/+ *+ A+ �)∗ �+ /* (/+ A+ �+ �+ **∗(A+ �+ �))∗ *∗*/
�∗

This regular expression has the form (〈whitespace〉 + 〈comment〉)∗, where
〈whitespace〉 is the regular expression � + �and 〈comment〉 is the regular
expression from part (a). �

Rubric: Standard regular expression rubric. This is not the only correct solution.

6

CS/ECE 374A Homework 2 (due September 7) Fall 2021

(c) Describe a DFA that accepts the set of all C comments.

Solution: The following eight-state DFA recognizes the language of C comments.
All missing transitions lead to a hidden reject state.

/*A◇

*

/

/

↲

*

*

/

A◇↲

/A◇↲
s /

// L

/* /** B

The states are labeled mnemonically as follows:
• s — We have not read anything.
• / — We just read the initial /.
• // — We are reading a line comment.
• L — We have just read a complete line comment.
• /* — We are reading a block comment, and we did not just read a * after

the opening /*.
• /** — We are reading a block comment, and we just read a * after the

opening /*.
• B — We have just read a complete block comment.

�

Rubric: Standard DFA design rubric. This is not the only correct solution, or even the sim-
plest correct solution. (We don’t need two distinct accepting states.)

7

CS/ECE 374A Homework 2 (due September 7) Fall 2021

(d) Describe a DFA that accepts the set of all strings composed entirely of blanks (�),
newlines (�), and C comments.

Solution: By merging the accepting states of the previous DFA with the start
state and adding white-space transitions at the start state, we obtain the following
six-state DFA. Again, all missing transitions lead to a hidden reject state.

/*A◇

*

/

/
↲

*

/

A◇↲

◇↲

/A◇↲*

s /

//

/*/**

The states are labeled mnemonically as follows:
• s — We are between comments.
• / — We just read the initial / of a comment.
• // — We are reading a line comment.
• /* — We are reading a block comment, and we did not just read a * after

the opening /*.
• /** — We are reading a block comment, and we just read a * after the

opening /*.
�

Rubric: Standard DFA design rubric. This is not the only correct solution, but it is the sim-
plest correct solution.

8

CS/ECE 374 A = Fall 2021
9 Homework 3 :

Due Tuesday, September 14, 2021 at 8pm

1. Prove that the following languages are not regular.

(a) {0m1n | m and n are relatively prime}
(b) {w ∈ (0+ 1)∗ | 10n1n for n> 0 is a suffix of w}
(c) The set of all palindromes in (0+ 1)∗ whose length is divisible by 3.

2. For each of the following languages over the alphabet Σ = {0,1}, either prove that the
language is regular (by constructing an appropriate DFA, NFA, or regular expression) or
prove that the language is not regular (by constructing an infinite fooling set). Recall
that Σ+ denotes the set of all nonempty strings over Σ. Watch those parentheses!

(a) {0a1w10c | w ∈ Σ∗, (a ≤ |w|+ c) and (|w| ≤ a+ c or c ≤ a+ |w|)}
(b)
�

0aw0a
�

� w ∈ Σ+, a > 0, |w| ≥ 0
	

(c)
�

xwwR y
�

� w, x , y ∈ Σ+
	

(d)
�

wwR x y
�

� w, x , y ∈ Σ+
	

[Hint: Exactly two of these languages are regular.]

CS/ECE 374A Homework 3 (due September 14) Fall 2021

Solved problem

4. For each of the following languages, either prove that the language is regular (by con-
structing an appropriate DFA, NFA, or regular expression) or prove that the language is not
regular (by constructing an infinite fooling set).
Recall that a palindrome is a string that equals its own reversal: w= wR. Every string of
length 0 or 1 is a palindrome.

(a) Strings in (0+ 1)∗ in which no prefix of length at least 2 is a palindrome.

Solution: Regular: ε + 01∗ + 10∗. Call this language La.
Let w be an arbitrary non-empty string in (0+ 1)∗. Without loss of generality,

assume w= 0x for some string x . There are two cases to consider.
• If x contains a 0, then we can write w= 01n0y for some integer n and some

string y . The prefix 01n0 is a palindrome of length at least 2. Thus, w 6∈ La.
• Otherwise, x ∈ 1∗. Every non-empty prefix of w is equal to 01n for some

non-negative integer n≤ |x |. Every palindrome that starts with 0 also ends
with 0, so the only palindrome prefixes of w are ε and 0, both of which have
length less than 2. Thus, w ∈ La.

We conclude that 0x ∈ La if and only if x ∈ 1∗. A similar argument implies that
1x ∈ La if and only if x ∈ 0∗. Finally, trivially, ε ∈ La. �

Rubric: 2½ points = ½ for “regular” + 1 for regular expression + 1 for justification. This is
more detail than necessary for full credit.

(b) Strings in (0+ 1+ 2)∗ in which no prefix of length at least 2 is a palindrome.

Solution: Not regular. Call this language Lb.
I claim that the infinite language F = (012)+ is a fooling set for Lb.
Let x and y be arbitrary distinct strings in F .
Then x = (012)i and y = (012) j for some positive integers i 6= j.
Without loss of generality, assume i < j.
Let z be the suffix (210)i .
• xz = (012)i(210)i is a palindrome of length 6i ≥ 2, so xz 6∈ Lb.
• yz = (012) j(210)i has no palindrome prefixes except ε and 0, because i < j,

so yz ∈ Lb.
We conclude that F is a fooling set for Lb, as claimed.
Because F is infinite, Lb cannot be regular. �

Rubric: 2½ points = ½ for “not regular” + 2 for fooling set proof (standard rubric, scaled).

2

CS/ECE 374A Homework 3 (due September 14) Fall 2021

(c) Strings in (0+ 1)∗ in which no prefix of length at least 3 is a palindrome.

Solution: Not regular. Call this language Lc .
I claim that the infinite language F = (001101)+ is a fooling set for Lc .
Let x and y be arbitrary distinct strings in F .
Then x = (001101)i and y = (001101) j for some positive integers i 6= j.
Without loss of generality, assume i < j.
Let z be the suffix (101100)i .
• xz = (001101)i(101100)i is a palindrome of length 12i ≥ 2, so xz 6∈ Lb.
• yz = (001101) j(101100)i has no palindrome prefixes except ε and 0, be-

cause i < j, so yz ∈ Lb.
We conclude that F is a fooling set for Lc , as claimed.
Because F is infinite, Lc cannot be regular. �

Rubric: 2½ points = ½ for “not regular” + 2 for fooling set proof (standard rubric, scaled).

(d) Strings in (0+ 1)∗ in which no substring of length at least 3 is a palindrome.

Solution: Regular. Call this language Ld .
Every palindrome of length at least 3 contains a palindrome substring of

length 3 or 4. Thus, the complement language Ld is described by the regular
expression

(0+ 1)∗(000+ 010+ 101+ 111+ 0110+ 1001)(0+ 1)∗

Thus, Ld is regular, so its complement Ld is also regular. �

Solution: Regular. Call this language Ld .
In fact, Ld is finite! Appending either 0 or 1 to any of the underlined strings

creates a palindrome suffix of length 3 or 4.

ε + 0+ 1+ 00+ 01+ 10+ 11+ 001+ 011+ 100+ 110+ 0011+ 1100

�

Rubric: 2½ points = ½ for “regular” + 2 for proof:
• 1 for expression for Ld + 1 for applying closure
• 1 for regular expression + 1 for justification

3

CS/ECE 374A Homework 3 (due September 14) Fall 2021

Standard fooling set rubric. For problems worth 5 points:
• 2 points for the fooling set:

+ 1 for explicitly describing the proposed fooling set F .
+ 1 if the proposed set F is actually a fooling set for the target language.
− No credit for the proof if the proposed set is not a fooling set.
− No credit for the problem if the proposed set is finite.

• 3 points for the proof:
◦ The proof must correctly consider arbitrary strings x , y ∈ F .
− No credit for the proof unless both x and y are always in F .
− No credit for the proof unless x and y can be any strings in F .

+ 1 for correctly describing a su�ix z that distinguishes x and y .
+ 1 for proving either xz ∈ L or yz ∈ L.
+ 1 for proving either yz 6∈ L or xz 6∈ L, respectively.

As usual, scale partial credit (rounded to nearest ½) for problems worth fewer points.

4

CS/ECE 374 A = Fall 2021
9 Homework 4 :

Due Tuesday, September 21, 2021 at 8pm

This is the last homework before Midterm 1.

1. For each of the following regular expressions, describe or draw two finite-state machines:

• An NFA that accepts the same language, constructed from the given regular expression
using Thompson’s algorithm (described in class and in the notes).

• An equivalent DFA, constructed from your NFA using the incremental subset algorithm
(described in class and in the notes). For each state in your DFA, identify the
corresponding subset of states in your NFA. Your DFA should have no unreachable
states.

(a) (0+ 11)∗(00+ 1)∗

(b) (((0∗ + 1)∗ + 0)∗ + 1)∗

(see next page for Question 2)

CS/ECE 374A Homework 4 (due September 24) Fall 2021

2. Let L be any regular language over the alphabet Σ = {0,1}. Prove that the following
languages are also regular.

(a) thirds(L) := {thirds(w)|w ∈ L},
where thirds(w) is the subsequence of w containing every third symbol.
For example, thirds(011000110) = 100.
(notice, we picked the third, sixth, and ninth symbols in 011000110)

(b) thirds−1(L) := {w ∈ Σ∗|thirds(w) ∈ L}.

Standard langage transformation rubric. For problems worth 10 points:

+ 2 for a formal, complete, and unambiguous description of the output automaton, includ-
ing the states, the start state, the accepting states, and the transition function, as functions
of an arbitrary input DFA. The description must state whether the output automaton is a
DFA, an NFA without ε-transitions, or an NFA with ε-transitions.
• No points for the rest of the problem if this is missing.

+ 2 for a brief English explanation of the output automaton. We explicitly do not want a
formal proof of correctness, or an English transcription, but a few sentences explaining
how your machine works and justifying its correctness. What is the overall idea? What do
the states represent? What is the transition function doing? Why these accepting states?
• Deadly Sin: No points for the rest of the problem if this is missing.

+ 6 for correctness
+ 3 for accepting all strings in the target language
+ 3 for accepting only strings in the target language
– 1 for a single mistake in the formal description (for example a typo)
• Double-check correctness when the input language is∅, or {ε}, or 0∗, orΣ∗.

2

CS/ECE 374A Homework 4 (due September 24) Fall 2021

Solved problem

3. (a) Fix an arbitrary regular language L. Prove that the language half(L) := {w | ww ∈ L}
is also regular.

Solution: Let M = (Σ,Q, s, A,δ) be an arbitrary DFA that accepts L. We define a
new NFA M ′ = (Σ,Q′, s′, A′,δ′) with ε-transitions that accepts half(L), as follows:

Q′ = (Q×Q×Q)∪ {s′}
s′ is an explicit state in Q′

A′ = {(h, h, q) | h ∈Q and q ∈ A}

δ′(s′,ε) = {(s, h, h) | h ∈Q}
δ′(s′, a) =∅

δ′((p, h, q),ε) =∅

δ′((p, h, q), a) =
��

δ(p, a), h,δ(q, a)
�	

M ′ reads its input string w and simulates M reading the input string ww.
Specifically, M ′ simultaneously simulates two copies of M , one reading the left
half of ww starting at the usual start state s, and the other reading the right half
of ww starting at some intermediate state h.
• The new start state s′ non-deterministically guesses the “halfway” state

h = δ∗(s, w) without reading any input; this is the only non-determinism
in M ′.

• State (p, h, q) means the following:
– The left copy of M (which started at state s) is now in state p.
– The initial guess for the halfway state is h.
– The right copy of M (which started at state h) is now in state q.

• M ′ accepts if and only if the left copy of M ends at state h (so the initial
non-deterministic guess h= δ∗(s, w) was correct) and the right copy of M
ends in an accepting state.

�

Solution (smartass): A complete solution is given in the lecture notes. �

Rubric: 5 points: standard langage transformation rubric (scaled). Yes, the smartass so-
lution would be worth full credit.

3

CS/ECE 374A Homework 4 (due September 24) Fall 2021

(b) Describe a regular language L such that the language double(L) := {ww | w ∈ L} is
not regular. Prove your answer is correct.

Solution: Consider the regular language L = 0∗1.
Expanding the regular expression lets us rewrite L = {0n1 | n≥ 0}. It follows
that double(L) = {0n10n1 | n≥ 0}. I claim that this language is not regular.
Let x and y be arbitrary distinct strings in L.
Then x = 0i1 and y = 0 j1 for some integers i 6= j.
Then x is a distinguishing suffix of these two strings, because
• x x ∈ double(L) by definition, but
• y x = 0i10 j1 6∈ double(L) because i 6= j.

We conclude that L is a fooling set for double(L).
Because L is infinite, double(L) cannot be regular. �

Solution: Consider the regular language L = Σ∗ = (0+ 1)∗.
I claim that the language double(Σ∗) = {ww | w ∈ Σ∗} is not regular.
Let F be the infinite language 01∗0.
Let x and y be arbitrary distinct strings in F .
Then x = 01i0 and y = 01 j0 for some integers i 6= j.
The string z = 1i is a distinguishing suffix of these two strings, because
• xz = 01i01i = ww where w= 01i , so xz ∈ double(Σ∗), but
• y x = 01 j01i 6∈ double(Σ∗) because i 6= j.

We conclude that F is a fooling set for double(Σ∗).
Because F is infinite, double(Σ∗) cannot be regular. �

Rubric: 5 points:

• 2 points for describing a regular language L such that double(L) is not regular.
• 1 point for describing an infinite fooling set for double(L):

+ ½ for explicitly describing the proposed fooling set F .
+ ½ if the proposed set F is actually a fooling set.
− No credit for the proof if the proposed set is not a fooling set.
− No credit for the problem if the proposed set is finite.

• 2 points for the proof:
+ ½ for correctly considering arbitrary strings x and y
− No credit for the proof unless both x and y are always in F .
− No credit for the proof unless both x and y can be any string in F .

+ ½ for correctly stating a su�ix z that distinguishes x and y .
+ ½ for proving either xz ∈ L or yz ∈ L.
+ ½ for proving either yz 6∈ L or xz 6∈ L, respectively.

These are not the only correct solutions. These are not the only fooling sets for these lan-
guages.

4

CS/ECE 374A Homework 4 (due September 24) Fall 2021

Standard langage transformation rubric. For problems worth 10 points:

+ 2 for a formal, complete, and unambiguous description of the output automaton, includ-
ing the states, the start state, the accepting states, and the transition function, as functions
of an arbitrary input DFA. The description must state whether the output automaton is a
DFA, an NFA without ε-transitions, or an NFA with ε-transitions.
• No points for the rest of the problem if this is missing.

+ 2 for a brief English explanation of the output automaton. We explicitly do not want a
formal proof of correctness, or an English transcription, but a few sentences explaining
how your machine works and justifying its correctness. What is the overall idea? What do
the states represent? What is the transition function doing? Why these accepting states?
• Deadly Sin: No points for the rest of the problem if this is missing.

+ 6 for correctness
+ 3 for accepting all strings in the target language
+ 3 for accepting only strings in the target language
– 1 for a single mistake in the formal description (for example a typo)
• Double-check correctness when the input language is∅, or {ε}, or 0∗, orΣ∗.

5

CS/ECE 374 A = Fall 2021
9 Homework 5 :

Due Tuesday, October 5, 2021 at 8pm Central Time

1. Consider the following cruel and unusual sorting algorithm, proposed by Gary Miller:

Cruel(A[1 .. n]):
if n> 1

Cruel(A[1 .. n/2])
Cruel(A[n/2+ 1 .. n])
Unusual(A[1 .. n])

Unusual(A[1 .. n]):
if n= 2

if A[1]> A[2] 〈〈the only comparison!〉〉
swap A[1]↔ A[2]

else
for i← 1 to n/4 〈〈swap 2nd and 3rd quarters〉〉

swap A[i + n/4]↔ A[i + n/2]
Unusual(A[1 .. n/2]) 〈〈recurse on left half 〉〉
Unusual(A[n/2+ 1 .. n]) 〈〈recurse on right half 〉〉
Unusual(A[n/4+ 1 .. 3n/4]) 〈〈recurse on middle half 〉〉

The comparisons performed by Miller’s algorithm do not depend at all on the values in the
input array; such a sorting algorithm is called oblivious. Assume for this problem that the
input size n is always a power of 2.

(a) Prove by induction that Cruel correctly sorts any input array. [Hint: Follow the
smallest n/4 elements. Follow the largest n/4 elements. Follow the middle n/2
elements. What does Unusual actually do??]

(b) Prove that Cruel would not correctly sort if we removed the for-loop from Unusual.
(c) Prove that Cruel would not correctly sort if we swapped the last two lines of Unusual.
(d) What is the running time of Unusual? Justify your answer.
(e) What is the running time of Cruel? Justify your answer.

2. Dakshita is putting together a list of famous cryptographers, each with their dates of birth
and death: al-Kindi (801–873), Giovanni Fontana (1395–1455), Leon Alberti (1404–1472),
Charles Babbage (1791–1871), Alan Turing (1912–1954), Joan Clarke (1917–1996), Ann
Caracristi (1921–2016), and so on. She wonders which two cryptographers on her list
had the longest overlap between their lifetimes. For example, among the seven example
cryptographers, Clarke and Caracristi had the longest overlap of 45 years (1921–1966).

CS/ECE 374 A Homework 5 (due October 5) Fall 2021

Dakshita formalizes her problem as follows. The input is an array A[1 .. n] of records,
each with two numerical fields A[i].birth and A[i].death and a string field A[i].name. The
desired output is the maximum, over all indices i ̸= j, of the overlap length

min
�

A[i].death, A[j].death
	

−max
�

A[i].birth, A[j].birth
	

.

Describe and analyze an efficient algorithm to solve Dakshita’s problem.
[Hint: Start by splitting the list in half by birth date. Do not assume that cryptographers

always die in the same order they are born. Assume that birth and death dates are distinct
and accurate to the nanosecond.]

2

CS/ECE 374 A Homework 5 (due October 5) Fall 2021

Rubrics

Solved Problems

4. Suppose we are given two sets of n points, one set {p1, p2, . . . , pn} on the line y = 0 and
the other set {q1, q2, . . . , qn} on the line y = 1. Consider the n line segments connecting
each point pi to the corresponding point qi. Describe and analyze a divide-and-conquer
algorithm to determine how many pairs of these line segments intersect, in O(n log n) time.
See the example below.

q1 q4 q7 q3q5 q2 q6

p1 p4p7 p3 p5p2p6

Seven segments with endpoints on parallel lines, with 11 intersecting pairs.

Your input consists of two arrays P[1 .. n] and Q[1 .. n] of x-coordinates; you may
assume that all 2n of these numbers are distinct. No proof of correctness is necessary, but
you should justify the running time.

Solution: We begin by sorting the array P[1 .. n] and permuting the array Q[1 .. n]
to maintain correspondence between endpoints, in O(n log n) time. Then for any
indices i < j, segments i and j intersect if and only if Q[i]>Q[j]. Thus, our goal is
to compute the number of pairs of indices i < j such that Q[i]>Q[j]. Such a pair is
called an inversion.

We count the number of inversions in Q using the following extension of mergesort;
as a side effect, this algorithm also sorts Q. If n < 100, we use brute force in O(1)
time. Otherwise:

• Color the elements in the Left half Q[1 .. ⌊n/2⌋] bLue.
• Color the elements in the Right half Q[⌊n/2⌋+ 1 .. n] Red.
• Recursively count inversions in (and sort) the blue subarray Q[1 .. ⌊n/2⌋].
• Recursively count inversions in (and sort) the red subarray Q[⌊n/2⌋+ 1 .. n].
• Count red/blue inversions as follows:

– Merge the sorted subarrays Q[1 .. n/2] and Q[n/2+1 .. n], maintaining the
element colors.

– For each blue element Q[i] of the now-sorted array Q[1 .. n], count the
number of smaller red elements Q[j].

The last substep can be performed in O(n) time using a simple for-loop:

3

CS/ECE 374 A Homework 5 (due October 5) Fall 2021

CountRedBlue(A[1 .. n]):
count← 0
total← 0
for i← 1 to n

if A[i] is red
count← count+ 1

else
total← total+ count

return total

Merge and CountRedBlue each run in O(n) time. Thus, the running time of our
inversion-counting algorithm obeys the mergesort recurrence T (n) = 2T (n/2)+O(n).
(We can safely ignore the floors and ceilings in the recursive arguments.) We conclude
that the overall running time of our algorithm is O(n log n), as required.

Rubric: This is enough for full credit.

In fact, we can execute the third merge-and-count step directly by modifying
the Merge algorithm, without any need for “colors”. Here changes to the standard
Merge algorithm are indicated in red.

MergeAndCount(A[1 .. n], m):
i← 1; j← m+ 1; count← 0; total← 0
for k← 1 to n

if j > n
B[k]← A[i]; i← i + 1; total← total+ count

else if i > m
B[k]← A[j]; j← j + 1; count← count+ 1

else if A[i]< A[j]
B[k]← A[i]; i← i + 1; total← total+ count

else
B[k]← A[j]; j← j + 1; count← count+ 1

for k← 1 to n
A[k]← B[k]

return total

We can further optimize MergeAndCount by observing that count is always equal to
j −m− 1, so we don’t need an additional variable. (Proof: Initially, j = m+ 1 and
count= 0, and we always increment j and count together.)

4

CS/ECE 374 A Homework 5 (due October 5) Fall 2021

MergeAndCount2(A[1 .. n], m):
i← 1; j← m+ 1; total← 0
for k← 1 to n

if j > n
B[k]← A[i]; i← i + 1; total← total+ j −m − 1

else if i > m
B[k]← A[j]; j← j + 1

else if A[i]< A[j]
B[k]← A[i]; i← i + 1; total← total+ j −m − 1

else
B[k]← A[j]; j← j + 1

for k← 1 to n
A[k]← B[k]

return total

MergeAndCount2 still runs in O(n) time, so the overall running time is still O(n log n),
as required. ■

Rubric: 10 points = 2 for base case + 2 for divide (split and recurse) + 4 for conquer (merge and
count) + 2 for time analysis. This is neither the only way to correctly describe this algorithm nor
the only correct O(n log n)-time algorithm. No proof of correctness is required.

Max 3 points for a correct O(n2)-time algorithm.

Notice that each boxed algorithm is preceded by a clear English description of the task that
algorithm performs—not how the algorithm works, but the relationship between its input and
its output. Each English description is worth 25% of the credit for that algorithm (rounding to
the nearest point). For example, the COUNTREDBLUE algorithm is worth 4 points (“conquer”); the
English description alone (“For each blue element Q[i] of the now-sorted array Q[1 .. n], count
the number of smaller red elements Q[j].”) is worth 1 point.

5

CS/ECE 374 A = Fall 2021
9 Homework 6 :

Due Tuesday, October 12, 2021 at 8pm Central Time

1. Vankin’s Mile is an American solitaire game played on an n× n square grid. The player
starts by placing a token on any square of the grid. Then on each turn, the player moves
the token either one square to the right or one square down. The game ends when player
moves the token off the edge of the board. Each square of the grid has a numerical value,
which could be positive, negative, or zero. The player starts with a score of zero; whenever
the token lands on a square, the player adds its value to his score. The object of the game
is to score as many points as possible.

For example, given the grid shown below, the player can score 7−2+3+5+6−4+8+0=
23 points by following the path on the left, or they can score 8− 4+ 1+ 5+ 1− 4+ 8= 15
points by following the path on the right.

−1 7⇒−2
⇓

10 −5

8 −4 3
⇓
−6 0

5 1 5⇒ 6
⇓
−5

−7 −4 1 −4⇒ 8
⇓

7 1 −9 4 0
⇓

−1 7 −2 10 −5

8⇒−4
⇓

3 −6 0

5 1⇒ 5
⇓

6 −5

−7 −4 1⇒−4⇒ 8⇒

7 1 −9 4 0

(a) Describe and analyze an efficient algorithm to compute the maximum possible score
for a game of Vankin’s Mile, given the n× n array of values as input.

(b) A variant called Vankin’s Niknav adds an additional constraint to Vankin’s Mile: The
sequence of values that the token touches must be a palindrome. Thus, the example path
on the right is valid, but the example path on the left is not. Describe and analyze an
efficient algorithm to compute the maximum possible score for an instance of Vankin’s
Niknav, given the n× n array of values as input.

CS/ECE 374 A Homework 6 (due October 12) Fall 2021

2. A snowball is a poem or sentence that starts with a one-letter word, where each later word
is one letter longer than its predecessor. For example:

I am the fire demon, moving castles: Calcifer!

Snowballs, sometimes also known as chaterisms or rhopalisms, are one of many styles of
constrained writing practiced by OuLiPo, a loose gathering of writers and mathematicians,
founded in France in 1960 but still active today.

Describe and analyze an algorithm to extract the longest snowball hidden in a given
string of text. You are given an array T[1 .. n] of English letters as input. Your goal is to
find the longest possible sequence of disjoint substrings of T , where the ith substring is
an English word of length i. Your algorithm should return the number of words in this
sequence.

Your algorithm will call the library function IsWord, which takes a string w as input
and returns True if and only if w is an English word. IsWord(w) runs in O(|w|) time.

For example, given the input string

EVENIFYOUAMTHEAREMYFIRELEASTDEMONFAVORITEMOVINGCASTLESVEGETABLECALCIFER

your algorithm should return the integer 8:

EVENIFYOUAMTHEAREMYFIRELEASTDEMONFAVORITEMOVINGCASTLESVEGETABLECALCIFER

2

CS/ECE 374 A Homework 6 (due October 12) Fall 2021

Standard dynamic programming rubric. For problems worth 10 points:

• 3 points for a clear and correct English description of the recursive function you are trying to
evaluate. (Otherwise, we don’t even know what you’re trying to do.)

– No credit if the description is inconsistent with the recurrence.
– No credit if the description does not explicitly describe how the function value depends on

the named input parameters.
– No credit if the description refers to internal states of the eventual dynamic programming

algorithm, like “the current index” or “the best score so far”. The function must have a well-
defined value that depends only on its input parameters (and constant global variables).

– An English explanation of the recurrenceoralgorithmdoes not qualify. We want a description
ofwhat your function returns, not (here) an explanation of how that value is computed.

− 1 for naming the function “OPT” or “DP” or any single letter.

• 4 points for a correct recurrence, described either using mathematical notation or as pseudocode
for a recursive algorithm.
+ 1 for base case(s). −½ for oneminor bug, like a typo or an off-by-one error.
+ 3 for recursive case(s). −1 for eachminor bug, like a typo or an off-by-one error.
− 2 for greedy optimizations without proof, even if they are correct.
– No credit for the rest of the problem if the recursive case(s) are incorrect.

• 3 points for iterative details
+ 1 for describing an appropriate memoization data structure
+ 1 for describing a correct evaluation order; a clear picture is usually sufficient. If you use

nested for loops, be sure to specify the nesting order.
+ 1 for correct time analysis. (It is not necessary to state a space bound.)

• For problems that ask for an algorithm that computes an optimal structure—such as a subset,
partition, subsequence, or tree—an algorithm that computes only the value or cost of the optimal
structure is sufficient for full credit, unless the problem specifically says otherwise.

• Official solutions usually include pseudocode for the final iterative dynamic programming algo-
rithm, but iterative pseudocode is not required for full credit. If your solution includes iterative
pseudocode, you do not need to separately describe the recurrence, memoization structure,
or evaluation order. But you do still need and English description of the underlying recursive
function (or equivalently, the contents of the memoization structure). Perfectly correct iterative
pseudocode, with no explanation or time analysis, is worth at most 6 points out of 10.

• Official solutions will provide target time bounds. Faster algorithms are worth more points, and
slower algorithms are worth fewer points, typically by 2 or 3 points (out of 10) for each factor of n
in either direction. Partial credit is scaled to the new maximum score, and all points above 10 (for
algorithms that are faster than our target time bound) are recorded as extra credit.

We rarely include these target time bounds in the actual questions, because when we do
include them, significantly more students submit incorrect algorithms with the target running
time (earning 0/10) instead of correct algorithms that are slower than the target (earning 7/10).

• Partial credit for incomplete solutions depends on the running time of the best possible comple-
tion (up to the target running time). For example, consider a solution that contains only a clear
English description of a function, with no recurrence or iterative details. If the described function
can be developed into an algorithm with the target running time, the solution is worth 3 points;
however, if the function leads to an algorithm that is slower than the target time by a factor of n,
the solution could be worth only 2 points (= 70% of 3, rounded).

3

CS/ECE 374 A Homework 6 (due October 12) Fall 2021

Solved Problem

3. A shuffle of two strings X and Y is formed by interspersing the characters into a new
string, keeping the characters of X and Y in the same order. For example, the string
BANANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways.

BANANAANANAS BANANAANANAS BANANAANANAS

Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING are both shuffles of
the strings DYNAMIC and PROGRAMMING:

PRODGYRNAMAMMIINCG DYPRONGARMAMMICING

(a) Given three strings A[1 .. m], B[1 .. n], and C[1 .. m + n], describe and analyze an
algorithm to determine whether C is a shuffle of A and B.

Solution: We define a boolean function Shuf(i, j), which is True if and only if
the prefix C[1 .. i + j] is a shuffle of the prefixes A[1 .. i] and B[1 .. j]. We need
to compute Shuf(m, n). The function Shuf satisfies the following recurrence:

Shuf(i, j) =































True if i = j = 0

Shuf(0, j − 1)∧ (B[j] = C[j]) if i = 0 and j > 0

Shuf(i − 1, 0)∧ (A[i] = C[i]) if i > 0 and j = 0
�

Shuf(i − 1, j)∧ (A[i] = C[i + j])
�

∨
�

Shuf(i, j − 1)∧ (B[j] = C[i + j])
�

otherwise

We canmemoize this function into a two-dimensional array Shuf[0 .. m][0 .. n].
Each array entry Shuf[i, j] depends only on the entries immediately below and
immediately to the right: Shuf[i − 1, j] and Shuf[i, j − 1]. Thus, we can fill the
array in standard row-major order.

IsShuffle?(A[1 .. m], B[1 .. n], C[1 .. m+ n]):
Shuf[0, 0]← True
for j← 1 to n

Shuf[0, j]← Shuf[0, j − 1]∧ (B[j] = C[j])
for i← 1 to n

Shuf[i, 0]← Shuf[i − 1, 0]∧ (A[i] = B[i])
for j← 1 to n

Shuf[i, j]← False
if A[i] = C[i + j]

Shuf[i, j]← Shuf[i − 1, j]
if B[i] = C[i + j]

Shuf[i, j]← Shuf[i, j]∨ Shuf[i, j − 1]

return Shuf[m, n]

The algorithm runs in O(mn) time. ■

4

CS/ECE 374 A Homework 6 (due October 12) Fall 2021

Rubric: 5 points, standard dynamic programming rubric. 3 points for a slower polynomial-
time algorithm; scale partial credit accordingly.

(b) Given three strings A[1 .. m], B[1 .. n], and C[1 .. m + n], describe and analyze an
algorithm to determine the number of different ways that A and B can be shuffled to
obtain C .

Solution: Let #Shuf(i, j) denote the number of different ways that the prefixes
A[1 .. i] and B[1 .. j] can be shuffled to obtain the prefix C[1 .. i+ j]. We need to
compute #Shuf(m, n).

The #Shuf function satisfies the following recurrence. Here I am using
Iverson bracket notation to convert booleans to integers: For any proposition P,
the expression [P] is equal to 1 if P is true and 0 if P is false.

#Shuf(i, j) =































1 if i = j = 0

#Shuf(0, j − 1) ·
�

B[j] = C[j]
�

if i = 0 and j > 0

#Shuf(i − 1,0) ·
�

A[i] = C[i]
�

if i > 0 and j = 0
�

#Shuf(i − 1, j) ·
�

A[i] = C[i]
��

+
�

#Shuf(i, j − 1) ·
�

B[j] = C[j]
��

otherwise

We canmemoize this function into a two-dimensional array#Shuf[0 .. m][0 .. n].
As in part (a), we can fill the array in standard row-major order.

NumShuffles(A[1 .. m], B[1 .. n], C[1 .. m+ n]):
#Shuf[0, 0]← 1
for j← 1 to n

#Shuf[0, j]← 0
if (B[j] = C[j])

#Shuf[0, j]← #Shuf[0, j − 1]
for i← 1 to n

#Shuf[0, j]← 0
if (A[i] = B[i])

#Shuf[0, j]← #Shuf[i − 1, 0]
for j← 1 to n

#Shuf[i, j]← 0
if A[i] = C[i + j]

#Shuf[i, j]← #Shuf[i − 1, j]
if B[i] = C[i + j]

#Shuf[i, j]← #Shuf[i, j] +#Shuf[i, j − 1]

return Shuf[m, n]

The algorithm runs in O(mn) time. ■

Rubric: 5 points, standard dynamic programming rubric. 3 points for a slower polynomial-
time algorithm; scale partial credit accordingly.

5

CS/ECE 374 A = Fall 2021
9 Homework 7 :

Due Tuesday, October 19, 2021 at 8pm Central Time

1. Every year, as part of its annual meeting, the Antarctican Snail Lovers of Upper Glacierville
hold a Round Table Mating Race. Several high-quality breeding snails are placed at the
edge of a round table. The snails are numbered in order around the table from 1 to n.
During the race, each snail wanders around the table, leaving a trail of slime behind it.
The snails have been specially trained never to fall off the edge of the table or to cross a
slime trail, even their own. If two snails meet, they are declared a breeding pair, removed
from the table, and whisked away to a romantic hole in the ground to make little baby
snails. Note that some snails may never find a mate, even if the race goes on forever.

1

2

3

4

5

6

7

8 8

1

5 2

6

3
4

7

The end of a typical Antarctican SLUG race. Snails 6 and 8 never find mates.
The organizers must pay M[3,4] +M[2, 5] +M[1,7].

For every pair of snails, the Antarctican SLUG race organizers have posted a monetary
reward, to be paid to the owners if that pair of snails meets during the Mating Race.
Specifically, there is a two-dimensional array M[1 .. n, 1 .. n] posted on the wall behind
the Round Table, where M[i, j] = M[j, i] is the reward to be paid if snails i and j Meet.
Rewards may be positive, negative, or zero.

Describe and analyze an algorithm to compute the maximum total reward that the
organizers could be forced to pay, given the array M as input.

CS/ECE 374 A Homework 7 (due October 19) Fall 2021

2. Suppose you are given a NFA M = ({0,1},Q, s, A,δ) without ϵ-transitions and a binary
string w ∈ {0,1}∗. Describe and analyze an efficient algorithm to determine whether M
accepts w. Concretely, the input NFA M is represented as follows:

• Q = {1, 2, . . . , k} for some integer k.

• The start state s is state 1.

• Accepting states are represented by a boolean array Acc[1 .. k], where Acc[q] = True
if and only if q ∈ A.

• The transition function δ is represented by a boolean array inDelta[1 .. k,0 ..1, 1 .. k],
where inDelta[p, a, q] = True if and only if q ∈ δ(p, a).

Your input consists of the integer k, the array Acc[1 .. k], the array inDelta[1 .. k,0 ..1, 1 .. k],
and the input string w[1 .. n]. Your algorithm should return True if M accepts w, and
False if M does not accept w. Report the running time of your algorithm as a function of k
(the number of states in M) and n (the length of w). [Hint: Do not convert M to a DFA!!]

2

CS/ECE 374 A Homework 7 (due October 19) Fall 2021

Solved Problems

3. A string w of parentheses (and) and brackets [and] is balanced if and only if w is
generated by the following context-free grammar:

S→ ϵ | (S) | [S] | SS

For example, the string w= ([()][]())[()()]() is balanced, because w= x y , where

x = ([()] [] ()) and y = [() ()] ().

Describe and analyze an algorithm to compute the length of a longest balanced subsequence
of a given string of parentheses and brackets. Your input is an array A[1 .. n], where
A[i] ∈ {(,),[,]} for every index i.

Solution: Suppose A[1 .. n] is the input string. For all indices i and k, let LBS(i, k)
denote the length of the longest balanced subsequence of the substring A[i .. k]. We
need to compute LBS(1, n). This function obeys the following recurrence:

LBS(i, j) =































0 if i ≥ k

max







2+ LBS(i + 1, k− 1)
k−1
max
j=1

�

LBS(i, j) + LBS(j + 1, k)
�







if A[i]∼ A[k]

k−1
max
j=1

�

LBS(i, j) + LBS(j + 1, k)
�

otherwise

Here A[i] ∼ A[k] indicates that A[i] is a left delimiter and A[k] is the corresponding
right delimiter: Either A[i] = (and A[k] =), or A[i] = [and A[k] =].

We can memoize this function into a two-dimensional array LBS[1 .. n, 1 .. n].
Because each entry LBS[i, j] depends only on entries in later rows or earlier columns
(or both), we can evaluate this array row-by-row from bottom up in the outer loop,
scanning each row from left to right in the inner loop. The resulting algorithm runs
in O(n3) time.

LongestBalancedSubsequence(A[1 .. n]):
for i← n down to 1

LBS[i, i]← 0
for k← i + 1 to n

if A[i]∼ A[k]
LBS[i, k]← LBS[i + 1, k− 1] + 2

else
LBS[i, k]← 0

for j← i to k− 1
LBS[i, k]←max

�

LBS[i, k], LBS[i, j] + LBS[j + 1, k]
	

return LBS[1, n]

■

Rubric: 10 points, standard dynamic programming rubric

3

CS/ECE 374 A Homework 7 (due October 19) Fall 2021

4. Oh, no! You’ve just been appointed as the new organizer of Giggle, Inc.’s annual mandatory
holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree
with the company president at the root. The all-knowing oracles in Human Resources have
assigned a real number to each employee measuring how “fun” the employee is. In order
to keep things social, there is one restriction on the guest list: An employee cannot attend
the party if their immediate supervisor is also present. On the other hand, the president
of the company must attend the party, even though she has a negative fun rating; it’s her
company, after all.

Describe an algorithm that makes a guest list for the party that maximizes the sum of
the “fun” ratings of the guests. The input to your algorithm is a rooted tree T describing
the company hierarchy, where each node v has a field v.fun storing the “fun” rating of the
corresponding employee.

Solution (two functions): We define two functions over the nodes of T .

• MaxFunYes(v) is the maximum total “fun” of a legal party among the descendants
of v, where v is definitely invited.

• MaxFunNo(v) is the maximum total “fun” of a legal party among the descendants
of v, where v is definitely not invited.

We need to computeMaxFunYes(root). These two functions obey the following mutual
recurrences:

MaxFunYes(v) = v.fun+
∑

children w of v

MaxFunNo(w)

MaxFunNo(v) =
∑

children w of v

max{MaxFunYes(w),MaxFunNo(w)}

(These recurrences do not require separate base cases, because
∑

∅ = 0.) We can
memoize these functions by adding two additional fields v.yes and v.no to each node
v in the tree. The values at each node depend only on the vales at its children, so we
can compute all 2n values using a postorder traversal of T .

BestParty(T):
ComputeMaxFun(T.root)
return T.root.yes

ComputeMaxFun(v):
v.yes← v.fun
v.no← 0
for all children w of v

ComputeMaxFun(w)
v.yes← v.yes+w.no
v.no← v.no+max{w.yes, w.no}

(Yes, this is still dynamic programming; we’re only traversing the tree recursively
because that’s the most natural way to traverse trees!a) The algorithm spends O(1)
time at each node, and therefore runs in O(n) time altogether. ■

aA naïve recursive implementationwould run inO(φn) time in the worst case, whereφ = (1+
p

5)/2≈
1.618 is the golden ratio. The worst-case tree is a path—every non-leaf node has exactly one child.

4

CS/ECE 374 A Homework 7 (due October 19) Fall 2021

Solution (one function): For each node v in the input tree T , let MaxFun(v) denote
the maximum total “fun” of a legal party among the descendants of v, where v may
or may not be invited.

The president of the company must be invited, so none of the president’s “children”
in T can be invited. Thus, the value we need to compute is

root.fun+
∑

grandchildren w of root

MaxFun(w).

The function MaxFun obeys the following recurrence:

MaxFun(v) =max















v.fun+
∑

grandchildren x of v

MaxFun(x)

∑

children w of v

MaxFun(w)















(This recurrence does not require a separate base case, because
∑

∅ = 0.) We can
memoize this function by adding an additional field v.maxFun to each node v in
the tree. The value at each node depends only on the values at its children and
grandchildren, so we can compute all values using a postorder traversal of T .

BestParty(T):
ComputeMaxFun(T.root)
party← T.root.fun
for all children w of T.root

for all children x of w
party← party+ x .maxFun

return party

ComputeMaxFun(v):
yes← v.fun
no← 0
for all children w of v

ComputeMaxFun(w)
no← no+w.maxFun
for all children x of w

yes← yes+ x .maxFun
v.maxFun←max{yes,no}

(Yes, this is still dynamic programming; we’re only traversing the tree recursively
because that’s the most natural way to traverse trees!a)

The algorithm spends O(1) time at each node (because each node has exactly one
parent and one grandparent) and therefore runs in O(n) time altogether. ■

aLike the previous solution, a direct recursive implementation would run in O(φn) time in the worst
case, where φ = (1+

p
5)/2≈ 1.618 is the golden ratio.

Rubric: 10 points: standard dynamic programming rubric. These are not the only correct solu-
tions.

5

CS/ECE 374 A = Fall 2021
9 Homework 8 :

Due Tuesday, October 26, 2021 at 8pm Central Time

1. Racetrack (also known by several other names, including Graph Racers and Vector Rally)
is a two-player paper-and-pencil racing game that Jeff played on the bus in 5th grade.1
The game is played with a track drawn on a sheet of graph paper. The players alternately
choose a sequence of grid points that represent the motion of a car around the track, subject
to certain constraints explained below.

Each car has a position and a velocity, both with integer x- and y-coordinates. A subset
of grid squares is marked as the starting area, and another subset is marked as the finishing
area. The initial position of each car is chosen by the player somewhere in the starting
area; the initial velocity of each car is always (0, 0). At each step, the player optionally
increments or decrements either or both coordinates of the car’s velocity; in other words,
each component of the velocity can change by at most 1 in a single step. The car’s new
position is then determined by adding the new velocity to the car’s previous position. The
new position must be inside the track; otherwise, the car crashes and that player loses the
race.2 The race ends when the first car reaches a position inside the finishing area.

Suppose the racetrack is represented by an n × n array of bits, where each 0 bit
represents a grid point inside the track, each 1 bit represents a grid point outside the track,
the “starting area” is the first column, and the “finishing area” is the last column.

Describe and analyze an algorithm to find the minimum number of steps required to
move a car from the starting line to the finish line of a given racetrack. [Hint: Build a
graph. No, not that graph, a different one. What are the vertices? What are the edges?
What problem is this?]

velocity position
(0, 0) (1,5)
(1, 0) (2,5)
(2,−1) (4,4)
(3, 0) (7,4)
(2, 1) (9,5)
(1, 2) (10, 7)
(0, 3) (10, 10)
(−1, 4) (9,14)
(0, 3) (9,17)
(1, 2) (10, 19)
(2, 2) (12, 21)
(2, 1) (14, 22)
(2, 0) (16, 22)
(1,−1) (17, 21)
(2,−1) (19, 20)
(3, 0) (22, 20)
(3, 1) (25, 21)

ST
A
RT

FIN
ISH

A 16-step Racetrack run, on a 25× 25 track. This is not the shortest run on this track.

1The actual game is a bit more complicated than the version described here. See http://harmmade.com/vectorracer/
for an excellent online version.

2However, it is not necessary for the line between the old position and the new position to lie entirely within the
track. Sometimes Speed Racer has to push the A button.

CS/ECE 374 A Homework 8 (due October 26) Fall 2021

2. Jeff likes to go on a long bike ride every Sunday, but because he is lazy, he absolutely
refuses to ever ride into the wind.

Jeff has encoded a map of all bike-safe roads in Champaign-Urbana into an undirected
graph G = (V, E) whose vertices represent intersections and sharp corners, and whose
edges represent straight road segments. Jeff’s home is represented in G by a special
vertex s. Every edge of G is labeled with its length and orientation.

(a) One Sunday the weather forecast predicts wind from due north all day long, which
means Jeff can only ride along each road segment in the direction that tends south.
Describe and analyze an algorithm to determine the longest total distance Jeff can
ride, without ever riding into the wind, before he has to call his wife to come pick
him up in the car.

(b) The following Sunday’s weather forecast predicts wind from due north in the morning,
followed by wind from due west in the afternoon. Describe and analyze an algorithm
to find the longest total distance Jeff can ride if he starts at home, rides out to some
destination in the morning, eats lunch at noon (while the wind shifts), and then rides
home in the afternoon, all without ever riding into the wind.

In both cases, your input consists of the graph G and the start vertex s. Despite overpowering
evidence to the contrary, assume that Jeff can ride infinitely fast, and that no roads in
Champaign-Urbana are oriented exactly north-south or exactly east-west.

For example, suppose Jeff has the graph G shown below. On the first Sunday, Jeff can
ride from s to w along the path shown on the left, including the red edge from v to w.
On the second Sunday, Jeff can ride from s to v along the green path on the left in the
morning, and then from v back to s along the green path on the right in the afternoon;
however, he cannot ride to w, because every path from w to s requires riding into the wind
at least once, and Jeff’s wife is tired of driving out to the middle of nowhere to rescue him.

s

v
w

s

v

2

CS/ECE 374 A Homework 8 (due October 26) Fall 2021

3. This problem is intended as a practice run for future homeworks, the second midterm, the
final exam. Each student must submit individually.

On the course Gradescope site, you will find an assignment called “Homework 8.3”. Do
not open this Gradescope assignment until you have the following items:

• Two blank white sheets of paper. (In particular, not lined notebook paper.)
• A pen with dark ink, preferably blue or black. (In particular, not a pencil.)
• A fully-charged and working cell phone with a scanning app installed. (Gradescope

recommends Scannable for iOS devices and Genius Scan for Android devices.)
• A well-lit environment for scanning.

The assignment will ask you to write/draw something, scan the paper, convert your
scan to a PDF file, and upload the PDF to Gradescope. (Gradescope will automatically
assign pages of your uploaded PDF to corresponding subproblems.)

Alternatively, you can write/draw on a tablet and a note-taking app, export your note
as a PDF file, upload the PDF to Gradescope.

Once you open the Gradescope assignment, you will have 15 minutes to complete
the submission process.

The precise content to be written/drawn will be revealed in the Gradescope assignment.
(Don’t worry, we won’t ask for anything technical. The actual writing/drawing should take
less than 60 seconds.) If you are not used to your scanning app, we strongly recommend
practicing the entire scanning process before starting the assignment.

Rubric: 10 points = 1 for using blank white paper + 2 for using a dark pen + 2 for submitting
a scan instead of a raw photo + 3 for a good scan (in focus, high contrast, properly aligned, no
keystone effect, no shadows, no background) + 2 for following content instructions. Yes, this
actually counts.

3

CS/ECE 374 A Homework 8 (due October 26) Fall 2021

Rubrics

Standard rubric for graph reduction problems. For problems out of 10 points:
+ 1 for correct vertices, including English explanation for each vertex
+ 1 for correct edges

−½ for forgetting “directed” if the graph is directed
+ 1 for stating the correct problem (For the solved problem below: “shortest path in G from (0, 0, 0)

to any target vertex”)
− “Breadth-first search” is not a problem; it’s an algorithm!

+ 1 for correctly applying the correct algorithm. (For the solved problem below, “breadth-first
search from (0,0, 0) and then examine every target vertex”)
−½ for using a slower or more specific algorithm than necessary

+ 1 for time analysis in terms of the input parameters.

+ 5 for other details of the reduction
– If your graph is constructed by naive brute force, you do not need to describe the construc-

tion algorithm. In this case, points for vertices, edges, problem, algorithm, and running
time are all doubled.

– Otherwise, apply the appropriate rubric to the construction algorithm. For example, for an
algorithm that uses dynamic programming to build the graph quickly, apply the standard
dynamic programming rubric.

Solved Problem

4. Professor McClane takes you out to a lake and hands you three empty jars. Each jar holds
a positive integer number of gallons; the capacities of the three jars may or may not be
different. The professor then demands that you put exactly k gallons of water into one of
the jars (which one doesn’t matter), for some integer k, using only the following operations:
(a) Fill a jar with water from the lake until the jar is full.
(b) Empty a jar of water by pouring water into the lake.
(c) Pour water from one jar to another, until either the first jar is empty or the second jar

is full, whichever happens first.
For example, suppose your jars hold 6, 10, and 15 gallons. Then you can put 13 gallons of
water into the third jar in six steps:

• Fill the third jar from the lake.
• Fill the first jar from the third jar. (Now the third jar holds 9 gallons.)
• Empty the first jar into the lake.
• Fill the second jar from the lake.
• Fill the first jar from the second jar. (Now the second jar holds 4 gallons.)
• Empty the second jar into the third jar.

Describe and analyze an efficient algorithm that either finds the smallest number of
operations that leave exactly k gallons in any jar, or reports correctly that obtaining
exactly k gallons of water is impossible. Your input consists of the capacities of the three
jars and the positive integer k. For example, given the four numbers 6, 10, 15, and 13 as
input, your algorithm should return the number 6 (the length of the sequence of operations
listed above).

4

CS/ECE 374 A Homework 8 (due October 26) Fall 2021

Solution: Let A, B, C denote the capacities of the three jars. We reduce the problem
to breadth-first search in a directed graph G = (V, E) defined as follows:

• V =
�

(a, b, c)
�

� 0≤ a ≤ A and 0≤ b ≤ B and 0≤ c ≤ C
	

. Each vertex corre-
sponds to a possible configuration of water in the three jars. There are
(A+ 1)(B + 1)(C + 1) = O(ABC) vertices altogether.

• G contains a directed edge (a, b, c)�(a′, b′c′) whenever it is possible to move
from the first configuration to the second in one step. Specifically, G contains an
edge from (a, b, c) to each of the following vertices (except those already equal
to (a, b, c)):
– (0, b, c) and (a, 0, c) and (a, b, 0)— dumping a jar into the lake
– (A, b, c) and (a, B, c) and (a, b, C)— filling a jar from the lake

–

¨

(0, a+ b, c) if a+ b ≤ B

(a+ b− B, B, c) if a+ b ≥ B

«

— pouring from jar 1 into jar 2

–

¨

(0, b, a+ c) if a+ c ≤ C

(a+ c − C , b, C) if a+ c ≥ C

«

— pouring from jar 1 into jar 3

–

¨

(a+ b, 0, c) if a+ b ≤ A

(A, a+ b− A, c) if a+ b ≥ A

«

— pouring from jar 2 into jar 1

–

¨

(a, 0, b+ c) if b+ c ≤ C

(a, b+ c − C , C) if b+ c ≥ C

«

— pouring from jar 2 into jar 3

–

¨

(a+ c, b, 0) if a+ c ≤ A

(A, b, a+ c − A) if a+ c ≥ A

«

— pouring from jar 3 into Jar 1

–

¨

(a, b+ c, 0) if b+ c ≤ B

(a, B, b+ c − B) if b+ c ≥ B

«

— pouring from jar 3 into jar 2

Because each vertex has at most 12 outgoing edges, there are at most 12(A+1)×
(B + 1)(C + 1) = O(ABC) edges altogether.

To solve the jars problem, we need to find the shortest path in G from the start
vertex (0, 0,0) to any target vertex of the form (k, ·, ·) or (·, k, ·) or (·, ·, k). We can
compute this shortest path by calling breadth-first search starting at (0,0, 0), and
then examining every target vertex by brute force. If BFS does not visit any target
vertex, we report that no legal sequence of moves exists. Otherwise, we find the target
vertex closest to (0,0, 0) and trace its parent pointers back to (0, 0,0) to determine
the shortest sequence of moves. The resulting algorithm runs in O(V + E) = O(ABC)
time.

We can make this algorithm faster by observing that every move leaves at least
one jar either empty or full. Thus, we only need vertices (a, b, c) where either a = 0
or b = 0 or c = 0 or a = A or b = B or c = C; no other vertices are reachable from
(0, 0,0). The number of non-redundant vertices and edges is O(AB+ BC +AC). Thus,
if we only construct and search the relevant portion of G, the algorithm runs in
O(AB + BC + AC) time. ■

5

CS/ECE 374 A Homework 8 (due October 26) Fall 2021

Rubric: 10 points: standard graph reduction rubric
• Brute force construction is fine.
−1 for calling Dijkstra instead of BFS
• max 8 points for O(ABC) time; scale partial credit.

6

CS/ECE 374 A Homework 9 (due November 2) Fall 2021

CS/ECE 374 A Fall 2021
Homework 9

Due Tuesday, November 2, 2021 at 8pm Central Time

This is the last homework before Midterm 2.

1. Morty needs to retrieve a stabilized plumbus from the Clackspire Labyrinth. He must
enter the labyrinth using Rick’s interdimensional portal gun, traverse the Labyrinth to a
plumbus, then take that plumbus through the Labyrinth to a fleeb to be stabilized, and
finally take the stabilized plumbus back to the original portal to return home. Plumbuses
are stabilized by fleeb juice, which any fleeb will release immediately after being removed
from its fleebhole. An unstabilized plumbus will explode if it is carried more than 137 flinks
from its original storage unit. The Clackspire Labyrinth smells like farts, so Morty wants to
spend as little time there as possible.

Rick has given Morty a detailed map of the Clackspire Labyrinth, which consist of a
directed graph G = (V, E) with non-negative edge weights (indicating distance in flinks),
along with two disjoint subsets P ⊂ V and F ⊂ V , indicating the plumbus storage units
and fleebholes, respectively. Morty needs to identify a start vertex s, a plumbus storage
unit p ∈ P, and a fleebhole f ∈ F , such that the shortest-path distance from p to f is at
most 137 flinks long, and the length of the shortest walk s⇝p⇝ f⇝s is as short as possible.

Describe and analyze an algo(burp)rithm to so(burp)olve Morty’s problem. You can
assume that it is in fact possible for Morty to succeed. As usual, do not assume that edge
weights are integers.

2. You are planning a hiking trip in Jasper National Park in British Columbia over winter break.
You have a complete map of the park’s trails, which indicates that hikers on certain trails
have a higher chance of encountering a sasquatch. All visitors to the park are required to
purchase a canister of sasquatch repellent. You can safely traverse a high-risk trail segment
only by completely using up a full canister of sasquatch repellent. The park rangers have
helpfully installed several refilling stations around the park, where you can refill empty
canisters at no cost. The canisters themselves are expensive and heavy, so you can only
carry one. The trails are narrow, so each trail segment allows traffic in only one direction.

You have converted the trail map into a directed graph G = (V, E), whose vertices
represent trail intersections, and whose edges represent trail segments. A subset R ⊆ V of
the vertices indicate the locations of the Repellent Refilling stations, and a subset H ⊆ E
of the edges are marked as High-risk. Each edge e is labeled with the length ℓ(e) of the
corresponding trail segment. Your campsite appears on the map as a particular vertex
s ∈ V , and the visitor center is another vertex t ∈ V .

(a) Describe and analyze an algorithm that finds the shortest safe hike from your campsite s
to the visitor center t. Assume there is a refill station at your campsite, and another
refill station at the visitor center.

(b) Describe and analyze an algorithm to decide if you can safely hike from any refill
station any other refill station. In other words, for every pair of vertices u and v in R, is
there a safe hike from u to v?

1

CS/ECE 374 A Homework 9 (due November 2) Fall 2021

Solved Problem

3. Although we typically speak of “the” shortest path from one vertex to another, a single
graph could contain several minimum-length paths with the same endpoints.

1

2

2

3 5

3 2

1

1

1

2

4

2 4

3 5

1

2

2

3 5

3 2

1

1

1

2

4

2 4

3 5

1

2

2

3 5

3 2

1

1

1

2

4

2 4

3 5

14

1

2

2

3 5

3 2

1

1

1

2

4

2 4

3 5

14 14 14

Four (of many) equal-length shortest paths.

Describe and analyze an algorithm to compute the number of shortest paths from a source
vertex s to a target vertex t in an arbitrary directed graph G with weighted edges. Assume
that all edge weights are positive and that any necessary arithmetic operations can be
performed in O(1) time each.

[Hint: Compute shortest path distances from s to every other vertex. Throw away all
edges that cannot be part of a shortest path from s to another vertex. What’s left?]

Solution: We start by computing shortest-path distances dist(v) from s to v, for every
vertex v, using Dijkstra’s algorithm. Call an edge u�v tight if dist(u) + w(u�v) =
dist(v). Every edge in a shortest path from s to t must be tight. Conversely, every
path from s to t that uses only tight edges has total length dist(t) and is therefore a
shortest path!

Let H be the subgraph of all tight edges in G. We can easily construct H in O(V+E)
time. Because all edge weights are positive, H is a directed acyclic graph. It remains
only to count the number of paths from s to t in H.

For any vertex v, let NumPaths(v) denote the number of paths in H from v to t; we
need to compute NumPaths(s). This function satisfies the following simple recurrence:

NumPaths(v) =







1 if v = t
∑

v�w

NumPaths(w) otherwise

In particular, if v is a sink but v ̸= t (and thus there are no paths from v to t), this
recurrence correctly gives us NumPaths(v) =

∑

∅= 0.

We can memoize this function into the graph itself, storing each value NumPaths(v)
at the corresponding vertex v. Since each subproblem depends only on its successors
in H, we can compute NumPaths(v) for all vertices v by considering the vertices in
reverse topological order, or equivalently, by performing a depth-first search of H
starting at s. The resulting algorithm runs in O(V + E) time.

The overall running time of the algorithm is dominated by Dijkstra’s algorithm in
the preprocessing phase, which runs in O(E log V) time. ■

2

CS/ECE 374 A Homework 9 (due November 2) Fall 2021

Rubric: 10 points = 5 points for reduction to counting paths in a dag (standard graph reduction
rubric) + 5 points for the path-counting algorithm (standard dynamic programming rubric)

3

CS/ECE 374 A = Fall 2021
9 Homework 10 :

Due Tuesday, November 16, 2021 at 8pm

1. Suppose we are given two graphs G1 = (V, E1) and G2 = (V, E2) with the same set of
vertices V = {1, 2, . . . , n}. You are given the following problem: find the smallest subset
S ⊆ V of vertices whose deletion leaves identical subgraphs G1 \ S = G2 \ S. For example,
given the graphs below, the smallest subset has size 4.

1 2

4

6

1 2

4

6 33

5 5
7 7

8 8

Provide a polynomial-time reduction for this problem from any one of the following three
problems:

• MaxIndependentSet: MaxIndependentSet(G, m) returns 1 if the size of the
largest independent set in graph G is m, otherwise returns 0.

• MaxClique: MaxClique(G, m) returns 1 if the size of the largest clique in G is m,
otherwise returns 0.

• MinVertexCover: MinVertexCover(G, m) returns 1 if the size of the smallest
vertex cover in G is m, otherwise returns 0.

Hint: There exists a reduction to all three problems; you may pick whichever one is most convenient for
you.

1 2

4

6

1 2

4

6 33

5 5
7 7

8 8

CS/ECE 374A Homework 10 (due November 16) Fall 2021

2. This problem asks you to develop polynomial-time algorithms for two (apparently) minor variants
of 3Sat.

(a) The input to 2Sat is a boolean formula Φ in conjunctive normal form, with exactly two literals
per clause, and the 2Sat problem asks whether there is an assignment to the variables of Φ
such that every clause contains at least one True literal.

Describe a polynomial-time algorithm for 2Sat. [Hint: This problem is strongly connected
to topics covered earlier in the semester.]

(b) The input to Majority3Sat is a boolean formula Φ in conjunctive normal form, with exactly
three literals per clause. Majority3Sat asks whether there is an assignment to the variables
of Φ such that every clause contains at least two True literals.

Describe and analyze a polynomial-time reduction from Majority3Sat to 2Sat. Don’t
forget to prove that your reduction is correct.

(c) Combining parts (a) and (b) gives us an algorithm for Majority3Sat. What is the running
time of this algorithm?

2

CS/ECE 374A Homework 10 (due November 16) Fall 2021

Solved Problem

3. Consider the following solitaire game. The puzzle consists of an n×m grid of squares,
where each square may be empty, occupied by a red stone, or occupied by a blue stone.
The goal of the puzzle is to remove some of the given stones so that the remaining stones
satisfy two conditions:

(1) Every row contains at least one stone.

(2) No column contains stones of both colors.

For some initial configurations of stones, reaching this goal is impossible; see the example
below.

Prove that it is NP-hard to determine, given an initial configuration of red and blue
stones, whether this puzzle can be solved.

A solvable puzzle and one of its many solutions. An unsolvable puzzle.

Solution: We show that this puzzle is NP-hard by describing a reduction from 3Sat.

Let Φ be a 3CNF boolean formula with m variables and n clauses. We transform
this formula into a puzzle configuration in polynomial time as follows. The size of the
board is n×m. The stones are placed as follows, for all indices i and j:

• If the variable x j appears in the ith clause of Φ, we place a blue stone at (i, j).

• If the negated variable x j appears in the ith clause of Φ, we place a red stone at
(i, j).

• Otherwise, we leave cell (i, j) blank.

We claim that this puzzle has a solution if and only if Φ is satisfiable. This claim
immediately implies that solving the puzzle is NP-hard. We prove our claim as follows:

=⇒ First, suppose Φ is satisfiable; consider an arbitrary satisfying assignment. For
each index j, remove stones from column j according to the value assigned to x j:

– If x j = True, remove all red stones from column j.
– If x j = False, remove all blue stones from column j.

In other words, remove precisely the stones that correspond to False literals.
Because every variable appears in at least one clause, each column now contains
stones of only one color (if any). On the other hand, each clause of Φ must
contain at least one True literal, and thus each row still contains at least one
stone. We conclude that the puzzle is satisfiable.

3

CS/ECE 374A Homework 10 (due November 16) Fall 2021

⇐= On the other hand, suppose the puzzle is solvable; consider an arbitrary solution.
For each index j, assign a value to x j depending on the colors of stones left in
column j:

– If column j contains blue stones, set x j = True.
– If column j contains red stones, set x j = False.
– If column j is empty, set x j arbitrarily.

In other words, assign values to the variables so that the literals corresponding
to the remaining stones are all True. Each row still has at least one stone, so
each clause of Φ contains at least one True literal, so this assignment makes
Φ= True. We conclude that Φ is satisfiable.

This reduction clearly requires only polynomial time. �

Rubric (Standard polynomial-time reduction rubric): 10 points =

+ 3 points for the reduction itself

– For an NP-hardness proof, the reduction must be from a known NP-hard problem. You
can use any of the NP-hard problems listed in the lecture notes (except the one you
are trying to prove NP-hard, of course). See the list on the next page.

+ 3 points for the “if” proof of correctness

+ 3 points for the “only if” proof of correctness

+ 1 point for writing “polynomial time”

• An incorrect polynomial-time reduction that still satisfies half of the correctness proof is
worth at most 4/10.

• A reduction in the wrong direction is worth 0/10.

4

CS/ECE 374 A = Fall 2021
9 Homework 11 :

Due Tuesday, November 30, 2021 at 8pm

1. (a) A quasi-satisfying assignment for a 3CNF boolean formula Φ is an assignment of
truth values to the variables such that at most one clause in Φ does not contain a true
literal.
Prove that it is NP-hard to determine whether a given 3CNF boolean formula has a
quasi-satisfying assignment.

(b) A near-clique in a graph G = (V, E) is a subset of vertices S ⊆ V where adding a
single edge between two vertices in S results in the set S becoming a clique.
Prove that it is NP-hard to find the size of the largest near-clique in a graph G = (V, E).

2. A wye is an undirected graph that looks like the capital letter Y. More formally, a wye
consists of three paths of equal length with one common endpoint, called the hub.

This grid graph contains a wye whose paths have length 4.

Prove that the following problem is NP-hard: Given an undirected graph G, what is the
largest wye that is a subgraph of G? The three paths of the wye must not share any vertices
except the hub, and they must have exactly the same length.

CS/ECE 374A Homework 10 (due November 16) Fall 2021

Solved Problem

3. A double-Hamiltonian tour in an undirected graph G is a closed walk that visits every vertex
in G exactly twice. Prove that it is NP-hard to decide whether a given graph G has a
double-Hamiltonian tour.

b
d

c

f
g

a

e

This graph contains the double-Hamiltonian tour a�b�d�g�e�b�d�c� f �a�c� f �g�e�a.

Solution: We prove the problem is NP-hard with a reduction from the standard
Hamiltonian cycle problem. Let G be an arbitrary undirected graph. We construct a
new graph H by attaching a small gadget to every vertex of G. Specifically, for each
vertex v, we add two vertices v] and v[, along with three edges vv[, vv], and v[v].

A vertex in G, and the corresponding vertex gadget in H .

I claim that G has a Hamiltonian cycle if and only if H has a double-Hamiltonian tour.

=⇒ Suppose G has a Hamiltonian cycle v1�v2� · · ·�vn�v1. We can construct a
double-Hamiltonian tour of H by replacing each vertex vi with the following
walk:

· · ·�vi�v[i �v]i �v[i �v]i �vi� · · ·

⇐= Conversely, suppose H has a double-Hamiltonian tour D. Consider any vertex v
in the original graph G; the tour D must visit v exactly twice. Those two visits
split D into two closed walks, each of which visits v exactly once. Any walk from
v[or v] to any other vertex in H must pass through v. Thus, one of the two
closed walks visits only the vertices v, v[, and v]. Thus, if we simply remove the
vertices in H \ G from D, we obtain a closed walk in G that visits every vertex in
G once.

Given any graph G, we can clearly construct the corresponding graph H in polynomial
time.

With more effort, we can construct a graph H that contains a double-Hamiltonian
tour that traverses each edge of H at most once if and only if G contains a Hamil-
tonian cycle. For each vertex v in G we attach a more complex gadget containing five
vertices and eleven edges, as shown on the next page.

2

CS/ECE 374A Homework 10 (due November 16) Fall 2021

A vertex in G, and the corresponding modified vertex gadget in H .

�

Rubric: 10 points, standard polynomial-time reduction rubric. This is not the only correct solu-
tion.

Non-solution (self-loops): We attempt to prove the problem is NP-hard with a
reduction from the Hamiltonian cycle problem. Let G be an arbitrary undirected
graph. We construct a new graph H by attaching a self-loop every vertex of G. Given
any graph G, we can clearly construct the corresponding graph H in polynomial time.

An incorrect vertex gadget.

Suppose G has a Hamiltonian cycle v1�v2� · · ·�vn�v1. We can construct a double-
Hamiltonian tour of H by alternating between edges of the Hamiltonian cycle and
self-loops:

v1�v1�v2�v2�v3� · · ·�vn�vn�v1.

Unfortunately, if H has a double-Hamiltonian tour, we cannot conclude that G has
a Hamiltonian cycle, because we cannot guarantee that a double-Hamiltonian tour
in H uses any self-loops. The graph G shown below is a counterexample; it has a
double-Hamiltonian tour (even before adding self-loops!) but no Hamiltonian cycle.

This graph has a double-Hamiltonian tour.

♣

3

CS/ECE 374A Homework 10 (due November 16) Fall 2021

Some useful NP-hard problems. You are welcome to use any of these in your own NP-hardness proofs,
except of course for the specific problem you are trying to prove NP-hard.

CircuitSat: Given a boolean circuit, are there any input values that make the circuit output True?

3Sat: Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause,
does the formula have a satisfying assignment?

MaxIndependentSet: Given an undirected graph G, what is the size of the largest subset of vertices
in G that have no edges among them?

MaxClique: Given an undirected graph G, what is the size of the largest complete subgraph of G?

MinVertexCover: Given an undirected graph G, what is the size of the smallest subset of vertices
that touch every edge in G?

MinSetCover: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subcollection whose union is S?

MinHittingSet: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subset of S that intersects every subset Si?

3Color: Given an undirected graph G, can its vertices be colored with three colors, so that every edge
touches vertices with two di�erent colors?

HamiltonianPath: Given graph G (either directed or undirected), is there a path in G that visits every
vertex exactly once?

HamiltonianCycle: Given a graph G (either directed or undirected), is there a cycle in G that visits
every vertex exactly once?

TravelingSalesman: Given a graph G (either directed or undirected) with weighted edges, what is
the minimum total weight of any Hamiltonian path/cycle in G?

LongestPath: Given a graph G (either directed or undirected, possibly with weighted edges), what
is the length of the longest simple path in G?

SteinerTree: Given an undirected graph G with some of the vertices marked, what is the minimum
number of edges in a subtree of G that contains every marked vertex?

SubsetSum: Given a set X of positive integers and an integer k, does X have a subset whose elements
sum to k?

Partition: Given a set X of positive integers, can X be partitioned into two subsets with the same
sum?

3Partition: Given a set X of 3n positive integers, can X be partitioned into n three-element subsets,
all with the same sum?

IntegerLinearProgramming: Given a matrix A ∈ Zn×d and two vectors b ∈ Zn and c ∈ Zd , com-
pute max{c · x | Ax ≤ b, x ≥ 0, x ∈ Zd}.

FeasibleILP: Given a matrix A ∈ Zn×d and a vector b ∈ Zn, determine whether the set of feasible
integer points max{x ∈ Zd | Ax ≤ b, x ≥ 0} is empty.

Draughts: Given an n× n international draughts configuration, what is the largest number of pieces
that can (and therefore must) be captured in a single move?

SuperMarioBrothers: Given an n× n Super Mario Brothers level, can Mario reach the castle?

4

CS/ECE 374 A = Fall 2021
9 “Homework” 12 :
“Due” Monday, December 6, 2021

This homework is not for submission. However, we are planning to ask a few
(true/false, multiple-choice, or short-answer) questions about undecidability on
the final exam, so we still strongly recommend treating these questions as regular
homework. Solutions will be released next Monday.

1. Let 〈M〉 denote the encoding of a Turing machine M (or if you prefer, the Python source
code for the executable code M). Recall that wR denotes the reversal of string w. Prove
that the following language is undecidable.

SelfRevAccept :=
�

〈M〉
�

� M accepts the string 〈M〉R
	

Note that Rice’s theorem does not apply to this language.

2. Let M be a Turing machine, let w be a string, and let s be an integer. We say that M
accepts w in space s if, given w as input, M accesses at most the first s cells on its tape
and eventually accepts. (If you prefer to think in terms of programs instead of Turing
machines, “space” is how much memory your program needs to run correctly.)

Prove that the following language is undecidable:

SomeSquareSpace=
�

〈M〉
�

� M accepts at least one string w in space |w|2
	

Note that Rice’s theorem does not apply to this language.

[Hint: The only thing you actually need to know about Turing machines for this
problem is that they consume a resource called “space”.]

3. Prove that the following language is undecidable:

Picky=
�

〈M〉
�

�

�

�

M accepts at least one input string
and M rejects at least one input string

�

Note that Rice’s theorem does not apply to this language.

