
CS/ECE 374 A = Fall 2023
9 Homework 1 :

Due Tuesday, August 29, 2023 at 9pm Central Time

• Submit your written solutions electronically to Gradescope as PDF files. Submit
a separate PDF file for each numbered problem. If you plan to typeset your solutions,
you are welcome to use the LATEX solution template on the course web site. If you must
submit scanned handwritten solutions, please use a black pen on blank white paper and a
high-quality scanner app (or an actual scanner).

• Groups of up to three people can submit joint solutions on Gradescope. Exactly one student
in each group should upload the solution and indicate their other group members.

• You may use any source at your disposal—paper, electronic,1 or human—but you must
cite every source that you use,2 you must write everything yourself in your own words,
and you are responsible for any errors in the sources you use.3 See the academic integrity
policies on the course web site for more details.

• Written homework is normally due every Tuesday at 9pm. In addition, guided problem
sets on PrairieLearn are normally due every Monday at 9pm; each student must do these
individually. In particular, Guided Problem Set 1 is due Monday, August 28!

• Both guided problem sets and homework may be submitted up to 24 hours late for 50%
partial credit, or for full credit with an approved extension. See the grading policies on the
course web site for more details.

• Each homework will include at least one fully solved problem, similar to that week’s assigned
problems, together with the rubric we would use to grade this problem if it appeared
in an actual homework or exam. These model solutions show our recommendations for
structure, presentation, and level of detail in your homework solutions. (Obviously, the
actual content of your solutions won’t match the model solutions, because your problems
are different!) Homeworks may also include additional practice problems.

• Standard grading rubrics for many problem types can be found on the course web page.
For example, the problems in this week’s homework will be graded using the standard
induction rubric. (Weak induction makes the baby Jesus cry.)

See the course web site for more information.
If you have any questions about these policies,

please don’t hesitate to ask in class, in office hours, or on Piazza.

1Yes, including ChatGPT.
2Yes, including ChatGPT.
3Yes, including ChatGPT.

CS/ECE 374 A Homework 1 (due August 29) Fall 2023

1. Consider the following recursively defined function:

stutter(w) :=

(
ϵ if w= ϵ

aa • stutter(x) if w= ax

For example, stutter(MISSISSIPPI) = MMIISSSSIISSSSIIPPPPII.

(a) Prove that |stutter(w)|= 2|w| for every string w.
(b) Prove that stutter(x • y) = stutter(x) • stutter(y) for all strings x and y .
(c) Practice only. Do not submit solutions.

The reversal wR of a string w is defined recursively as follows:

wR :=

(
ϵ if w= ϵ

xR • a if w= ax

For example, MISSIPPIPPIR = IPPIPPISSIM.
Prove that stutter(w)R = stutter(wR) for every string w.

You may freely use any result proved in lecture, in lab, or in the lecture notes. Otherwise
your proofs must be formal and self-contained. In particular, your proofs must invoke the
formal recursive definitions of string length and concatenation (and for part (c), reversal).

1

CS/ECE 374 A Homework 1 (due August 29) Fall 2023

2. For each positive integer n, we define two strings pn and vn, respectively called the nth
Piṅgala string and the nth Virahān. ka string. Piṅgala strings are defined by the following
recurrence:

pn =





1 if n= 1

0 if n= 2

pn−2 • pn−1 otherwise
For example:

p7 =
p5

10010

p6

p4

010

p5

10010 .

Virahān. ka strings are defined more indirectly as

vn =

¨
1 if n= 1

grow(vn−1) otherwise

where the string function grow is defined as follows:

grow(w) =





ϵ if w= ϵ

0 · grow(x) if w= 1x

10 • grow(x) if w= 0x

For example:

grow(01010010) = 10 • 0 • 10 • 0 • 10 • 10 • 0 • 10= 1001001010010

Finally, recall that the Fibonacci numbers are defined recursively as follows:

Fn =





0 if n= 0

1 if n= 1

Fn−1 + Fn−2 otherwise

(a) Prove that |pn|= Fn for all n≥ 1.
(b) Prove that grow(w • z) = grow(w) • grow(z) for all strings w and z.
(c) Prove that pn = vn for all n≥ 1. [Hint: Careful!]
(d) Practice only. Do not submit solutions.

Prove that |vn|= Fn for all n≥ 1.

As in problem 1, you may freely use any result that proved in lecture, in lab, or in the
lecture notes. Otherwise your proofs must be formal and self-contained. In particular,
your proofs must invoke the formal recursive definitions of the strings pn and vn, the grow
function, and the Fibonacci numbers Fn.

2

CS/ECE 374 A Homework 1 (due August 29) Fall 2023

⋆3. Practice only. Do not submit solutions.
For each non-negative integer n, we recursively define two binary trees Pn and Vn, called
the nth Piṅgala tree and the nth Virahān. ka tree, respectively.

• P0 and V0 are empty trees, with no nodes.
• P1 and V1 each consist of a single node.
• For any integer n≥ 2, the tree Pn consists of a root with two subtrees; the left subtree

is a copy of Pn−1, and the right subtree is a copy of Pn−2.
• For any integer n ≥ 2, the tree Ln is obtained from Ln−1 by attaching a new right

child to every leaf and attaching a new left child to every node that has only a right
child.

The following figure shows the recursive construction of these two trees when n= 7.

P7

P5

P6

V7

V6

Recall that the Fibonacci numbers are defined recursively as follows:

Fn =





0 if n= 0

1 if n= 1

Fn−1 + Fn−2 otherwise

(a) Prove that the tree Pn has exactly Fn leaves.
(b) Prove that the tree Vn has exactly Fn leaves.

[Hint: You need to prove a stronger result.]
(c) Prove that the trees Pn and Vn are identical, for all n≥ 0.

[Hint: The hardest part of this proof is developing the right language/notation.]

As in problem 1, you may freely use any result that proved in lecture, in lab, or in the
lecture notes. Otherwise your proofs must be formal and self-contained. In particular, your
proofs must invoke the formal recursive definitions of the trees Pn and Vn and the Fibonacci
numbers Fn.

3

CS/ECE 374 A Homework 1 (due August 29) Fall 2023

Solved Problems
3. For any string w ∈ {0,1}∗, let swap(w) denote the string obtained from w by swapping the

first and second symbols, the third and fourth symbols, and so on. For example:

swap(10 11 00 01 10 1) = 01 11 00 10 01 1.

The swap function can be formally defined as follows:

swap(w) :=





ϵ if w= ϵ

w if w= 0 or w= 1

ba • swap(x) if w= abx for some a, b ∈ {0,1} and x ∈ {0,1}∗

(a) Prove that |swap(w)|= |w| for every string w.

Solution: Let w be an arbitrary string.
Assume |swap(x)|= |x | for every string x that is shorter than w.
There are three cases to consider (mirroring the definition of swap):
• If w= ϵ, then

|swap(w)|= |swap(ϵ)| because w= ϵ

= |ϵ| by definition of swap
= |w| because w= ϵ

• If w= 0 or w= 1, then

|swap(w)|= |w| by definition of swap

• Finally, if w= abx for some a, b ∈ {0,1} and x ∈ {0,1}∗ , then

|swap(w)|= |swap(abx)| because w= abx

= |ba • swap(x)| by definition of swap
= |ba|+ |swap(x)| because |y • z|= |y|+ |z|
= |ba|+ |x | by the induction hypothesis
= 2+ |x | by definition of | · |
= |ab|+ |x | by definition of | · |
= |ab • x | because |y • z|= |y|+ |z|
= |abx | by definition of •
= |w| because w= abx

In all cases, we conclude that |swap(w)|= |w|. ■

Rubric: 5 points: Standard induction rubric (scaled). This is more detail than necessary for full
credit.

4

CS/ECE 374 A Homework 1 (due August 29) Fall 2023

(b) Prove that swap(swap(w)) = w for every string w.

Solution: Let w be an arbitrary string.
Assume swap(swap(x)) = x for every string x that is shorter than w.
There are three cases to consider (mirroring the definition of swap):
• If w= ϵ, then

swap(swap(w)) = swap(swap(ϵ)) because w= ϵ

= swap(ϵ) by definition of swap
= ϵ by definition of swap
= w because w= ϵ

• If w= 0 or w= 1, then

swap(swap(w)) = swap(w) by definition of swap
= w by definition of swap

• Finally, if w= abx for some a, b ∈ {0,1} and x ∈ {0,1}∗ , then

swap(swap(w)) = swap(swap(abx)) because w= abx

= swap(ba • swap(x)) by definition of swap
= swap(ba • z) where z = swap(x)
= swap(baz) by definition of •
= ab • swap(z) by definition of swap
= ab • swap(swap(x)) because z = swap(x)
= ab • x by the induction hypothesis
= abx by definition of •
= w because w= abx

In all cases, we conclude that swap(swap(w)) = w. ■

Rubric: 5 points: Standard induction rubric (scaled). This is more detail than necessary for full
credit.

5

CS/ECE 374 A Homework 1 (due August 29) Fall 2023

4. The reversal wR of a string w is defined recursively as follows:

wR :=

(
ϵ if w= ϵ

xR • a if w= a · x

A palindrome is any string that is equal to its reversal, like AMANAPLANACANALPANAMA,
RACECAR, POOP, I, and the empty string.

(a) Give a recursive definition of a palindrome over the alphabet Σ.

Solution: A string w ∈ Σ∗ is a palindrome if and only if either
• w= ϵ, or
• w= a for some symbol a ∈ Σ, or
• w= axa for some symbol a ∈ Σ and some palindrome x ∈ Σ∗.

■

Rubric: 2 points = ½ for each base case + 1 for the recursive case. No credit for the rest of the
problem unless this part is correct.

(b) Prove w= wR for every palindrome w (according to your recursive definition).
You may assume the following facts about all strings x , y , and z:
• Reversal reversal: (xR)R = x

• Concatenation reversal: (x • y)R = yR • xR

• Right cancellation: If x • z = y • z, then x = y .

Solution: Let w be an arbitrary palindrome.
Assume that x = xR for every palindrome x such that |x |< |w|.
There are three cases to consider (mirroring the definition of “palindrome”):

• If w= ϵ, then wR = ϵ by definition, so w= wR.
• If w= a for some symbol a ∈ Σ, then wR = a by definition, so w= wR.
• Finally, if w = axa for some symbol a ∈ Σ and some palindrome x ∈ P,

then

wR = (a · x • a)R because w = axa
= (x • a)R • a by definition of reversal
= aR • xR • a by concatenation reversal
= a • xR • a by definition of reversal
= a • x • a by the inductive hypothesis
= w because w = axa

In all three cases, we conclude that w= wR. ■

Rubric: 4 points: standard induction rubric (scaled)

6

CS/ECE 374 A Homework 1 (due August 29) Fall 2023

(c) Prove that every string w such that w = wR is a palindrome (according to your
recursive definition).
Again, you may assume the following facts about all strings x , y , and z:
• Reversal reversal: (xR)R = x

• Concatenation reversal: (x • y)R = yR • xR

• Right cancellation: If x • z = y • z, then x = y .

Solution: Let w be an arbitrary string such that w= wR.
Assume that every string x such that |x |< |w| and x = xR is a palindrome.
There are three cases to consider (mirroring the definition of “palindrome”):
• If w= ϵ, then w is a palindrome by definition.
• If w= a for some symbol a ∈ Σ, then w is a palindrome by definition.
• Otherwise, we have w= ax for some symbol a and some non-empty string x .

The definition of reversal implies that wR = (ax)R = xRa.
Because x is non-empty, its reversal xR is also non-empty.
Thus, xR = b y for some symbol b and some string y .
It follows that wR = b ya, and therefore w= (wR)R = (b ya)R = a yR b.
〈〈At this point, we need to prove that a = b and that y is a palindrome.〉〉
Our assumption that w= wR implies that b ya = a yR b.
The recursive definition of string equality immediately implies a = b.
Because a = b, we have w= a yRa and wR = a ya.
The recursive definition of string equality implies yRa = ya.
Right cancellation implies yR = y .
The inductive hypothesis now implies that y is a palindrome.
We conclude that w is a palindrome by definition.

In all three cases, we conclude that w is a palindrome. ■

Rubric: 4 points: standard induction rubric (scaled).

7

CS/ECE 374 A Homework 1 (due August 29) Fall 2023

5. Let L ⊆ {0,1}∗ be the language defined recursively as follows:

• The empty string ϵ is in L.
• For any string x ∈ L, the strings 0101x and 1010x are also in L.
• For all strings x and y such that x y ∈ L, the strings x00y and x11y are also in L.

(In other words, inserting two consecutive 0s or two consecutive 1s anywhere in a
string in L yields another string in L.)

• These are the only strings in L.

Let EE denote the set of all strings w ∈ {0,1}∗ such that #(0, w) and #(1, w) are both even.
In the following proofs, you may freely use any result proved in lecture, in lab, in the
lecture notes, or earlier in your homework. Otherwise your proofs must be formal and
self-contained; in particular, they must invoke the formal recursive definitions of # and L.

(a) Prove that L ⊆ EE.
Solution: Let w be an arbitrary string in L. We need to prove that #(0, w) and
#(1, w) are both even. Here I will prove only that #(0, w) is even; the proof that
#(1, w) is even is symmetric.

Assume for every string x ∈ L such that |x |< |w| that #(0, x) is even.
There are several cases to consider, mirroring the definition of L.

• Suppose w= ϵ. Then #(0, w) = 0, and 0 is even.
• Suppose w= 0101x or w= 1010x for some string x ∈ L. The definition of #

(applied four times) implies #(0, w) = #(0, x)+2. The inductive hypothesis
implies #(0, x) is even. We conclude that #(0, w) is even.

• Suppose w= x00y for some strings x and y such that x y ∈ L. Then

#(0, w) = #(0, x00y)

= #(0, x) +#(0,00) +#(0, y)

= #(0, x) +#(0, y) +#(0,00)

= #(0, x y) + 2

The induction hypothesis implies #(0, x y) is even. We conclude that
#(0, w) = #(0, x y) + 2 is also even.

• Finally, suppose w= x11y for some strings x and y such that x y ∈ L. Then

#(0, w) = #(0, x11y)

= #(0, x) +#(0,11) +#(0, y)

= #(0, x) +#(0, y)

= #(0, x y)

The induction hypothesis implies #(0, w) = #(0, x y) is even.

8

CS/ECE 374 A Homework 1 (due August 29) Fall 2023

In all cases, we have shown that #(0, w) is even. Symmetric arguments imply
that #(1, w) is even. We conclude that w ∈ EE. ■

Rubric: 5 points: standard induction rubric (scaled). Yes, this is enough detail for#(1, w). If
explicit proofs are given for both#(0, w) and#(1, w), grade them independently, each for 2½
points.

(b) Prove that EE ⊆ L.
Solution: Let w be an arbitrary string in EE. We need to prove that w ∈ L.
Assume that for every string x ∈ EE such that |x |< |w|, we have x ∈ L.
There are four (overlapping) cases to consider, depending on the first four
symbols in w.
• Suppose |w| < 4. Then w must be one of the strings ϵ, 00, or 11; brute

force inspection implies that every other string of length at most 3 (0, 1, 01,
10, 000, 001, 010, 011, 100, 101, 110, 111) has an odd number of 0s or an
odd number of 1s (or both). All three strings ϵ, 00, and 11 are in L. In all
other cases, we can assume that |w| ≥ 4, so the “first four symbols of w” are
well-defined.

• Suppose the first four symbols of w are 0000 or 0001 or 0010 or 0011 or 0100
or 1000 or 1001 or 1100. Then w= x00y for some (possibly empty) strings
x and y. Arguments in part (a) imply that #(0, x y) = #(0, w) − 2 and
#(1, x y) = #(1, w) are both even. Thus x y ∈ EE by definition of EE. So
the induction hypothesis implies x y ∈ L. We conclude that w= x00y ∈ L
by definition of L.

• Suppose the first four symbols of w are 0011 or 0110 or 0111 or 1011 or
1100 or 1101 or 1110 or 1111.) After swapping 0s and 1s, the argument in
the previous case implies that w ∈ L.

• Finally, suppose the first four symbols of w are 0101 or 1010; in other words,
suppose w= 0101x or w= 1010x for some (possibly empty) string x . Then
#(0, x) = #(0, w)− 2 and #(1, x) = #(1, w)− 2 are both even, so x ∈ EE
by definition. The induction hypothesis implies x ∈ L. We conclude that
w ∈ L by definition of L.

Each of the 16 possible choices for the first four symbols of w is considered in at
least one of the last three cases.
In all cases, we conclude that w ∈ L. ■

Rubric: 5 points: standard induction rubric (scaled). This is not the only correct proof. This is
not the only correct way to express this particular case analysis.

9

CS/ECE 374 A Homework 2 (due September 6) Fall 2023

CS/ECE 374 A = Fall 2023
9 Homework 2 :

Due Wednesday, September 6, 2023 at 9pm Central Time
(One day later than usual because of Labor Day)

• Starting with this homework, please start your solution to each lettered subproblem ((a),
(b), (c), etc.) on a new page. Yes, even if the previous subproblem is only one line long.
Please also remember to tell Gradescope which page(s) are relevant for which subproblems.

1. For each of the following languages over the alphabet {0,1}∗, describe an equivalent regular
expression, and briefly explain why your regular expression is correct. There are infinitely
many correct answers for each language.

(a) All strings in 1∗01∗ whose length is a multiple of 3.
(b) All strings that begin with the prefix 001, end with the suffix 100, and contain an odd

number of 1s.
(c) All strings that contain both 0011 and 1100 as substrings.
(d) All strings that contain the substring 01 an odd number of times.
(e) {0a1b0c | a ≥ 0 and b ≥ 0 and c ≥ 0 and a ≡ b+ c (mod 2)}.

2. For each of the following languages over the alphabet Σ = {0,1}, describe a DFA that
accepts the language, and briefly describe the purpose of each state. You can describe
your DFA using a drawing, or using formal mathematical notation, or using a product
construction; see the standard DFA rubric.

(a) All strings in 1∗01∗ whose length is a multiple of 3.
(b) All strings that represent a multiple of 5 in base 3. For example, this language contains

the string 10100, because 101003 = 9010 is a multiple of 5. (Yes, base 3 allows the
digits 0, 1, and 2, but your input string will never contain a 2.)

(c) All strings containing the substring 01010010. (The required substring is p6 = v6

from Homework 1.)
(d) All strings whose ninth-to-last symbol is 0, or equivalently, the set

�
x0z | x ∈ Σ∗ and z ∈ Σ8

	
.

(e) All strings w such that (#(0, w)mod 3) + (#(1, w)mod 7) = (|w|mod 4).

[Hint: Don’t try to draw the last two.]

1

CS/ECE 374 A Homework 2 (due September 6) Fall 2023

3. Practice only. Do not submit solutions.
This question asks about strings over the set of pairs of bits, which we will write vertically.

Let Σ2 denote the set of all bit-pairs:

Σ2 =
��

0
0

�
,
�
0
1

�
,
�
1
0

�
,
�
1
1

�	

We can interpret any string w of bit-pairs as a 2×|w| matrix of bits; each row of this matrix
is the binary representation of some non-negative integer, possibly with leading 0s. Let
hi(w) and lo(w) respectively denote the numerical values of the top and bottom row of this
matrix. For example, hi(ϵ) = lo(ϵ) = 0, and if

w=
�
0
0

��
0
1

��
1
0

��
1
1

�
=
�
0011
0101

�

then hi(w) = 3 and lo(w) = 5.

(a) Describe a DFA that accepts the language L+1 = {w ∈ Σ∗2 | hi(w) = lo(w) + 1}.
For example, w=

�
1
1

��
1
0

��
0
1

��
0
1

�
=
�
1100
1011

� ∈ L+1, because hi(w) = 12 and lo(w) = 11.

(b) Describe a regular expression for L+1.

(c) Describe a DFA that accepts the language L×3 = {w ∈ Σ∗2 | hi(w) = 3 · lo(w)}.
For example, w=

�
1
0

��
0
0

��
0
1

��
1
1

�
=
�
1001
0011

� ∈ L3, because hi(w) = 9 and lo(w) = 3.

(d) Describe a regular expression for L×3.

⋆(e) Describe a DFA that accepts the language L×3/2 = {w ∈ Σ∗2 | 2 · hi(w) = 3 · lo(w)}.
For example, w=

�
1
0

��
0
0

��
0
1

��
1
1

�
=
�
1001
0110

� ∈ L×3/2, because hi(w) = 9 and lo(w) = 6.

(Don’t bother with the regular expression for this one.)

2

CS/ECE 374 A Homework 2 (due September 6) Fall 2023

Solved problem
4. C comments are the set of strings over alphabet Σ = {*,/,A,⋄, ↱} that form a proper

comment in the C program language and its descendants, like C++ and Java. Here ↱

represents the newline character, ⋄ represents any other whitespace character (like the
space and tab characters), and A represents any non-whitespace character other than * or /.1
There are two types of C comments:

• Line comments: Strings of the form // · · · ↱

• Block comments: Strings of the form /* · · ·*/
Following the C99 standard, we explicitly disallow nesting comments of the same type.
A line comment starts with // and ends at the first ↱after the opening //. A block comment
starts with /* and ends at the the first */ completely after the opening /*; in particular,
every block comment has at least two *s. For example, each of the following strings is a
valid C comment:

/***/ //⋄//⋄ ↱ /*///⋄*⋄ ↱**/ /*⋄//⋄ ↱⋄*/

On the other hand, none of the following strings is a valid C comment:

/*/ //⋄//⋄ ↱⋄ ↱ /*⋄/*⋄*/⋄*/

(Questions about C comments start on the next page.)

1The actual C commenting syntax is considerably more complex than described here, because of character and
string literals.

• The opening /* or // of a comment must not be inside a string literal (" · · ·") or a (multi-)character literal
(' · · ·').

• The opening double-quote of a string literal must not be inside a character literal ('"') or a comment.
• The closing double-quote of a string literal must not be escaped (\")
• The opening single-quote of a character literal must not be inside a string literal (" · · ·' · · ·") or a comment.
• The closing single-quote of a character literal must not be escaped (\’)
• A backslash escapes the next symbol if and only if it is not itself escaped (\\) or inside a comment.

For example, the string "/*\\\"*/"/*"/*\"/*"*/ is a valid string literal (representing the 5-character string /*\"*/,
which is itself a valid block comment!) followed immediately by a valid block comment. For this homework question,
just pretend that the characters ', ", and \ don’t exist.

Commenting in C++ is even more complicated, thanks to the addition of raw string literals. Don’t ask.
Some C and C++ compilers do support nested block comments, in violation of the language specification. A few

other languages, like OCaml, explicitly allow nesting block comments.

3

CS/ECE 374 A Homework 2 (due September 6) Fall 2023

(a) Describe a regular expression for the set of all C comments.

Solution:

//(/+ *+ A+ ⋄)∗ ↱ + /*
�
/+ A+ ⋄+ ↱+ **∗(A+ ⋄+ ↱)�∗ *∗*/

The first subexpression matches all line comments, and the second subexpression
matches all block comments. Within a block comment, we can freely use any
symbol other than *, but any run of *s must be followed by a character in
(A+ ⋄+ ↱) or by the closing slash of the comment. ■

Rubric: Standard regular expression rubric. This is not the only correct solution.

(b) Describe a regular expression for the set of all strings composed entirely of blanks (⋄),
newlines (↱), and C comments.

Solution:
�⋄+ ↱+ //(/+ *+ A+ ⋄)∗ ↱+ /* (/+ A+ ⋄+ ↱+ **∗(A+ ⋄+ ↱))∗ **∗/�∗

This regular expression has the form (〈whitespace〉 + 〈comment〉)∗, where
〈whitespace〉 is the regular expression ⋄ + ↱and 〈comment〉 is the regular
expression from part (a). ■

Rubric: Standard regular expression rubric. This is not the only correct solution.

4

CS/ECE 374 A Homework 2 (due September 6) Fall 2023

(c) Describe a DFA that accepts the set of all C comments.

Solution: The following eight-state DFA recognizes the language of C comments.
All missing transitions lead to a hidden reject state.

/*A◇

*

/

/

↲

*

*

/

A◇↲

/A◇↲
s /

// L

/* /** B

The states are labeled mnemonically as follows:
• s — We have not read anything.
• / — We just read the initial /.
• // — We are reading a line comment.
• L — We have just read a complete line comment.
• /* — We are reading a block comment, and we did not just read a * after

the opening /*.
• /** — We are reading a block comment, and we just read a * after the

opening /*.
• B — We have just read a complete block comment.

■

Rubric: Standard DFA design rubric. This is not the only correct solution, or even the simplest
correct solution. (We don’t need two distinct accepting states.)

5

CS/ECE 374 A Homework 2 (due September 6) Fall 2023

(d) Describe a DFA that accepts the set of all strings composed entirely of blanks (⋄),
newlines (↱), and C comments.

Solution: By merging the accepting states of the previous DFA with the start
state and adding white-space transitions at the start state, we obtain the following
six-state DFA. Again, all missing transitions lead to a hidden reject state.

/*A◇

*

/

/
↲

*

/

A◇↲

◇↲

/A◇↲*

s /

//

/*/**

The states are labeled mnemonically as follows:
• s — We are between comments.
• / — We just read the initial / of a comment.
• // — We are reading a line comment.
• /* — We are reading a block comment, and we did not just read a * after

the opening /*.
• /** — We are reading a block comment, and we just read a * after the

opening /*.
■

Rubric: Standard DFA design rubric. This is not the only correct solution, but it is the simplest
correct solution.

6

CS/ECE 374 A Homework 2 (due September 6) Fall 2023

⋆5. Recall that the reversal wR of a string w is defined recursively as follows:

wR :=

(
ϵ if w= ϵ

xR • a if w= a · x
The reversal LR of any language L is the set of reversals of all strings in L:

LR :=
�

wR
�� w ∈ L
	

.

Prove that the reversal of every regular language is regular.

Solution: Let r be an arbitrary regular expression. We want to derive a regular
expression r ′ such that L(r ′) = L(r)R.

Assume for every regular expression s smaller than r that there is a regular
expression s′ such that L(s′) = L(s)R.

There are five cases to consider (mirroring the definition of regular expressions).

(a) If r =∅, then we set r ′ =∅, so that

L(r)R = L(∅)R because r =∅
=∅R because L(∅) =∅
=∅ because ∅R =∅
= L(∅) because L(∅) =∅
= L(r ′) because r =∅

(b) If r = w for some string w ∈ Σ∗, then we set r ′ := wR, so that

L(r)R = L(w)R because r = w

= {w}R because L(〈string〉) = {〈string〉}
= {wR} by definition of LR

= L(wR) because L(〈string〉) = {〈string〉}
= L(r ′) because r = wR

(c) Suppose r = s∗ for some regular expression s. The inductive hypothesis implies
a regular expressions s′ such that L(s′) = L(s)R. Let r ′ = (s ′)∗; then we have

L(r)R = L(s∗)R because r = s∗

= (L(s)∗)R by definition of ∗

= (L(s)R)∗ because (LR)∗ = (L∗)R

= (L(s′))∗ by definition of s′

= L((s′)∗) by definition of ∗

= L(r ′) by definition of r ′

(d) Suppose r = s+ t for some regular expressions s and t. The inductive hypothesis
implies regular expressions s′ and t ′ such that L(s′) = L(s)R and L(t ′) = L(t)R.

7

CS/ECE 374 A Homework 2 (due September 6) Fall 2023

Set r ′ := s ′ + t ′; then we have

L(r)R = L(s+ t)R because r = s+ t

= (L(s)∪ L(t))R by definition of +
= {wR | w ∈ (L(s)∪ L(t))} by definition of LR

= {wR | w ∈ L(s) or w∪ L(t)} by definition of ∪
= {wR | w ∈ L(s)} ∪ {wR | w∪ L(t)} by definition of ∪
= L(s)R ∪ L(t)R by definition of LR

= L(s′)∪ L(t ′) by definition of s′ and t ′

= L(s′ + t ′) by definition of +
= L(r ′) by definition of r ′

(e) Suppose r = s• t for some regular expressions s and t. The inductive hypothesis
implies regular expressions s′ and t ′ such that L(s′) = L(s)R and L(t ′) = L(t)R.
Set r ′ = t ′ • s ′; then we have

L(r)R = L(st)R because r = s+ t

= (L(s) • L(t))R by definition of •
= {wR | w ∈ (L(s) • L(t))} by definition of LR

= {(x • y)R | x ∈ L(s) and y ∈ L(t)} by definition of •
= {yR • xR | x ∈ L(s) and y ∈ L(t)} concatenation reversal
= {y ′ • x ′ | x ′ ∈ L(s)R and y ′ ∈ L(t)R} by definition of LR

= {y ′ • x ′ | x ′ ∈ L(s′) and y ′ ∈ L(t ′)} by definition of s′ and t ′

= L(t ′) • L(s′) by definition of •
= L(t ′ • s′) by definition of •
= L(r ′) by definition of r ′

In all five cases, we have found a regular expression r ′ such that L(r ′) = L(r)R. It
follows that L(r)R is regular. ■

Rubric: Standard induction rubric!!

8

CS/ECE 374 A Homework 3 (due September 12) Fall 2023

CS/ECE 374 A = Fall 2023
9 Homework 3 :

Due Tuesday, September 12, 2023 at 9pm Central Time

• Please start your solution to each lettered subproblem ((a), (b), (c), etc.) on a new page.
Please also remember to tell Gradescope which page(s) are relevant for which subproblems.

1. Prove that the following languages over the alphabet Σ= {0,1} are not regular.

(a)
�
0a10b10c
�� 2b = a+ c
	
.

(b) The set of all palindromes in Σ∗ whose lengths are divisible by 7.
(c)
�
1m0n
�� m+ n> 0 and gcd(m, n) = 1

	

Here gcd(m, n) denotes the greatest common divisor of m and n: the largest
integer d such that both m/d and n/d are integers. In particular, gcd(1, n) = 1 and
gcd(0, n) = n for every positive integer n.

2. For each of the following languages over the alphabet Σ = {0,1}, either prove that the
language is regular (by constructing an appropriate DFA, NFA, or regular expression) or
prove that the language is not regular (by constructing an infinite fooling set). Recall
that Σ+ denotes the set of all nonempty strings over Σ.

(a) Strings in which the substrings 01 and 10 appear the same number of times. For
example, 1100011 ∈ L because both substrings appear once, but 01000011 ̸∈ L.

(b) Strings in which the substrings 00 and 11 appear the same number of times. For
example, 1100011 ∈ L because both substrings appear twice, but 01000011 ̸∈ L.

(c)
�

x y y x
�� x , y ∈ Σ+	

(d)
�

x y yz
�� x , y, z ∈ Σ+	

[Hint: Exactly two of these languages are regular.]

1

CS/ECE 374 A Homework 3 (due September 12) Fall 2023

⋆3. Practice only. Do not submit solutions.
A Moore machine is a variant of a finite-state automaton that produces output; Moore

machines are sometimes called finite-state transducers. For purposes of this problem, a
Moore machine formally consists of six components:

• A finite set Σ called the input alphabet
• A finite set Γ called the output alphabet
• A finite set Q whose elements are called states
• A start state s ∈Q

• A transition function δ : Q×Σ→Q

• An output function ω: Q→ Γ
More intuitively, a Moore machine is a graph with a special start vertex, where every node
(state) has one outgoing edge labeled with each symbol from the input alphabet, and each
node (state) is additionally labeled with a symbol from the output alphabet.

The Moore machine reads an input string w ∈ Σ∗ one symbol at a time. For each
symbol, the machine changes its state according to the transition function δ, and then
outputs the symbol ω(q), where q is the new state. Formally, we recursively define a
transducer function ω∗ : Q×Σ∗→ Γ ∗ as follows:

ω∗(q, w) =

¨
ϵ if w= ϵ

ω(δ(q, a)) ·ω∗(δ(q, a), x) if w= ax

Given input string w ∈ Σ∗, the machine outputs the string ω∗(w, s) ∈ Γ ∗. The output
language L◦(M) of a Moore machine M is the set of all strings that the machine can
output:

L◦(M) := {ω∗(s, w) | w ∈ Σ∗}

(a) Let M be an arbitrary Moore machine. Prove that L◦(M) is a regular language.
(b) Let M be an arbitrary Moore machine whose input alphabet Σ and output alphabet Γ

are identical. Prove that the language

L=(M) = {w ∈ Σ∗ | w=ω∗(s, w)}

is regular. L=(M) consists of all strings w such that M outputs w when given input w;
these are also called fixed points for the transducer function ω∗.

[Hint: These problems are easier than they look!]

2

CS/ECE 374 A Homework 3 (due September 12) Fall 2023

Solved problems
4. For each of the following languages, either prove that the language is regular (by con-

structing an appropriate DFA, NFA, or regular expression) or prove that the language is
not regular (by constructing an infinite fooling set).
Recall that a palindrome is a string that equals its own reversal: w= wR. Every string of
length 0 or 1 is a palindrome.

(a) Strings in (0+ 1)∗ in which no prefix of length at least 2 is a palindrome.

Solution: Regular: ϵ + 01∗ + 10∗. Call this language La.
Let w be an arbitrary non-empty string in (0+ 1)∗. Without loss of generality,

assume w= 0x for some string x . There are two cases to consider.
• If x contains a 0, then we can write w= 01n0y for some integer n and some

string y . The prefix 01n0 is a palindrome of length at least 2. Thus, w ̸∈ La.
• Otherwise, x ∈ 1∗. Every non-empty prefix of w is equal to 01n for some

non-negative integer n≤ |x |. Every palindrome that starts with 0 also ends
with 0, so the only palindrome prefixes of w are ϵ and 0, both of which have
length less than 2. Thus, w ∈ La.

We conclude that 0x ∈ La if and only if x ∈ 1∗. A similar argument implies that
1x ∈ La if and only if x ∈ 0∗. Finally, trivially, ϵ ∈ La. ■

Rubric: 2½ points = ½ for “regular” + 1 for regular expression + 1 for justification. This is more
detail than necessary for full credit.

(b) Strings in (0+ 1+ 2)∗ in which no prefix of length at least 2 is a palindrome.

Solution: Not regular. Call this language Lb.
Consider the set F = (012)+.
Let x and y be arbitrary distinct strings in F .
Then x = (012)i and y = (012) j for some positive integers i ̸= j.
Without loss of generality, assume i < j.
Let z be the suffix (210)i .
• xz = (012)i(210)i is a palindrome of length 6i ≥ 2, so xz ̸∈ Lb.
• yz = (012) j(210)i has no palindrome prefixes except ϵ and 0, because i < j,

so yz ∈ Lb.
Thus, z is a distinguishing suffix for x and y .
We conclude that F is a fooling set for Lb.
Because F is infinite, Lb cannot be regular. ■

Rubric: 2½ points = ½ for “not regular” + 2 for fooling set proof (standard rubric, scaled).

3

CS/ECE 374 A Homework 3 (due September 12) Fall 2023

(c) Strings in (0+ 1)∗ in which no prefix of length at least 3 is a palindrome.

Solution: Not regular. Call this language Lc .
Consider the set F = (001101)+.
Let x and y be arbitrary distinct strings in F .
Then x = (001101)i and y = (001101) j for some positive integers i ̸= j.
Without loss of generality, assume i < j.
Let z be the suffix (101100)i .
• xz = (001101)i(101100)i is a palindrome of length 12i ≥ 2, so xz ̸∈ Lb.
• yz = (001101) j(101100)i has no palindrome prefixes except ϵ and 0 and

00, because i < j, so yz ∈ Lb.
Thus, z is a distinguishing suffix for x and y .
We conclude that F is a fooling set for Lc .
Because F is infinite, Lc cannot be regular. ■

Rubric: 2½ points = ½ for “not regular” + 2 for fooling set proof (standard rubric, scaled).

(d) Strings in (0+ 1)∗ in which no substring of length at least 3 is a palindrome.

Solution: Regular. Call this language Ld .
Every palindrome of length at least 3 contains a palindrome substring of

length 3 or 4. Thus, the complement language Ld is described by the regular
expression

(0+ 1)∗(000+ 010+ 101+ 111+ 0110+ 1001)(0+ 1)∗

Thus, Ld is regular, so its complement Ld is also regular. ■

Solution: Regular. Call this language Ld .
In fact, Ld is finite! Appending either 0 or 1 to any of the underlined strings

creates a palindrome suffix of length 3 or 4.

ϵ + 0+ 1+ 00+ 01+ 10+ 11+ 001+ 011+ 100+ 110+ 0011+ 1100

■

Rubric: 2½ points = ½ for “regular” + 2 for proof:
• 1 for expression for Ld + 1 for applying closure
• 1 for regular expression + 1 for justification

4

CS/ECE 374 A Homework 4 (due September 19) Fall 2023

CS/ECE 374 A = Fall 2023
9 Homework 4 :

Due Tuesday, September 19, 2023 at 9pm Central Time

This is the last homework before Midterm 1.

1. Recall the following string functions from Homework 1:

stutter(w) :=

(
ϵ if w= ϵ

aa • stutter(x) if w= ax
grow(w) :=





ϵ if w= ϵ

0 · grow(x) if w= 1x

10 • grow(x) if w= 0x

For example, stutter(1001) = 11000011, and grow(1001) = 0 • 10 • 10 • 0= 010100.
Let L be an arbitrary regular language over the alphabet Σ = {0,1}. Prove that the

following languages are also regular.

(a) Stutter(L) = {stutter(w) | w ∈ L}
(b) Unstutter(L) = {w | stutter(w) ∈ L}
(c) Grow(L) = {grow(w) | w ∈ L}
(d) Ungrow(L) = {w | grow(w) ∈ L}

2. Give context-free grammars for the following languages, and clearly explain how they work
and the set of strings generated by each nonterminal. Grammars with unclear or missing
explanations may receive little or no credit. On the other hand, we do not want formal
proofs of correctness.

(a)
�
0a10b10c
�� b = 2a+ 2c
	
.

(b)
�
0a10b10c
�� 2b = a+ c
	
.

(c) The set of all palindromes in Σ∗ whose lengths are divisible by 7.
⋆(d) Practice only. Do not submit solutions.

Strings in which the substrings 00 and 11 appear the same number of times. For
example, 1100011 ∈ L because both substrings appear twice, but 01000011 ̸∈ L.

Yes, you’ve seen most of these languages before.

1

CS/ECE 374 A Homework 4 (due September 19) Fall 2023

⋆3. Practice only. Do not submit solutions.
Let L1 and L2 be arbitrary regular languages over the alphabet Σ= {0,1}. Prove that

the following languages are also regular.

(a) Faro(L1, L2) := {faro(x , z) | x ∈ L1 and z ∈ L2 with |x |= |z|}, where

faro(x , z) :=

¨
z if x = ϵ

a · faro(z, y) if x = a y

For example, faro(0011,0101) = 00011011 and Faro(0∗,1∗) = (01)∗.

(b) Shuffles(L1, L2) :=
⋃

w∈L1,y∈L2
shuffles(w, y), where shuffles(w, y) is the set of all

strings obtained by shuffling w and y, or equivalently, all strings in which w and y
are complementary subsequences. Formally:

shuffles(w, y) =





{y} if w= ϵ

{w} if y = ϵ

{a} • shuffles(x , y)∪ {b} • shuffles(w, z) if w= ax and y = bz

For example, shuffles(001,1) = {0011,0101,1001} and shuffles(00,11) = {0011,0101,
0110,1001,1010,1100}. Finally, Shuffles(0∗,1∗) = (0+ 1)∗.

Both of these names are taken from methods of mixing a deck of playing cards. A shuffle
divides the deck into two smaller stacks, and then interleaves those two stacks arbitrarily.
A Faro shuffle or perfect shuffle divides the pack of cards exactly in half, and then interleaves
them perfectly; the final deck alternates between cards from one half and cards from the
other half. Faro shuffles are the basis of several card tricks.

2

CS/ECE 374 A Homework 4 (due September 19) Fall 2023

Solved problems
4. (a) Fix an arbitrary regular language L. Prove that the language half(L) := {w | ww ∈ L}

is also regular.

Solution: Let M = (Σ,Q, s, A,δ) be an arbitrary DFA that accepts L. We define
a new NFA M ′ = (Σ,Q′, s′, A′,δ′) with ϵ-transitions that accepts half(L), as
follows:

Q′ = (Q×Q×Q)∪ {s′}
s′ is an explicit state in Q′

A′ = {(h, h, q) | h ∈Q and q ∈ A}
δ′(s′,ϵ) = {(s, h, h) | h ∈Q}
δ′(s′, a) =∅

δ′((p, h, q),ϵ) =∅
δ′((p, h, q), a) =

��
δ(p, a), h,δ(q, a)

�	

M ′ reads its input string w and simulates M reading the input string ww.
Specifically, M ′ simultaneously simulates two copies of M , one reading the left
half of ww starting at the usual start state s, and the other reading the right half
of ww starting at some intermediate state h.
• The new start state s′ non-deterministically guesses the “halfway” state

h = δ∗(s, w) without reading any input; this is the only non-determinism
in M ′.

• State (p, h, q) means the following:
– The left copy of M (which started at state s) is now in state p.
– The initial guess for the halfway state is h.
– The right copy of M (which started at state h) is now in state q.

• M ′ accepts if and only if the left copy of M ends at state h (so the initial
non-deterministic guess h= δ∗(s, w) was correct) and the right copy of M
ends in an accepting state.

■

Solution (smartass): A complete solution is given in the lecture notes. ■

Rubric: 5 points: standard langage transformation rubric (scaled). Yes, the smartass solution
would be worth full credit.

3

CS/ECE 374 A Homework 4 (due September 19) Fall 2023

(b) Describe a regular language L such that the language double(L) := {ww | w ∈ L} is
not regular. Prove your answer is correct.

Solution: Consider the regular language L = 0∗1.
Expanding the regular expression lets us rewrite L = {0n1 | n≥ 0}. It follows
that double(L) = {0n10n1 | n≥ 0}. I claim that this language is not regular.
Let x and y be arbitrary distinct strings in L.
Then x = 0i1 and y = 0 j1 for some integers i ̸= j.
Then x is a distinguishing suffix of these two strings, because
• x x ∈ double(L) by definition, but
• y x = 0i10 j1 ̸∈ double(L) because i ̸= j.

We conclude that L is a fooling set for double(L).
Because L is infinite, double(L) cannot be regular. ■

Solution: Consider the regular language L = Σ∗ = (0+ 1)∗.
I claim that the language double(Σ∗) = {ww | w ∈ Σ∗} is not regular.
Let F be the infinite language 01∗0.
Let x and y be arbitrary distinct strings in F .
Then x = 01i0 and y = 01 j0 for some integers i ̸= j.
The string z = 1i is a distinguishing suffix of these two strings, because
• xz = 01i01i = ww where w= 01i , so xz ∈ double(Σ∗), but
• y x = 01 j01i ̸∈ double(Σ∗) because i ̸= j.

We conclude that F is a fooling set for double(Σ∗).
Because F is infinite, double(Σ∗) cannot be regular. ■

Rubric: 5 points:

• 2 points for describing a regular language L such that double(L) is not regular.
• 3 point for the fooling set proof (standard fooling set rubric, scaled and rounded)

These are not the only correct solutions. These are not the only fooling sets for these languages.

4

CS/ECE 374 A Homework 4 (due September 19) Fall 2023

5. Give context-free grammars for the following languages over the alphabet Σ = {0,1}.
Clearly explain how they work and the set of strings generated by each nonterminal.
Grammars with unclear or missing explanations may receive little or no credit; on the
other hand, we do not want formal proofs of correctness.

(a) In any string, a run is a maximal non-empty substring of identical symbols. For
example, the string 0111000011001= 011304120211 consists of six runs.

Let La be the set of all strings in Σ∗ that contain two runs of 0s of equal length.
For example, La contains the strings 01101111 and 01001011100010 (because each
of those strings contains more than one run of 0s of length 1) but La does not contain
the strings 000110011011 and 00000000111.

Solution:

S→ ACB strings with two blocks of 0s of same length
A→ ϵ | X1 empty or ends with 1

B→ ϵ | 1X empty or starts with 1

C → 0C0 | 0D0 0n y0n, where y starts and ends with 1

D→ 1 | 1X1 starts and ends with 1

X → ϵ | 1X | 0X all strings: (0+ 1)∗

Every string in L has the form x0n y0nz, where x is either empty or ends with 1,
y starts and ends with 1, and z is either empty or begins with 1. Nonterminal A
generates the prefix x; non-terminal B generates the suffix z; nonterminal C
generates the matching runs of 0s, and nonterminal D generates the interior
string y .

The same decomposition can be expressed more compactly as follows:

S→ B | B1A | A1B | A1B1A strings with two blocks of 0s of same length
A→ 1A | 0A | ϵ all strings: (0+ 1)∗

B→ 0B0 | 010 | 01A10 0n y0n, where y starts and ends with 1

■

Rubric: 5 points = 3 for clearly correct grammar + 2 for clear explanation. These are not the
only correct solutions.

5

CS/ECE 374 A Homework 4 (due September 19) Fall 2023

(b) Lb = {w ∈ Σ∗ | w is not a palindrome}.
Solution:

S→ 0S0 | 0S1 | 1S0 | 1S1 | A non-palindromes
A→ 0B1 | 1B0 start and end with different symbols
B→ 0B | 1B | ϵ all strings

Every non-palindrome w can be decomposed as either w= x0y1z or w= x1y0z,
for some substrings x , y, z such that |x | = |z|. Non-terminal S generates the
prefix x and matching-length suffix z; non-terminal A generates the distinct
symbols, and non-terminal B generates the interior substring y . ■

Solution:

S→ 0S0 | 1S1 | A non-palindromes
A→ 0B1 | 1B0 start and end with different symbols
B→ 0B | 1B | ϵ all strings

Every non-palindrome w must have a prefix x and a substring y such that either
w= x0y1xR or w= x1y0xR. Specifically, x is the longest common prefix of w
and wR. In the first case, the grammar generates w as follows:

S⇝∗ x A xR⇝ x 0B1 xR⇝∗ x0y1xR = w

The derivation for w= x1y0xR is similar. ■

Rubric: 5 points = 3 for clearly correct grammar + 2 for clear explanation. These are not the
only correct solutions.

6

CS/ECE 374 A = Fall 2023
9 Homework 5 :

Due Tuesday, October 3, 2023 at 9pm Central Time

1. In the lab on Wednesday, you’ll see an algorithm that finds a local minimum in a one-
dimensional array in O(log n) time. This question asks you to consider two higher-
dimensional versions of this problem.

(a) Suppose we are given a two-dimensional array A[1 .. n, 1 .. n] of distinct integers. An
array element A[i, j] is called a local minimum if it is smaller than its four immediate
neighbors:

A[i, j]<min
�
A[i − 1, j], A[i + 1, j], A[i, j − 1], A[i, j + 1]

	

To avoid edge cases, we assume all cells in row 1, row n, column 1, and column n
have value +∞.

Describe and analyze an algorithm to find a local minimum in A as quickly as
possible. (Remember that faster algorithms are worth more points, but only if they
are correct.)

[Hint: Suppose A[i, j] is the smallest element in row i. If A[i, j] is smaller than
both of its vertical neighbors A[i−1, j] and A[i+1, j], we are clearly done. But what
if A[i, j]> A[i + 1, j]?]

[Hint: This problem is more subtle than it appears at first glance; many published
solutions for this problem on the internet are incorrect. The main issue is that a local
minimum in a rectangular subarray is not necessarily a local minimum in the original
array. Design a recursive algorithm for the following more general problem: Given a
two-dimensional array that contains a local minimum whose value is less than the
value of every border cell, find such a local minimum.]

(b) Now suppose we are given a three-dimensional array A[1 .. n, 1 .. n, 1 .. n] of distinct
integers. An array element A[i, j, k] is called a local minimum if it is smaller than its
six immediate neighbors:

A[i, j]<min





A[i − 1, j, k], A[i + 1, j, k],

A[i, j − 1, k], A[i, j + 1, k],

A[i, j, k− 1], A[i, j, k+ 1]





To avoid edge cases, we assume all cells on the boundary of the array have value +∞.
Describe and analyze an algorithm to find a local minimum in A as quickly as

possible.

(Remember that faster algorithms are worth more points, but only if they are correct.)

CS/ECE 374 A Homework 5 (due October 3) Fall 2023

2. Suppose we have n points scattered inside a two-dimensional box. A kd-tree recursively
subdivides the points as follows. First we split the box into two smaller boxes with a vertical
line, then we split each of those boxes with horizontal lines, and so on, always alternating
between horizontal and vertical splits. Each time we split a box, the splitting line partitions
the rest of the interior points as evenly as possible by passing through a median point in the
interior of the box (not on its boundary). If a box doesn’t contain any points, we don’t split
it any more; these final empty boxes are called cells.

A kd-tree for 15 points. The dashed line crosses the four shaded cells.

(a) How many cells does the kd-tree have, as a function of n? Prove that your answer is
correct.

(b) In the worst case, exactly how many cells can a horizontal line cross, as a function
of n? Prove that your answer is correct. Assume that n= 2k − 1 for some integer k.
[Hint: There is more than one function f such that f (15) = 4.]

(c) Suppose we have n points stored in a kd-tree. Describe and analyze an algorithm
that counts the number of points above a given horizontal line (such as the dashed
line in the figure) as quickly as possible. [Hint: Use part (b).]

I should have specified that the following information is stored in each internal
node v in the kd-tree:
• v.x and v.y: The coordinates of the point defining the cut at v

• v.dir ∈ {vertical,horizontal}: The direction of the cut at v.
• v.left and v.right: The children of v if v.dir= vertical
• v.up and v.down: The children of v if v.dir= horizontal
• v.size: the number of points=cuts in the subtree rooted at v.

Instead I allowed arbitrary information to be computed in preprocessing; that freedom
allows a much simpler and more efficient query algorithm!

(d) Describe and analyze an efficient algorithm that counts, given a kd-tree storing n
points, the number of points that lie inside a given rectangle R with horizontal and
vertical sides. [Hint: Use part (c).]

Assume that all x-coordinates and y-coordinates are distinct; that is, no two points lie on
the same horizontal line or the same vertical line, no point lies on the query line in part (c),
and no point lies on the boundary of the query rectangle in part (d).

2

CS/ECE 374 A Homework 5 (due October 3) Fall 2023

⋆3. Practice only. Do not submit solutions.
The following variant of the infamous StoogeSort algorithm1 was discovered by the

British actor Patrick Troughton during rehearsals for the 20th anniversary Doctor Who
special “The Five Doctors”.2

WhoSort(A[1 .. n]) :
if n< 13

sort A by brute force
else

k = ⌈n/5⌉
WhoSort(A[1 .. 3k]) 〈〈Hartnell〉〉
WhoSort(A[2k+ 1 .. n]) 〈〈Troughton〉〉
WhoSort(A[1 .. 3k]) 〈〈Pertwee〉〉
WhoSort(A[k+ 1 .. 4k]) 〈〈Davison〉〉

(a) Prove by induction that WhoSort correctly sorts its input. [Hint: Where can the
smallest k elements be?]

(b) Would WhoSort still sort correctly if we replaced “if n< 13” with “if n< 4”? Justify
your answer.

(c) Would WhoSort still sort correctly if we replaced “k = ⌈n/5⌉” with “k = ⌊n/5⌋”?
Justify your answer.

(d) What is the running time of WhoSort? (Set up a running-time recurrence and then
solve it, ignoring the floors and ceilings.)

(e) Forty years later, 15th Doctor Ncuti Gatwa discovered the following optimization
to WhoSort, which uses the standard Merge subroutine from mergesort, which
merges two sorted arrays into one sorted array.

NuWhoSort(A[1 .. n]) :
if n< 13

sort A by brute force
else

k = ⌈n/5⌉
NuWhoSort(A[1 .. 3k]) 〈〈Grant〉〉
NuWhoSort(A[2k+ 1 .. n]) 〈〈Whittaker〉〉
Merge(A[1 .. 2k], A[2k+ 1 .. 4k]) 〈〈Tennant〉〉

What is the running time of NuWhoSort?

1https://en.wikipedia.org/wiki/Stooge_sort
2Tom Baker, the fourth Doctor, declined to return for the reunion; hence, only four Doctors appeared in “The Five

Doctors”. (Well, okay, technically the BBC used excerpts of the unfinished episode “Shada” to include Baker, but
he wasn’t really there—to the extent that any fictional character in a television show about a time traveling wizard
arguing with several other versions of himself about immortality can be said to be “really” “there”.)

3

CS/ECE 374 A Homework 5 (due October 3) Fall 2023

Solved problems
4. Suppose we are given two sets of n points, one set {p1, p2, . . . , pn} on the line y = 0 and

the other set {q1, q2, . . . , qn} on the line y = 1. Consider the n line segments connecting
each point pi to the corresponding point qi. Describe and analyze a divide-and-conquer
algorithm to determine how many pairs of these line segments intersect, in O(n log n) time.
See the example below.

q1 q4 q7 q3q5 q2 q6

p1 p4p7 p3 p5p2p6

Seven segments with endpoints on parallel lines, with 11 intersecting pairs.

Your input consists of two arrays P[1 .. n] and Q[1 .. n] of x-coordinates; you may assume
that all 2n of these numbers are distinct. No proof of correctness is necessary, but you
should justify the running time.

Solution: We begin by sorting the array P[1 .. n] and permuting the array Q[1 .. n]
to maintain correspondence between endpoints, in O(n log n) time. Then for any
indices i < j, segments i and j intersect if and only if Q[i]>Q[j]. Thus, our goal is
to compute the number of pairs of indices i < j such that Q[i]>Q[j]. Such a pair is
called an inversion.

We count the number of inversions in Q using the following extension of mergesort;
as a side effect, this algorithm also sorts Q. If n < 100, we use brute force in O(1)
time. Otherwise:

• Color the elements in the Left half Q[1 .. ⌊n/2⌋] bLue.
• Color the elements in the Right half Q[⌊n/2⌋+ 1 .. n] Red.
• Recursively count inversions in (and sort) the blue subarray Q[1 .. ⌊n/2⌋].
• Recursively count inversions in (and sort) the red subarray Q[⌊n/2⌋+ 1 .. n].
• Count red/blue inversions as follows:

– Merge the sorted subarrays Q[1 .. n/2] and Q[n/2+1 .. n], maintaining the
element colors.

– For each blue element Q[i] of the now-sorted array Q[1 .. n], count the
number of smaller red elements Q[j].

The last substep can be performed in O(n) time using a simple for-loop:

4

CS/ECE 374 A Homework 5 (due October 3) Fall 2023

CountRedBlue(A[1 .. n]):
count← 0
total← 0

for i← 1 to n
if A[i] is red

count← count+ 1
else

total← total+ count
return total

Merge and CountRedBlue each run in O(n) time. Thus, the running time of our
inversion-counting algorithm obeys the mergesort recurrence T (n) = 2T (n/2)+O(n).
(We can safely ignore the floors and ceilings in the recursive arguments.) We conclude
that the overall running time of our algorithm is O(n log n), as required.

Rubric: This is enough for full credit.

In fact, we can execute the third merge-and-count step directly by modifying
the Merge algorithm, without any need for “colors”. Here changes to the standard
Merge algorithm are indicated in red.

MergeAndCount(A[1 .. n], m):
i← 1; j← m+ 1; count← 0; total← 0

for k← 1 to n
if j > n

B[k]← A[i]; i← i + 1; total← total+ count
else if i > m

B[k]← A[j]; j← j + 1; count← count+ 1
else if A[i]< A[j]

B[k]← A[i]; i← i + 1; total← total+ count
else

B[k]← A[j]; j← j + 1; count← count+ 1

for k← 1 to n
A[k]← B[k]

return total

We can further optimize MergeAndCount by observing that count is always equal
to j −m− 1, so we don’t need an additional variable. (Proof: Initially, j = m+ 1 and
count= 0, and we always increment j and count together.)

5

CS/ECE 374 A Homework 5 (due October 3) Fall 2023

MergeAndCount2(A[1 .. n], m):
i← 1; j← m+ 1; total← 0

for k← 1 to n
if j > n

B[k]← A[i]; i← i + 1; total← total+ j −m − 1
else if i > m

B[k]← A[j]; j← j + 1
else if A[i]< A[j]

B[k]← A[i]; i← i + 1; total← total+ j −m − 1
else

B[k]← A[j]; j← j + 1

for k← 1 to n
A[k]← B[k]

return total

MergeAndCount2 still runs inO(n) time, so the overall running time is stillO(n log n),
as required. ■

Rubric: 10 points = 2 for base case + 2 for divide (split and recurse) + 4 for conquer (merge and count)
+ 2 for time analysis. This is neither the only way to correctly describe this algorithm nor the only
correct O(n log n)-time algorithm. No proof of correctness is required.

Max 3 points for a correct O(n2)-time algorithm.

Notice that each boxed algorithm is preceded by a clear English description of the task that algo-
rithm performs—not how the algorithm works, but the relationship between its input and its output.
Each English description is worth 25% of the credit for that algorithm (rounding to the nearest
half-point). For example, the CountRedBlue algorithm is worth 4 points (“conquer”); the English
description alone (“For each blue element Q[i] of the now-sorted array Q[1 .. n], count the number of
smaller red elements Q[j].”) is worth 1 point.

6

CS/ECE 374 A = Fall 2023
9 Homework 6 :

Due Tuesday, October 10, 2023 at 9pm Central Time

Please make sure that you read and understand the standard dynamic programming rubric.

1. Satya is in charge of establishing a new testing center for the Standardized Awesomeness
Test (SAT), and found an old conference hall that is perfect. The conference hall has n
rooms of various sizes along a single long hallway, numbered in order from 1 through n.
Satya knows exactly how many students fit into each room, and he wants to use a subset
of the rooms to host as many students as possible for testing.

Unfortunately, there have been several incidents of students cheating at other testing
centers by tapping secret codes through walls. To prevent this type of cheating, Satya can
use two adjacent rooms only if he demolishes the wall between them. The city’s chief
architect has determined that demolishing the walls on both sides of the same room would
threaten the building’s structural integrity. For this reason, Satya can never host students
in three consecutive rooms.

Describe an efficient algorithm that computes the largest number of students that Satya
can host for testing without using three consecutive rooms. The input to your algorithm is
an array S[1 .. n], where each S[i] is the (non-negative integer) number of students that
can fit in room i.

2. As a typical overworked college student, you occasionally pull all-nighters to get more
work done. Painful experience has taught you that the longer you stay awake, the less
productive you are.

Suppose there are n days left in the semester. For each of the next n days, you can
either stay awake and work, or you can sleep. You have an array Score[1 .. n], where
Score[i] is the (always positive) number of points you will earn on day i if you are awake
and well-rested.

However, staying awake for several days in a row has a price: Each consecutive day you
stay awake cuts the quality of your work in half. Thus, if you are awake on day i, and you
most recently slept on day i − k, then you will actually earn Score[i]/2k−1 points on day i.
(You’ve already decided to sleep on day 0.)

For example, suppose n= 6 and Score= [3, 7, 4, 3, 9, 1].

• If you work on all six days, you will earn 3+ 7
2 +

4
4 +

3
8 +

9
16 +

1
32 = 8.46875 points.

• If you work only on days 1, 3, and 5, you will earn 3+ 4+ 9= 16 points.
• If you work only on days 2, 3, 5, and 6, you will earn 7+ 4

2 + 9+ 1
2 = 18.5 points.

Design and analyze an algorithm that computes the maximum number of points you
can earn, given the array Score[1 .. n] as input. For example, given the input array
[3,7, 4,3, 9,1], your algorithm should return the number 18.5.

VERY IMPORTANT: Do not actually do this in real life!

CS/ECE 374 A Homework 6 (due October 10) Fall 2023

3. Practice only. Do not submit solutions.

(a) Any string can be decomposed into a sequence of palindromes. For example, the
string BUBBASEESABANANA (“Bubba sees a banana.”) can be broken into palindromes
in the following ways (and 65 others):

BUB • BASEESAB • ANANA
B • U • BB • ASEESA • B • ANANA
BUB • B • A • SEES • ABA • N • ANA

B • U • BB • A • S • EE • S • A • B • A • NAN • A
B • U • B • B • A • S • E • E • S • A • B • A • N • A • N • A

Describe and analyze an efficient algorithm to find the smallest number of palin-
dromes that make up a given input string. For example, given the input string
BUBBASEESABANANA, your algorithm should return 3.

(b) A metapalindrome is a decomposition of a string into a sequence of palindromes,
such that the sequence of palindrome lengths is itself a palindrome. For example,
the string BOBSMAMASEESAUKULELE (“Bob’s mama sees a ukulele”) has the following
metapalindromes (among others):

BOB • S • MAM • ASEESA • UKU • L • ELE
B • O • B • S • M • A • M • A • S • E • E • S • A • U • K • U • L • E • L • E

The length sequences of these metapalindromes are (3,1, 3,6, 3,1, 3) and (1,1, 1,1, 1,
1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1, 1); notice that both of these sequences are themselves
palindromes.

Describe and analyze an efficient algorithm to find the smallest number of
palindromes in any metapalindrome for a given string. For example, given the input
string BOBSMAMASEESAUKULELE, your algorithm should return 7.

2

CS/ECE 374 A Homework 6 (due October 10) Fall 2023

Solved Problems
3. A shuffle of two strings X and Y is formed by interspersing the characters into a new

string, keeping the characters of X and Y in the same order. For example, the string
BANANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways.

BANANAANANAS BANANAANANAS BANANAANANAS

Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING are both shuffles of
the strings DYNAMIC and PROGRAMMING:

PRODGYRNAMAMMIINCG DYPRONGARMAMMICING

(a) Given three strings A[1 .. m], B[1 .. n], and C[1 .. m + n], describe and analyze an
algorithm to determine whether C is a shuffle of A and B.

Solution: We define a boolean function Shuf(i, j), which is True if and only if
the prefix C[1 .. i + j] is a shuffle of the prefixes A[1 .. i] and B[1 .. j]. We need
to compute Shuf(m, n). The function Shuf satisfies the following recurrence:

Shuf(i, j) =





True if i = j = 0

Shuf(0, j − 1)∧ (B[j] = C[j]) if i = 0 and j > 0

Shuf(i − 1, 0)∧ (A[i] = C[i]) if i > 0 and j = 0
�
Shuf(i − 1, j)∧ (A[i] = C[i + j])

�

∨ �Shuf(i, j − 1)∧ (B[j] = C[i + j])
�

otherwise

We canmemoize this function into a two-dimensional array Shuf[0 .. m][0 .. n].
Each array entry Shuf[i, j] depends only on the entries immediately above and
immediately to the left: Shuf[i − 1, j] and Shuf[i, j − 1]. Thus, we can fill the
array in standard row-major order in O(mn) time. ■

Solution: The following algorithm runs in O(mn) time.
IsShuffle?(A[1 .. m], B[1 .. n], C[1 .. m+ n]):
Shuf[0, 0]← True
for j← 1 to n

Shuf[0, j]← Shuf[0, j − 1]∧ (B[j] = C[j])
for i← 1 to n

Shuf[i, 0]← Shuf[i − 1, 0]∧ (A[i] = B[i])
for j← 1 to n

Shuf[i, j]← False
if A[i] = C[i + j]

Shuf[i, j]← Shuf[i − 1, j]
if B[i] = C[i + j]

Shuf[i, j]← Shuf[i, j]∨ Shuf[i, j − 1]

return Shuf[m, n]

Here Shuf(i, j) = True if and only if the prefix C[1 .. i + j] is a shuffle of the

3

CS/ECE 374 A Homework 6 (due October 10) Fall 2023

prefixes A[1 .. i] and B[1 .. j]. ■

Rubric: 5points, standarddynamicprogramming rubric. Eachof these solutions is separately
worth full credit. These are not the only correct solutions. −½ for reporting running time as
O(n2). 3 points for a slower polynomial-time algorithm; scale partial credit accordingly.

(b) Given three strings A[1 .. m], B[1 .. n], and C[1 .. m + n], describe and analyze an
algorithm to determine the number of different ways that A and B can be shuffled to
obtain C .

Solution: Let #Shuf(i, j) denote the number of different ways that the prefixes
A[1 .. i] and B[1 .. j] can be shuffled to obtain the prefix C[1 .. i+ j]. We need to
compute #Shuf(m, n).

The #Shuf function satisfies the following recurrence. Here I am using
Iverson bracket notation to convert booleans to integers: For any proposition P,
the expression [P] is equal to 1 if P is true and 0 if P is false.

#Shuf(i, j) =





1 if i = j = 0

#Shuf(0, j − 1) · �B[j] = C[j]
�

if i = 0 and j > 0

#Shuf(i − 1,0) · �A[i] = C[i]
�

if i > 0 and j = 0
�
#Shuf(i − 1, j) · �A[i] = C[i]

��

+
�
#Shuf(i, j − 1) · �B[j] = C[j]

��
otherwise

We can memoize this function into a two-dimensional array #Shuf[0 .. m][0 .. n].
As in part (a), we can fill this array in standard row-major order in O(mn)
time. ■

Solution: The following algorithm runs in O(mn) time:
NumShuffles(A[1 .. m], B[1 .. n], C[1 .. m+ n]):
#Shuf[0, 0]← 1

for j← 1 to n
#Shuf[0, j]← 0
if (B[j] = C[j])

#Shuf[0, j]← #Shuf[0, j − 1]
for i← 1 to n

#Shuf[0, j]← 0
if (A[i] = B[i])

#Shuf[0, j]← #Shuf[i − 1, 0]
for j← 1 to n

#Shuf[i, j]← 0
if A[i] = C[i + j]

#Shuf[i, j]← #Shuf[i − 1, j]
if B[i] = C[i + j]

#Shuf[i, j]← #Shuf[i, j] +#Shuf[i, j − 1]

return Shuf[m, n]

4

CS/ECE 374 A Homework 6 (due October 10) Fall 2023

Here #Shuf[i, j] stores the number of different ways that the prefixes A[1 .. i]
and B[1 .. j] can be shuffled to obtain the prefix C[1 .. i + j]. ■

Rubric: 5 points, standard dynamic programming rubric. Again, each of these solutions is
separatelyworth full credit. These are not the only correct solutions. −½ for reporting running
time asO(n2). 3 points for a slower polynomial-time algorithm; scale partial credit accordingly.

5

CS/ECE 374 A = Fall 2023
9 Homework 7 :

Due Tuesday, October 17, 2023 at 9pm Central Time

1. The City Council of Sham-Poobanana needs to partition Purple Street into voting districts.
A total of n people live on Purple Street, at consecutive addresses 1,2, . . . , n. Each voting
district must be a contiguous interval of addresses i, i + 1, . . . , j for some 1≤ i < j ≤ n. By
law, each Purple Street address must lie in exactly one district, and the number of addresses
in each district must be between k and 2k, where k is a positive integer parameter.

Every election in Sham-Poobanana is between two rival factions: Oceania and Eurasia.
A majority of the current City Council are from Oceania, so they consider a district to
be good if more than half the residents of that district voted for Oceania in the previous
election. Naturally, the City Council has complete voting records for all n residents.

For example, the figure below shows a legal partition of 22 addresses (of which 9 are
good and 13 are bad) into 4 good districts and 3 bad districts, where k = 2 (so each district
contains either 2, 3, or 4 addresses). Each O indicates a vote for Oceania, and each X
indicates a vote for Eurasia.

Describe an algorithm to find the largest possible number of good districts in a legal
partition. Your input consists of the integer k and a boolean array GoodVote[1 .. n]
indicating which residents previously voted for Oceania (True) or Eurasia (False). You
can assume that a legal partition exists. Analyze the running time of your algorithm in
terms of the parameters n and k. (In particular, do not assume that k is a constant.)

CS/ECE 374 A Homework 7 (due October 17) Fall 2023

2. The StupidScript language includes a binary operator @ that computes the average of its two
arguments. For example, the StupidScript code print(3 @ 6) would print 4.5, because
(3+ 6)/2= 4.5.

Expressions like 3 @ 7 @ 4 that use the @ operator more than once yield different results
when they are evaluated in different orders:

(3 @ 7) @ 4= 5 @ 4 = 4.5 but 3 @ (7 @ 4) = 3 @ 5.5 = 4.25

Here is a larger example:

((((8 @ 6) @ 7) @ 5) @ 3) @ (0 @ 9) = 4.5

((8 @ 6) @ (7 @ 5)) @ ((3 @ 0) @ 9) = 5.875

(8 @ (6 @ (7 @ (5 @ (3 @ 0))))) @ 9 = 7.890625

Your goal for this problem is to describe and analyze an algorithm to compute, given a
sequence of integers separated by @ signs, the largest possible value the expression can
take by adding parentheses. Your input is an array A[1 .. n] listing the sequence of integers.

For example, if your input sequence is [3, 7, 4], your algorithm should return 4.5, and if
your input sequence is [8,6, 7,5, 3,0, 9], your algorithm should return 7.890625. Assume
all arithmetic operations (including @) can be performed exactly in O(1) time.

(a) Tommy Tutone suggests the following natural greedy algorithm: Merge the adjacent
pair of numbers with the smallest average (breaking ties arbitrarily), replace them
with their average, and recurse. For example:

8 @ 6 @ 7 @ 5 @ 3 @ 0 @9

8 @ 6 @ 7 @ 5 @ 1.5 @9

8 @ 6 @ 7 @ 3.25 @9

8 @ 6 @ 5.125 @9

8 @ 5.5625 @9

6.78125 @ 9

7.890625

Tommy reasons that with an efficient priority queue, this algorithm will run in
O(n log n) time, which is way faster than any dynamic programming algorithm.

Prove that Tommy’s algorithm is incorrect, by describing a specific input array and
proving that his algorithm does not yield the largest possible value for that array.

(b) Describe and analyze a correct algorithm for this problem. Poor, poor Tommy.

2

CS/ECE 374 A Homework 7 (due October 17) Fall 2023

3. Practice only. Do not submit solutions.
Suppose we need to broadcast a message to all the nodes in a rooted binary tree.

Initially, only the root node knows the message. In a single round, any node that knows the
message can forward it to at most one of its children. See the figure below for an example.

Design an algorithm to compute the minimum number of rounds required to broadcast
the message to every node.

A message being distributed through a binary tree in five rounds.

3

CS/ECE 374 A Homework 7 (due October 17) Fall 2023

Solved problems
3. A string w of parentheses (and) and brackets [and] is balanced if and only if w is

generated by the following context-free grammar:

S→ ϵ | (S) | [S] | SS

For example, the string w= ([()][]())[()()]() is balanced, because w= x y , where

x = ([()] [] ()) and y = [() ()] ().

Describe and analyze an algorithm to compute the length of a longest balanced subsequence
of a given string of parentheses and brackets. Your input is an array A[1 .. n], where
A[i] ∈ {(,),[,]} for every index i.

Solution: Suppose A[1 .. n] is the input string. For all indices i and k, let LBS(i, k)
denote the length of the longest balanced subsequence of the substring A[i .. k]. We
need to compute LBS(1, n). This function obeys the following recurrence:

LBS(i, k) =





0 if i ≥ k

max





2+ LBS(i + 1, k− 1)
k−1
max
j=1

�
LBS(i, j) + LBS(j + 1, k)

�


 if A[i]∼ A[k]

k−1
max
j=1

�
LBS(i, j) + LBS(j + 1, k)

�
otherwise

Here A[i] ∼ A[k] indicates that A[i] is a left delimiter and A[k] is the corresponding
right delimiter: Either A[i] = (and A[k] =), or A[i] = [and A[k] =].

We can memoize this function into a two-dimensional array LBS[1 .. n, 1 .. n].
Because each entry LBS[i, k] depends only on entries in later rows or earlier columns
(or both), we can fill this array row-by-row from bottom up (decreasing i) in the outer
loop, scanning each row from left to right (increasing k) in the inner loop.

We can compute each entry LBS[i, k] in O(n) time, so the resulting algorithm runs
in O(n3) time. ■

Solution (pseudocode): The following algorithm runs in O(n3) time:

LongestBalancedSubsequence(A[1 .. n]):
for i← n down to 1

LBS[i, i]← 0
for k← i + 1 to n

if (A[i] = (and A[k] =)) or (A[i] = [and A[k] =])
LBS[i, k]← LBS[i + 1, k− 1] + 2

else
LBS[i, k]← 0

for j← i to k− 1
LBS[i, k]←max

�
LBS[i, k], LBS[i, j] + LBS[j + 1, k]

	

return LBS[1, n]

4

CS/ECE 374 A Homework 7 (due October 17) Fall 2023

Here LBS[i, k[stores the length of the longest balanced subsequence of the substring
A[i .. k]. ■

Rubric: 10 points, standard dynamic programming rubric. Yes, each of these solutions is indepen-
dently worth full credit.

5

CS/ECE 374 A Homework 7 (due October 17) Fall 2023

4. Oh, no! You’ve just been appointed as the new organizer of Giggle, Inc.’s annual mandatory
holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree
with the company president at the root. The all-knowing oracles in Human Resources have
assigned a real number to each employee measuring how “fun” the employee is. In order
to keep things social, there is one restriction on the guest list: An employee cannot attend
the party if their immediate supervisor is also present. On the other hand, the president
of the company must attend the party, even though she has a negative fun rating; it’s her
company, after all.

Describe an algorithm that makes a guest list for the party that maximizes the sum of
the “fun” ratings of the guests. The input to your algorithm is a rooted tree T describing
the company hierarchy, where each node v has a field v.fun storing the “fun” rating of the
corresponding employee.

Solution (two functions): We define two functions over the nodes of T .

• MaxFunYes(v) is the maximum total “fun” of a legal party among the descendants
of v, where v is definitely invited.

• MaxFunNo(v) is the maximum total “fun” of a legal party among the descendants
of v, where v is definitely not invited.

We need to computeMaxFunYes(root). These two functions obey the following mutual
recurrences:

MaxFunYes(v) = v.fun+
∑

children w of v

MaxFunNo(w)

MaxFunNo(v) =
∑

children w of v

max{MaxFunYes(w),MaxFunNo(w)}

These recurrences do not require separate base cases, because
∑
∅= 0.a

We can memoize these functions by adding two additional fields v.yes and v.no
to each node v in the tree. The values at each node depend only on the vales at its
children, so we can compute all 2n values using a postorder traversal of T .

The resulting algorithm spends O(1) time at each node of T , and therefore runs in
O(n) time. ■

aA naïve recursive implementation of these recurrences would run in O(φn) time in the worst case,
where φ = (1+p5)/2≈ 1.618 is the golden ratio. The worst case occurs when T is a single path.

Solution (two functions, pseudocode): The following algorithm runs in O(n) time.

BestParty(T):
ComputeMaxFun(T.root)
return T.root.yes

ComputeMaxFun(v):
v.yes← v.fun
v.no← 0
for all children w of v

ComputeMaxFun(w)
v.yes← v.yes+w.no
v.no← v.no+max{w.yes, w.no}

6

CS/ECE 374 A Homework 7 (due October 17) Fall 2023

We are storing two pieces of information in each node v of the tree:

• v.yes is the maximum total “fun” of a legal party among the descendants of v,
assuming v is invited.

• v.no is the maximum total “fun” of a legal party among the descendants of v,
assuming v is not invited.

(Yes, this is still dynamic programming; we’re only traversing the tree recursively in
ComputeMaxFun because that’s the most natural way to traverse trees!) ■

Solution (one function): For each node v in the input tree T , let MaxFun(v) denote
the maximum total “fun” of a legal party among the descendants of v, where v may
or may not be invited.

The president of the company must be invited, so none of the president’s “children”
in T can be invited. Thus, the value we need to compute is

root.fun+
∑

grandchildren w of root
MaxFun(w).

The function MaxFun obeys the following recurrence:

MaxFun(v) =max





v.fun+
∑

grandchildren x of v

MaxFun(x)
∑

children w of v

MaxFun(w)





(This recurrence does not require a separate base case, because
∑
∅ = 0.) We can

memoize this function by adding an additional field v.maxFun to each node v in
the tree. The value at each node depends only on the values at its children and
grandchildren, so we can compute all values using a postorder traversal of T .

The algorithm spends O(1) time at each node (because each node has exactly one
parent and one grandparent) and therefore runs in O(n) time altogether. ■

Solution (one function, pseudocode):

BestParty(T):
ComputeMaxFun(T.root)
party← T.root.fun
for all children w of T.root

for all children x of w
party← party+ x .maxFun

return party

ComputeMaxFun(v):
yes← v.fun
no← 0
for all children w of v

ComputeMaxFun(w)
no← no+w.maxFun
for all children x of w

yes← yes+ x .maxFun
v.maxFun←max{yes,no}

Here v.maxFun stores the maximum total “fun” of a legal party among the descendants
of v, where v may or may not be invited.

7

CS/ECE 374 A Homework 7 (due October 17) Fall 2023

Each value v.maxFun is read at most three times during the algorithm’s execution:
Once in ComputeMaxFun(v.parent), and once in ComputeMaxFun(v.parent.parent),
and at most once in the non-recursive part of BestParty. Thus, the entire algorithm
runs in O(n) time. ■

Rubric: 10 points: standard dynamic programming rubric. These are not the only correct solutions.
Yes, each of these solutions is independently worth full credit.

8

CS/ECE 374 A = Fall 2023
9 Homework 8 :

Due Tuesday, October 24, 2023 at 9pm Central Time

1. A six-sided die (plural dice) is a cube with each side marked with a different number of dots
(called pips) from 1 to 6. On a standard die, numbers on opposite sides always add up to 7.

A rolling die maze is a puzzle involving a standard six-sided die and a grid of squares.
You should imagine the grid lying on a table; the die always rests on and exactly covers
one square of the grid. In a single step, you can roll the die 90 degrees around one of its
bottom edges, moving it to an adjacent square one step north, south, east, or west.

Some squares in the grid may be blocked; the die can never rest on a blocked square.
Other squares may be labeled with a number; whenever the die rests on a labeled square,
the number on the top face of the die must equal the label. Squares that are neither labeled
nor marked are called free. You may not roll the die off the edges of the grid. A rolling die
maze is solvable if it is possible to place a die on the lower left square and roll it to the
upper right square under these constraints.

Figure 1. Rolling a (right-handed) die

Figure 2 shows five rolling die mazes. The first two mazes are solvable using any
standard die. Specifically, the first maze can be solved by placing the die on the lower left
square with 1 on the top face, and then rolling the die east, north, north, east; the second
maze can be solved in 12 moves. The third maze is only solvable using a right-handed die,
where faces 1, 2, 3 appear in counterclockwise order around a common corner.1 The last
two mazes cannot be solved even with non-standard dice.

3

1

6

1

1

1

6

1
2 3

1
5

1

Figure 2. Five rolling die mazes.

Describe and analyze an algorithm that determines whether a given rolling die maze
can be solved with a right-handed standard die. Your input is a two-dimensional array
Label[1 .. n, 1 .. n], where each entry Label[i, j] stores the label of the square in the ith row
and jth column, where 0 means the square is free and −1 means the square is blocked.

[Hint: You have some freedom in how to place the initial die. There are rolling die
mazes that can be solved only if the initial placement is chosen correctly. Describe your
solution in high-level language; don’t get bogged down in grungy case analysis.]

1Right-handed dice are more common in the Western hemisphere; left-handed dice are more common in east Asia.

CS/ECE 374 A Homework 8 (due October 24) Fall 2023

2. The Cheery Hells neighborhood of Sham-Poobanana runs a popular and well-regulated Hal-
loween celebration, attended by thousands of costumed children from all across Poobanana
County. To regulate the flood of costumed children, the Cheery Hells Neighborhood
Association has designated a walking direction for each stretch of sidewalk.

After paying the $25 entrance fee, each child receives a map of the neighborhood, in
the form of a directed graph G, whose vertices represent houses. Each edge v�w indicates
that one can walk directly from house v to house w following the designated sidewalk
directions. (Anyone caught walking backward along a sidewalk will be ejected from Cheery
Hells, without their candy. No refunds.) A special vertex s designates the entrance to
Cheery Hells. Children can visit houses as many times as they like, but biometric scanners
at every house ensure that each child receives candy only at their first visit to each house.

The children of Cheery Hells have published a secret web site listing the amount of
candy that each house in Cheery Hells will give to each visitor.

Describe and analyze an algorithm to compute the maximum amount of candy that a
single child can obtain in a walk through Cheery Hells, starting at the entrance node s.
The input to your algorithm is the directed graph G, along with a non-negative integer
v.candy for each vertex v, describing the amount of candy the correspinding house gives to
each first-time visitor.

[Hint: Think about two special cases first: (1) Cheery Hells is strongly connected, and
(2) Cheery Hells is acyclic. Solving only these two special cases is worth half credit.]

3. Practice only. Do not submit solutions.
One of my daughter’s elementary-school math workbooks2 contains several puzzles of

the following type:

Complete each angle maze below by tracing a path from Start to Finish that has only acute
angles.

Start Finish

Start Finish

Describe and analyze an algorithm to solve arbitrary acute-angle mazes.
Your input is a connected undirected graph G, whose vertices are points in the plane

and whose edges are straight line segments. Edges do not intersect, except at their common
endpoints. For example, a drawing of the letter X would have five vertices and four edges,
and the first maze above has 18 vertices and 21 edges. You are also given two vertices Start
and Finish.

Your algorithm should return True if G contains a walk from Start to Finish that has
only acute angles, and False otherwise. Formally, a walk through G is valid if, for any two

2Jason Batterson and Shannon Rogers, Beast Academy Math: Practice 3A, 2012. See https://www.beastacademy.
com/resources/printables.php for several more examples.

2

CS/ECE 374 A Homework 8 (due October 24) Fall 2023

consecutive edges u�v�w in the walk, either ∠uvw = π (straight) or 0 < ∠uvw < π/2
(acute). Assume you have a subroutine that can determine in O(1) time whether the angle
between two given segments is straight, obtuse, right, or acute.

Solved problem
4. Professor McClane takes you out to a lake and hands you three empty jars. Each jar holds

a positive integer number of gallons; the capacities of the three jars may or may not be
different. The professor then demands that you put exactly k gallons of water into one of
the jars (which one doesn’t matter), for some integer k, using only the following operations:

(a) Fill a jar with water from the lake until the jar is full.
(b) Empty a jar of water by pouring water into the lake.
(c) Pour water from one jar to another, until either the first jar is empty or the second jar

is full, whichever happens first.

For example, suppose your jars hold 6, 10, and 15 gallons. Then you can put 13 gallons of
water into the third jar in six steps:

• Fill the third jar from the lake.
• Fill the first jar from the third jar. (Now the third jar holds 9 gallons.)
• Empty the first jar into the lake.
• Fill the second jar from the lake.
• Fill the first jar from the second jar. (Now the second jar holds 4 gallons.)
• Empty the second jar into the third jar.

Describe and analyze an efficient algorithm that either finds the smallest number of
operations that leave exactly k gallons in any jar, or reports correctly that obtaining
exactly k gallons of water is impossible. Your input consists of the capacities of the three
jars and the positive integer k. For example, given the four numbers 6, 10, 15, and 13 as
input, your algorithm should return the number 6 (the length of the sequence of operations
listed above).

Solution: Let A, B, C denote the capacities of the three jars. We reduce the problem
to breadth-first search in a directed graph G = (V, E) defined as follows:

• V =
�
(a, b, c)
�� 0≤ a ≤ A and 0≤ b ≤ B and 0≤ c ≤ C

	
. Each vertex corre-

sponds to a possible configuration of water in the three jars. There are
(A+ 1)(B + 1)(C + 1) = O(ABC) vertices altogether.

• G contains a directed edge (a, b, c)�(a′, b′c′) whenever it is possible to change
the first configuration into the second in one step. Specifically, G contains an
edge from (a, b, c) to each of the following vertices (except those already equal
to (a, b, c)):
– (0, b, c) and (a, 0, c) and (a, b, 0)— dumping a jar into the lake
– (A, b, c) and (a, B, c) and (a, b, C)— filling a jar from the lake

3

CS/ECE 374 A Homework 8 (due October 24) Fall 2023

–
¨
(0, a+ b, c) if a+ b ≤ B

(a+ b− B, B, c) if a+ b ≥ B

«
— pouring from jar 1 into jar 2

–
¨
(0, b, a+ c) if a+ c ≤ C

(a+ c − C , b, C) if a+ c ≥ C

«
— pouring from jar 1 into jar 3

–
¨
(a+ b, 0, c) if a+ b ≤ A

(A, a+ b− A, c) if a+ b ≥ A

«
— pouring from jar 2 into jar 1

–
¨
(a, 0, b+ c) if b+ c ≤ C

(a, b+ c − C , C) if b+ c ≥ C

«
— pouring from jar 2 into jar 3

–
¨
(a+ c, b, 0) if a+ c ≤ A

(A, b, a+ c − A) if a+ c ≥ A

«
— pouring from jar 3 into jar 1

–
¨
(a, b+ c, 0) if b+ c ≤ B

(a, B, b+ c − B) if b+ c ≥ B

«
— pouring from jar 3 into jar 2

Because each vertex has at most 12 outgoing edges, there are at most 12(A+1)×
(B + 1)(C + 1) = O(ABC) edges altogether.

To solve the jars problem, we need to find the shortest path in G from the start vertex
(0, 0,0) to any target vertex of the form (k, ·, ·) or (·, k, ·) or (·, ·, k).

We can compute this shortest path by calling breadth-first search starting at
(0, 0,0), and then examining every target vertex by brute force. If BFS does not
visit any target vertex, we report that no legal sequence of moves exists. Otherwise,
we find the target vertex closest to (0, 0, 0) and trace its parent pointers back to
(0, 0,0) to determine the shortest sequence of moves. The resulting algorithm runs in
O(V + E) = O(ABC) time.

We can speed up this algorithm by observing that every move leaves at least one
jar either completely empty or completely full. Thus, we only need vertices (a, b, c)
where either a = 0 or b = 0 or c = 0 or a = A or b = B or c = C; no other vertices
are reachable from (0, 0,0). The number of non-redundant vertices and edges is
O(AB + BC + AC). Thus, if we only construct and search the relevant portion of G,
the algorithm runs in O(AB + BC + AC) time. ■

Rubric: 10 points: standard graph reduction rubric

• Brute force construction is fine.

− 1 for calling Dijkstra instead of BFS

• max 8 points for O(ABC) time; scale partial credit.

4

CS/ECE 374 A Fall 2023
Homework 9

Due Tuesday, October 31, 2023 at 9pm

This is the last homework before Midterm 2.

1. You are planning a hiking trip in Jasper National Park in British Columbia over winter break.
You have a complete map of the park’s trails, which indicates that hikers on certain trails
have a higher chance of encountering a sasquatch. All visitors to the park are required to
purchase a canister of sasquatch repellent. You can safely traverse a high-risk trail segment
only by completely using up a full canister. The park rangers have helpfully installed several
refilling stations around the park, where you can refill empty canisters at no cost. The
canisters themselves are expensive and heavy, so you can only carry one. The trails are
narrow, so each trail segment allows traffic in only one direction.

You have converted the trail map into a directed graph G = (V, E), whose vertices
represent trail intersections, and whose edges represent trail segments. A subset R ⊆ V of
the vertices indicate the locations of the Repellent Refilling stations, and a subset H ⊆ E
of the edges are marked as High-risk. Each edge e is labeled with the length ℓ(e) of the
corresponding trail segment. Your campsite appears on the map as a vertex s ∈ V , and the
visitor center is another vertex t ∈ V .

(a) Describe and analyze an algorithm that finds the shortest safe hike from your campsite s
to the visitor center t. Assume there is a refill station at your campsite, and another
refill station at the visitor center.

(b) Describe and analyze an algorithm to decide if you can safely hike from any refill
station to any other refill station. In other words, for every pair of vertices u and v
in R, is there a safe hike from u to v?

2. You are driving through the back-country roads of Tenkucky, desperately trying to leave the
state before the state’s annual Halloween Purge begins. Every road in the state is patrolled
by a Driving Posse who will let you exercise your god-given right to drive as fast as you
damn well please, provided you pay the appropriate speed tax. The faster you traverse any
road, the more you have to pay. What’s the fastest way to escape the state?

You have an accurate map of the state, in the form of a directed graph G = (V, E),
whose vertices V represent small towns and whose edges E represent one-lane dirt roads
between towns.1 One vertex s is marked as your starting location; a subset X ⊂ V of
vertices are marked as exits. Each edge e has an associated value $(e) with the following
interpretation.

• If you drive from one end of road e to the other in m minutes, for any positive real
number m, then you must pay road e’s Driving Posse a speed tax of ⌈$(e)/m⌉ dollars.

1Paved roads are far too expensive!

CS/ECE 374 A Homework 9 (due October 31) Fall 2023

• Equivalently, if you pay road e’s Driving Posse a speed tax of d dollars, for any positive
integer d, you are allowed to drive the entire length of road e in $(e)/d minutes, but
no less.

In particular, any road you drive on at all will cost you at least one dollar. Anyone who
violates this rule (for example, by running out of money) will be thrown in jail, which
means almost certain death in the Purge.

The Driving Posses do not accept coins, credit cards, Venmo, Zelle, or any other mobile
payment app—only cold hard American paper currency—and they do not give change.
Fortunately, you are starting your journey with a pile of D crisp new $1 bills.

Describe and analyze and algorithm to compute the fastest possible driving route from s
to any exit node in X . The input to your algorithm consists of the map G = (V, E), the start
vertex s, the exit vertices X , and the positive integer D. Report the running time of your
algorithm as a function of the parameters V , E, and D.

3. Practice only. Do not submit solutions.
After a grueling midterm at the See-Bull Center for Commuter Silence, you decide to

take the bus home. Since you planned ahead, you have a schedule that lists the times
and locations of every stop of every bus in Sham-Poobanana. Unfortunately, no single bus
visits both the See-Bull Center and your home; you must change buses at least once. There
are exactly b different buses. Each bus starts at 12:00:01am, makes exactly n stops, and
finally stops running at 11:59:59pm. Buses always run exactly on schedule, and you have an
accurate watch. Finally, you are far too tired to walk between bus stops.

(a) Describe and analyze an algorithm to determine a sequence of bus rides that gets you
home as early as possible. Your goal is to minimize your arrival time, not the time
you spend traveling.

(b) Oh, no! The midterm was held on Halloween, and the streets are infested with
zombies! Describe how to modify your algorithm from part (a) to minimize the total
time you spend waiting at bus stops; you don’t care how late you get home or how
much time you spend on buses. (Assume you can wait inside the See-Bull Center
until your first bus is just about to leave.)

For both questions, your input consists of the exact time when the midterm ends See-Bull
and two arrays Time[1 .. b, 1 .. n] and Stop[1 .. b, 1 .. n], where Time[i, j] is the scheduled
time of the ith bus’s jth stop, and Stop[i, j] is the location of that stop. Report the running
times of your algorithms as functions of the parameters n and b.

2

CS/ECE 374 A Homework 9 (due October 31) Fall 2023

Solved Problems
4. Although we typically speak of “the” shortest path from one vertex to another, a single

graph could contain several minimum-length paths with the same endpoints.

1

2

2

3 5

3 2

1

1

1

2

4

2 4

3 5

1

2

2

3 5

3 2

1

1

1

2

4

2 4

3 5

1

2

2

3 5

3 2

1

1

1

2

4

2 4

3 5

14

1

2

2

3 5

3 2

1

1

1

2

4

2 4

3 5

14 14 14

Four (of many) equal-length shortest paths.

Describe and analyze an algorithm to compute the number of shortest paths from a source
vertex s to a target vertex t in an arbitrary directed graph G with weighted edges. Assume
that all edge weights are positive and that any necessary arithmetic operations can be
performed in O(1) time each.

[Hint: Compute shortest path distances from s to every other vertex. Throw away all
edges that cannot be part of a shortest path from s to another vertex. What’s left?]

Solution: We start by computing shortest-path distances dist(v) from s to v, for every
vertex v, using Dijkstra’s algorithm. Call an edge u�v tight if dist(u) + w(u�v) =
dist(v). Every edge in a shortest path from s to t must be tight. Conversely, every
path from s to t that uses only tight edges has total length dist(t) and is therefore a
shortest path!

Let H be the subgraph of all tight edges in G. We can easily construct H in O(V+E)
time. Because all edge weights are positive, H is a directed acyclic graph. It remains
only to count the number of paths from s to t in H.

For any vertex v, let NumPaths(v) denote the number of paths in H from v to t; we
need to compute NumPaths(s). This function satisfies the following simple recurrence:

NumPaths(v) =





1 if v = t
∑
v�w

NumPaths(w) otherwise

In particular, if v is a sink but v ̸= t (and thus there are no paths from v to t), this
recurrence correctly gives us NumPaths(v) =

∑
∅= 0.

We can memoize this function into the graph itself, storing each value NumPaths(v)
at the corresponding vertex v. Since each subproblem depends only on its successors
in H, we can compute NumPaths(v) for all vertices v by considering the vertices in
reverse topological order, or equivalently, by performing a depth-first search of H
starting at s. The resulting algorithm runs in O(V + E) time.

The overall running time of the algorithm is dominated by Dijkstra’s algorithm in
the preprocessing phase, which runs in O(E log V) time. ■

3

CS/ECE 374 A Homework 9 (due October 31) Fall 2023

Rubric: 10 points = 5 points for reduction to counting paths in a dag (standard graph reduction rubric)
+ 5 points for the path-counting algorithm (standard dynamic programming rubric)

5. After moving to a new city, you decide to choose a walking route from your home to your
new office. Your route must consist of an uphill path (for exercise) followed by a downhill
path (to cool down), or just an uphill path, or just a downhill path. But you also want the
shortest path that satisfies these conditions, so that you actually get to work on time.

Your input consists of an undirected graph G, whose vertices represent intersections
and whose edges represent road segments, along with a start vertex s and a target vertex t.
Every vertex v has a value h(v), which is the height of that intersection above sea level,
and each edge uv has a value ℓ(uv), which is the length of that road segment.

(a) Describe and analyze an algorithm to find the shortest uphill–downhill walk from s
to t. Assume all vertex heights are distinct.

Solution: We define a new directed graph G′ = (V ′, E′) as follows:
• V ′ = {v↑, v↓ | V ∈ V}. Vertex v↑ indicates that we are at intersection v

moving uphill, and vertex v↓ indicates that we are at intersection v moving
downhill.

• E′ is the union of three sets:
– Uphill edges: {u↑�v↑ | uv ∈ E and h(u) < h(v)}. Each uphill edge

u↑�v↑ has weight ℓ(uv).
– Downhill edges: {u↓�v↓ | uv ∈ E and h(u) > h(v)}. Each downhill

edge u↓�v↓ has weight ℓ(uv).
– Switch edges: {v↑�v↓ | v ∈ V}; each switch edge has weight 0.

We need to compute three shortest paths in this graph:
• The shortest path from s↑ to t↓ gives us the best uphill-then-downhill route.
• The shortest path from s↑ to t↑ gives us the best uphill-only route.
• The shortest path from s↓ to t↓ gives us the best downhill-only route.

G′ is a directed acyclic graph; we can get a topological ordering by listing the up
vertices v↑, sorted by increasing height, followed by the down vertices v↓, sorted
by decreasing height. Thus, we can compute the shortest path in G′ from any
vertex to any other in O(V ′ + E′) = O(V + E) time by dynamic programming.
(The algorithm is the same as the longest-path algorithm in the notes, except we
use “min” instead of “max” in the recurrence, and define min∅=∞.)

Our overall algorithm runs in O(V + E) time. ■

Rubric: 5 points = 1 for vertices + 1 for edges + 1 for arguing G′ is a dag + 1 for algorithm + 1
for running time. This is not the only correct solution. Max 4 points for a correct reduction to
Dijkstra’s algorithm that runs inO(E log V) time.

4

CS/ECE 374 A Homework 9 (due October 31) Fall 2023

(b) Suppose you discover that there is no path from s to t with the structure you want.
Describe an algorithm to find a path from s to t that alternates between “uphill” and
“downhill” subpaths as few times as possible, and has minimum length among all
such paths. (There may be even shorter paths with more alternations, but you don’t
care about them.) Again, assume all vertex heights are distinct.

Solution (Dijkstra, 5/5): Let L = 1+
∑

u�v ℓ(u�v). Define a new graph G′ =
(V ′, E′) as follows:
• V ′ = {v↑, v↓ | V ∈ V} ∪ {s, t}. Vertex v↑ indicates that we are at intersection

v moving uphill, and vertex v↓ indicates that we are at intersection v moving
downhill.

• E′ contains four types of edges:
– Uphill edges: {u↑�v↑ | uv ∈ E and h(u) < h(v)}. Each uphill edge

u↑�v↑ has weight ℓ(uv).
– Downhill edges: {u↓�v↓ | uv ∈ E and h(u) > h(v)}. Each downhill

edge u↓�v↓ has weight ℓ(uv).
– Switch edges: {v↑�v↓ | v ∈ V} ∪ {v↓�v↑ | v ∈ V}. Each switch edge

has weight L.
– Start and end edges s�s↑, s�s↓, t↑�t, and t↓�t, each with weight 0,

We need to compute the shortest path from s to t in G′; the large weight L on
the switch edges guarantees that this path with have the minimum number of
switches, and the minimum length among all paths with that number of switches.
Dijkstra’s algorithm finds this shortest path in O(E′ log V ′) = O(E log V) time.

(Because G′ includes switch edges in both directions, G′ is not a dag, so we
can’t use dynamic programming directly.) ■

Rubric: 5 points, standard graph-reduction rubric. This is not the only correct solution with
running timeO(E log V).

Solution (clever, extra credit): Our algorithm works in two phases: First we
determine the minimum number of switches required to reach every vertex, and
then we compute the shortest path from s to t with the minimum number of
switches. The first phase is can be solved in O(V + E) time by a modification of
breadth-first search; the second by computing shortest paths in a dag.

For the first phase, we define a new graph G′ = (V ′, E′) as follows:
• V ′ = {v↑, v↓ | V ∈ V} ∪ {s, t}. Vertex v↑ indicates that we are at intersection

v moving uphill, and vertex v↓ indicates that we are at intersection v moving
downhill.

• E′ contains four types of edges:
– Uphill edges: {u↑�v↑ | uv ∈ E and h(u)< h(v)}. Each uphill edge has
weight 0.

– Downhill edges: {u↓�v↓ | uv ∈ E and h(u) > h(v)}. Each downhill

5

CS/ECE 374 A Homework 9 (due October 31) Fall 2023

edge has weight 0.
– Switch edges: {v↑�v↓ | v ∈ V} ∪ {v↓�v↑ | v ∈ V}. Each switch edge

has weight 1.
– Start and end edges s�s↑, s�s↓, t↑�t, and t↓�t, each with weight 0.

Now we compute the shortest path distance from s to every other vertex in G′.
We could use Dijkstra’s algorithm in O(E log V) time, but the structure of the
graph supports a faster algorithm.

Intuitively, we break the shortest-path computation into phases, where in the
kth phase, we mark all vertices at distance k from the source vertex s. During
the kth phase, we may also discover vertices at distance k+1, but no further. So
instead of using a binary heap for the priority queue, it suffices to use two bags:
one for vertices at distance k, and one for vertices at distance k+ 1.

ZeroOneDijkstra(G,ℓ, s):
s.dist← 0
for all vertices v ̸= s

v.dist←∞
curr← new empty bag
add s to curr
for k← 0 to V

next← new empty bag
while curr is not empty

take v from curr 〈〈v.dist= k〉〉
for all edges v�w

if w.dist> v.dist+ ℓ(v�w)
w.dist← v.dist+ ℓ(v�w)
if ℓ(v�w) = 0

add w to curr
else 〈〈if ℓ(v�w) = 1〉〉

add w to next
curr← next

This phase of the algorithm runs in O(V ′ + E′) = O(V + E) time.

Once we have computed distances in G′, we construct a second graph
G′′ = (V ′, E′′) with the same vertices as G′, but only a subset of the edges:

E′′ =
�
u′�v′ ∈ E′
�� u′.dist+ ℓ(u′�v′) = v′.dist

	

Equivalently, an edge u′�v′ belongs to E′′ if and only if that edge is part of at
least one shortest path in G′ from s to another vertex. It follows (by induction,
of course), that every path in G′′ from s to another vertex v′ is a shortest path
in G′, and therefore a minimum-switch path in G.

We also reassign the edge weights in G′′. Specifically, we assign each uphill
edge u↑�v↑ and downhill edge u↓�v↓ in G′′ weight ℓ(uv), and we assign every
switch edge, start edge, and end edge weight 0. Now we need to compute the
shortest path from s to t in G′′, with respect to these new edge weights.

6

CS/ECE 374 A Homework 9 (due October 31) Fall 2023

We can expand the definition of E′′ in terms of the original input graph as
follows:

E′′ =
�
u↑�v↑
�� uv ∈ E and h(u)< h(v) and u↑.dist= v↑.dist

	

∪ �u↓�v↓
�� uv ∈ E and h(u)> h(v) and u↓.dist= v↓.dist

	

∪ �v↑�v↓
�� v ∈ V and v↑.dist< v↓.dist

	

∪ �v↓�v↑
�� v ∈ V and v↓.dist< v↑.dist

	

We can topologically sort G′′ by first sorting the vertices by increasing v′.dist,
and then within each subset of vertices with equal v′.dist, listing the up-vertices
by increasing height, followed by the down vertices by decreasing height. It
follows that G′′ is a dag! Thus, we can compute shortest paths in G′′ in
O(V ′′ + E′′) = O(V + E) time, using the same dynamic programming algorithm
that we used in part (a).

The overall algorithm runs in O(V + E) time. ■

Rubric: max 10 points =
• 5 for computing minimum-switch paths = 1 for vertices + 1 for edges (including weights) +
2 for 0/1 shortest path algorithm + 1 for running time.

• 5 for computing shortest minimum-switch paths = 1 for vertices + 1 for edges (including
weights) + 1 for proving dag + 1 for dynamic programming algorithm + 1 for running time

7

CS/ECE 374 A = Fall 2023
9 Homework 10 :

Due Tuesday, November 14, 2019 at 9pm

1. This problem asks you to describe polynomial-time reductions between two closely related
problems:

• SubsetSum: Given a set S of positive integers and a target integer T , is there a
subset of S whose sum is T?

• Partition: Given a set S of positive integers, is there a way to partition S into two
subsets S1 and S2 that have the same sum?

(a) Describe a polynomial-time reduction from SubsetSum to Partition.
(b) Describe a polynomial-time reduction from Partition to SubsetSum.

Don’t forget to to prove that your reductions are correct.

2. A subset S of vertices in an undirected graph G is called triangle-free if, for every triple of
vertices u, v, w ∈ S, at least one of the three edges uv, uw, vw is absent from G. Prove that
finding the size of the largest triangle-free subset of vertices in a given undirected graph is
NP-hard.

A triangle-free subset of 7 vertices and its induced edges.
This is not the largest triangle-free subset in this graph.

CS/ECE 374A Homework 10 (due November 14) Fall 2023

Solved Problem
4. RedBlue is a puzzle that consists of an n×m grid of squares, where each square may be

empty, occupied by a red stone, or occupied by a blue stone. The goal of the puzzle is to
remove some of the given stones so that the remaining stones satisfy two conditions:

(1) Every row contains at least one stone.
(2) No column contains stones of both colors.

For some RedBlue puzzles, reaching this goal is impossible; see the example below.
Prove that it is NP-hard to determine whether a given RedBlue puzzle has a solution.

A solvable RedBlue puzzle and one of its many solutions. An unsolvable RedBlue puzzle.

Solution: We show that RedBlue is NP-hard by describing a reduction from 3Sat.
Let Φ be a 3CNF boolean formula with m variables and n clauses. We transform

this formula into a RedBlue instance X in polynomial time as follows. The size of the
board is n×m. The stones are placed as follows, for all indices i and j:

• If the variable x j appears in the ith clause of Φ, we place a blue stone at (i, j).
• If the negated variable x j appears in the ith clause of Φ, we place a red stone at
(i, j).

• Otherwise, we leave cell (i, j) blank.

To prove that RedBlue is NP-hard, it suffices to prove the following claim:

Φ is satisfiable
if and only if

RedBlue puzzle X is solvable.

=⇒ First, suppose Φ is satisfiable; consider an arbitrary satisfying assignment. For
each index j, remove stones from column j according to the value assigned to x j:
– If x j = True, remove all red stones from column j.
– If x j = False, remove all blue stones from column j.

In other words, remove precisely the stones that correspond to False literals.
Because every variable appears in at least one clause, each column now contains
stones of only one color (if any). On the other hand, each clause of Φ must
contain at least one True literal, and thus each row still contains at least one
stone. We conclude that RedBlue puzzle X is solvable.

2

CS/ECE 374A Homework 10 (due November 14) Fall 2023

⇐= On the other hand, suppose RedBlue puzzle X is solvable; consider an arbitrary
solution. For each index j, assign a value to x j depending on the colors of stones
left in column j:
– If column j contains blue stones, set x j = True.
– If column j contains red stones, set x j = False.
– If column j is empty, set x j arbitrarily.

In other words, assign values to the variables so that the literals corresponding
to the remaining stones are all True. Each row still has at least one stone, so
each clause of Φ contains at least one True literal, so this assignment makes
Φ= True. We conclude that Φ is satisfiable.

This reduction clearly requires only polynomial time. ■

Standard NP-hardness rubric. 10 points =

+ 1 point for choosing a reasonable NP-hard problem X to reduce from.
– The Cook-Levin theorem implies that in principle one can prove NP-hardness by reduction

from any NP-complete problem. What we’re looking for here is a problem where a simple
and direct NP-hardness proof seems likely.

– You can use any of the NP-hard problems listed on the next page or in the textbook (except
the one you are trying to prove NP-hard, of course).

+ 2 points for a structurally sound polynomial-time reduction. Specifically, the reduction must:
– take an arbitrary instance of the declared problem X and nothing else as input,
– transform that input into a corresponding instance of Y (the problem we’re trying to prove

NP-hard),
– transform the output of the magic algorithm for Y into a reasonable output for X, and
– run in polynomial time.

(The output transformation is usually trivial.) This is strictly about the structure of the reduction
algorithm, not about its correctness. No credit for the rest of the problem if this is wrong.

+ 2 points for a correct polynomial-time reduction. That is, assuming a black-box algorithm that
solves Y in polynomial time, the proposed reduction actually solves problem X in polynomial
time.

+ 2 points for the “if” proof of correctness. (Every good instance of X is transformed into a good
instance of Y.)

+ 2 points for the “only if” proof of correctness. (Every bad instance of X is transformed into a bad
instance of Y.)

+ 1 point for writing “polynomial time”

• An incorrect but structurally sound polynomial-time reduction that still satisfies half of the
correctness proof is worth at most 6/10.

• A reduction in the wrong direction is worth at most 1/10.

3

CS/ECE 374A Homework 10 (due November 14) Fall 2023

Some useful NP-hard problems. You are welcome to use any of these in your own NP-hardness proofs,
except of course for the specific problem you are trying to prove NP-hard.

CircuitSat: Given a boolean circuit, are there any input values that make the circuit output True?

3Sat: Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause,
does the formula have a satisfying assignment?

MaxIndependentSet: Given an undirected graph G, what is the size of the largest subset of vertices in G
that have no edges among them?

MaxClique: Given an undirected graph G, what is the size of the largest complete subgraph of G?

MinVertexCover: Given an undirected graph G, what is the size of the smallest subset of vertices that
touch every edge in G?

MinSetCover: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subcollection whose union is S?

MinHittingSet: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subset of S that intersects every subset Si?

3Color: Given an undirected graph G, can its vertices be colored with three colors, so that every edge
touches vertices with two different colors?

ChromaticNumber: Given an undirected graph G, what is the minimum number of colors required to
color its vertices, so that every edge touches vertices with two different colors?

HamiltonianPath: Given graph G (either directed or undirected), is there a path in G that visits every
vertex exactly once?

HamiltonianCycle: Given a graph G (either directed or undirected), is there a cycle in G that visits every
vertex exactly once?

TravelingSalesman: Given a graph G (either directed or undirected) with weighted edges, what is the
minimum total weight of any Hamiltonian path/cycle in G?

LongestPath: Given a graph G (either directed or undirected, possibly with weighted edges), what is the
length of the longest simple path in G?

SteinerTree: Given an undirected graph G with some of the vertices marked, what is the minimum
number of edges in a subtree of G that contains every marked vertex?

SubsetSum: Given a set X of positive integers and an integer k, does X have a subset whose elements
sum to k?

Partition: Given a set X of positive integers, can X be partitioned into two subsets with the same sum?

3Partition: Given a set X of 3n positive integers, can X be partitioned into n three-element subsets, all
with the same sum?

IntegerLinearProgramming: Given a matrix A∈ Zn×d and two vectors b ∈ Zn and c ∈ Zd , compute
max{c · x | Ax ≤ b, x ≥ 0, x ∈ Zd}.

FeasibleILP: Given a matrix A∈ Zn×d and a vector b ∈ Zn, determine whether the set of feasible integer
points max{x ∈ Zd | Ax ≤ b, x ≥ 0} is empty.

Draughts: Given an n× n international draughts configuration, what is the largest number of pieces that
can (and therefore must) be captured in a single move?

SuperMarioBrothers: Given an n× n Super Mario Brothers level, can Mario reach the castle?

4

CS/ECE 374 A = Fall 2023
9 Homework 11 :

Due Tuesday, November 28, 2023 at 9pm

This is the last graded homework before the final exam.

1. A balloon of size ℓ is an undirected graph consisting of a (simple) cycle of length ℓ and a
(simple) path of length ℓ, where one endpoint of the path lies on the cycle, and otherwise
the cycle and the path are disjoint. Every balloon of size ℓ has exactly 2ℓ vertices and 2ℓ
edges. For example, the 4× 4 grid graph shown below contains a balloon subgraph of
size 8.

Prove that it is NP-hard to find the size of the the largest balloon subgraph of a given
undirected graph.

2. Recall that a 3-coloring of a graph assigns each vertex one of three colors, say red, yellow,
and blue. A 3-coloring is proper if every edge has endpoints with different colors. The
3Color problem asks, given an arbitrary undirected graph G, whether G has a proper
3-coloring.

Call a 3-coloring of a graph G slightly improper if each vertex has at most one neighbor
with the same color. The SlightlyImproper3Color problem asks, given an arbitrary
undirected graph G, whether G has a slightly improper 3-coloring.

(a) Consider the following attempt to prove that SlightlyImproper3Color is NP-hard,
using a reduction from 3Color.

Non-solution: We reduce from 3Color. Given an arbitrary input graph G, we
construct a new graph H by attaching a clique of 4 vertices to every vertex of G.
Specifically, for each vertex v in G, the graph H contains three new vertices
v1, v2, v3, along with edges vv1, vv2, vv3, v1v2, v1v3, v2v3. I claim that

CS/ECE 374A Homework 11 (due November 28) Fall 2023

G has a proper 3-coloring
if and only if

H has a slightly improper 3-coloring.
=⇒ Suppose G has a proper 3-coloring, using the colors red, yellow, and blue.

Extend this color assignment to the vertices of H by coloring each vertex v1

red, each vertex v2 yellow, and each vertex v3 blue. With this assignment,
each vertex of H has at most one neighbor with the same color. Specifically,
each vertex of G has the same color as one of the vertices in its gadget, and
the other two vertices in v’s gadget have no neighbors with the same color.

/\⇐= Now suppose H has a slightly improper 3-coloring. Then G must have a
proper 3-coloring because. . . um. . .

♣

Describe a graph G that does not have a proper 3-coloring, such that the graph H
constructed by this reduction does have a slightly improper 3-coloring.

(b) Describe a small graph X with the following property: In every slightly improper
3-coloring of X , every vertex of X has exactly one neighbor with the same color.

(c) Describe a correct polynomial-time reduction from 3Color to SlightlyImproper-
3Color. [Hint: Use your graph from part (b) as a gadget.] This reduction will prove
that SlightlyImproper3Color is indeed NP-hard.

2

CS/ECE 374A Homework 11 (due November 28) Fall 2023

Solved Problem
3. A double-Hamiltonian tour in an undirected graph G is a closed walk that visits every vertex

in G exactly twice. Prove that it is NP-hard to decide whether a given graph G has a
double-Hamiltonian tour.

b
d

c

f
g

a

e

This graph contains the double-Hamiltonian tour a�b�d�g�e�b�d�c� f �a�c� f �g�e�a.

Solution: We prove the problem is NP-hard with a reduction from the standard
Hamiltonian cycle problem. Let G be an arbitrary undirected graph. We construct a
new graph H by attaching a small gadget to every vertex of G. Specifically, for each
vertex v, we add two vertices v♯ and v♭, along with three edges vv♭, vv♯, and v♭v♯.

A vertex in G and the corresponding vertex gadget in H .

Now I claim that

G has a Hamiltonian cycle
if and only if

H has a double-Hamiltonian tour.

=⇒ Suppose G contains a Hamiltonian cycle C = v1�v2� · · ·�vn�v1. We can
construct a double-Hamiltonian tour of H by replacing each vertex vi in C with
the following walk:

· · ·�vi�v♭i �v♯i �v♭i �v♯i �vi� · · ·
⇐= Conversely, suppose H has a double-Hamiltonian tour D. Consider any vertex v

in the original graph G; the tour D must visit v exactly twice. Those two visits
split D into two closed walks, each of which visits v exactly once. Any walk
from v♭ or v♯ to any other vertex in H must pass through v. Thus, one of the two
closed walks visits only the vertices v, v♭, and v♯. Thus, if we remove the vertices
and edges in H \ G from D, we obtain a closed walk in G that visits every vertex
in G exactly once.

Given any graph G, we can clearly construct the corresponding graph H in polynomial
time by brute force.

With more effort, we can construct a graph H that contains a double-Hamiltonian
tour that traverses each edge of H at most once if and only if G contains a Hamiltonian

3

CS/ECE 374A Homework 11 (due November 28) Fall 2023

cycle. For each vertex v in G we attach a more complex gadget containing five vertices
and eleven edges, as shown on the next page.

A vertex in G, and the corresponding modified vertex gadget in H .

■

Rubric: 10 points, standard polynomial-time reduction rubric. This is not the only correct solution.

Non-solution (self-loops): We attempt to prove the problem is NP-hard with a
reduction from the Hamiltonian cycle problem. Let G be an arbitrary undirected
graph. We construct a new graph H by attaching a self-loop every vertex of G. Given
any graph G, we can clearly construct the corresponding graph H in polynomial time.

An incorrect vertex gadget.

Now I claim that

G has a Hamiltonian cycle
if and only if

H has a double-Hamiltonian tour.

=⇒ Suppose G has a Hamiltonian cycle v1�v2� · · ·�vn�v1. We can construct a
double-Hamiltonian tour of H by alternating between edges of the Hamiltonian
cycle and self-loops: v1�v1�v2�v2�v3� · · ·�vn�vn�v1.

/\⇐= Um. . .
Unfortunately, if H has a double-Hamiltonian tour, we cannot conclude that G has
a Hamiltonian cycle, because we cannot guarantee that a double-Hamiltonian tour
in H uses any self-loops. The graph G shown below is a counterexample; it has a
double-Hamiltonian tour (even before adding self-loops!) but no Hamiltonian cycle.

This graph has a double-Hamiltonian tour.

♣

4

CS/ECE 374A Homework 11 (due November 28) Fall 2023

Some useful NP-hard problems. You are welcome to use any of these in your own NP-hardness proofs,
except of course for the specific problem you are trying to prove NP-hard.

CircuitSat: Given a boolean circuit, are there any input values that make the circuit output True?

3Sat: Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause,
does the formula have a satisfying assignment?

MaxIndependentSet: Given an undirected graph G, what is the size of the largest subset of vertices in G
that have no edges among them?

MaxClique: Given an undirected graph G, what is the size of the largest complete subgraph of G?

MinVertexCover: Given an undirected graph G, what is the size of the smallest subset of vertices that
touch every edge in G?

MinSetCover: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subcollection whose union is S?

MinHittingSet: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subset of S that intersects every subset Si?

3Color: Given an undirected graph G, can its vertices be colored with three colors, so that every edge
touches vertices with two different colors?

ChromaticNumber: Given an undirected graph G, what is the minimum number of colors required to
color its vertices, so that every edge touches vertices with two different colors?

HamiltonianPath: Given graph G (either directed or undirected), is there a path in G that visits every
vertex exactly once?

HamiltonianCycle: Given a graph G (either directed or undirected), is there a cycle in G that visits every
vertex exactly once?

TravelingSalesman: Given a graph G (either directed or undirected) with weighted edges, what is the
minimum total weight of any Hamiltonian path/cycle in G?

LongestPath: Given a graph G (either directed or undirected, possibly with weighted edges), what is the
length of the longest simple path in G?

SteinerTree: Given an undirected graph G with some of the vertices marked, what is the minimum
number of edges in a subtree of G that contains every marked vertex?

SubsetSum: Given a set X of positive integers and an integer k, does X have a subset whose elements
sum to k?

Partition: Given a set X of positive integers, can X be partitioned into two subsets with the same sum?

3Partition: Given a set X of 3n positive integers, can X be partitioned into n three-element subsets, all
with the same sum?

IntegerLinearProgramming: Given a matrix A∈ Zn×d and two vectors b ∈ Zn and c ∈ Zd , compute
max{c · x | Ax ≤ b, x ≥ 0, x ∈ Zd}.

FeasibleILP: Given a matrix A∈ Zn×d and a vector b ∈ Zn, determine whether the set of feasible integer
points max{x ∈ Zd | Ax ≤ b, x ≥ 0} is empty.

Draughts: Given an n× n international draughts configuration, what is the largest number of pieces that
can (and therefore must) be captured in a single move?

SuperMarioBrothers: Given an n× n Super Mario Brothers level, can Mario reach the castle?

5

CS/ECE 374 A = Fall 2023
9 “Homework” 12 :
“Due” Monday, December 4, 2023

This homework is not for submission. However, we are planning to ask a few
(true/false, multiple-choice, or short-answer) questions about undecidability on
the final exam, so we still strongly recommend treating these questions as regular
homework. Solutions will be released next Monday.

1. Let 〈M〉 denote the encoding of a Turing machine M (or if you prefer, the Python source
code for the executable code M). Recall that wR denotes the reversal of string w. Prove
that the following language is undecidable.

SelfRevAccept :=
�〈M〉
�� M accepts the string 〈M〉R	

Note that Rice’s theorem does not apply to this language.

2. Let M be a Turing machine, let w be a string, and let s be an integer. We say that M
accepts w in space s if, given w as input, M accesses at most the first s cells on its tape
and eventually accepts. (If you prefer to think in terms of programs instead of Turing
machines, “space” is how much memory your program needs to run correctly.)

Prove that the following language is undecidable:

SomeSquareSpace=
�〈M〉
�� M accepts at least one string w in space |w|2	

Note that Rice’s theorem does not apply to this language.
[Hint: The only thing you actually need to know about Turing machines for this

problem is that they consume a resource called “space”.]

3. Prove that the following language is undecidable:

Picky=
�
〈M〉
����

M accepts at least one input string
and M rejects at least one input string

�

Note that Rice’s theorem does not apply to this language.

CS/ECE 374 A “Homework” 12 (“due” December 4) Fall 2023

Solved Problem
4. Consider the language SometimesHalt = {〈M〉 | M halts on at least one input string}.

Note that 〈M〉 ∈ SometimesHalt does not imply that M accepts any strings; it is enough
that M halts on (and possibly rejects) some string.

(a) Prove that SometimesHalt is undecidable.
Solution (Rice): Let L be the family of all non-empty languages. Let N be any
Turing machine that never halts, so Halt(N) = ∅ ̸∈ L . Let Y be any Turing
machine that always halts, so Halt(Y) = Σ∗ ∈ L . Rice’s Halting Theorem
immediately implies that SometimesHalt= HaltIn(L) is undecidable. ■

Solution (closure): Let Encodings be the language of all Turing machine
encodings (for some fixed universal Turing machine); this language is decid-
able. We immediately have Encodings = NeverHalt ∪ SometimesHalt, or
equivalently, NeverHalt= Encodings \ SometimesHalt.

The lectures notes include a proof that NeverHalt is undecidable. On
the other hand, the existence of a universal Turing machine implies that
Encodings is decidable. So Corollary 3(d) in the undecidability notes im-
plies that SometimesHalt is undecidable. ■

Solution (reduction from Halt): We can reduce the standard halting problem
to SometimesHalt as follows:

DecideHalt(〈M , w〉):
Encode the following Turing machine M ′:

M ′(x):
(ignore x)
run M on input w

return DecideSometimesHalt(〈M ′〉)
We prove this reduction correct as follows:
=⇒ Suppose M halts on input w.

Then M ′ halts on every input string x .
So DecideSometimesHalt must accept the encoding 〈M ′〉.
We conclude that DecideHalt correctly accepts the encoding 〈M , w〉.

⇐= Suppose M does not halt on input w.
Then M ′ diverges on every input string x .
So DecideSometimesHalt must reject the encoding 〈M ′〉.
We conclude that DecideHalt correctly rejects the encoding 〈M , w〉.

■

2

