
CS 373U: Combinatorial Algorithms, Spring 2004

Homework 0

Due January 28, 2004 at noon

Name:

Net ID: Alias:

I understand the Homework Instructions and FAQ.

• Neatly print your full name, your NetID, and an alias of your choice in the boxes above.
Grades will be listed on the course web site by alias; for privacy reasons, your alias should
not resemble your name or NetID. By providing an alias, you agree to let us list your grades;
if you do not provide an alias, your grades will not be listed. Never give us your Social
Security number!

• Before you do anything else, read the Homework Instructions and FAQ on the course web
page, and then check the box above. This web page gives instructions on how to write and
submit homeworks—staple your solutions together in order, start each numbered problem on
a new sheet of paper, write your name and NetID one every page, don’t turn in source code,
analyze and prove everything, use good English and good logic, and so on. See especially
the policies regarding the magic phrases “I don’t know” and “and so on”. If you have any
questions, post them to the course newsgroup or ask in lecture.

• This homework tests your familiarity with prerequisite material—basic data structures, big-
Oh notation, recurrences, discrete probability, and most importantly, induction—to help you
identify gaps in your knowledge. You are responsible for filling those gaps on your
own. Chapters 1–10 of CLRS should be sufficient review, but you may also want consult
your discrete mathematics and data structures textbooks.

• Every homework will have five required problems and one extra-credit problem. Each num-
bered problem is worth 10 points.

1 2 3 4 5 6∗ Total

Score

Grader

CS 373U Homework 0 (due January 28, 2004) Spring 2004

1. Sort the functions in each box from asymptotically smallest to asymptotically largest, indi-
cating ties if there are any. You do not need to turn in proofs (in fact, please don’t turn in
proofs), but you should do them anyway, just for practice. Don’t merge the lists together.

To simplify your answers, write f(n)� g(n) to mean f(n) = o(g(n)), and write f(n) ≡ g(n)
to mean f(n) = Θ(g(n)). For example, the functions n2, n,

(
n
2

)
, n3 could be sorted either as

n� n2 ≡
(
n
2

)
� n3 or as n�

(
n
2

)
≡ n2 � n3.

(a)
2
√
lgn 2lg

√
n
√
2lgn

√
2
lgn

lg 2
√
n lg

√
2
n

lg
√
2n

√
lg 2n

lg n
√
2 lg

√
n
2

lg
√
n2

√
lg n2 lg2

√
n lg

√
2 n

√
lg2 n

√
lg n

2

?(b) lg(
√
n!) lg(

√
n!)

√
lg(n!) (lg

√
n)! (

√
lg n)!

√
(lg n)!

[Hint: Use Stirling’s approximation for factorials: n! ≈ nn+1/2/en]

2. Solve the following recurrences. State tight asymptotic bounds for each function in the form
Θ(f(n)) for some recognizable function f(n). Proofs are not required; just give us the list
of answers. You do not need to turn in proofs (in fact, please don’t turn in proofs), but you
should do them anyway, just for practice. Assume reasonable but nontrivial base cases. If
your solution requires specific base cases, state them! Extra credit will be awarded for more
exact solutions.

(a) A(n) = 9A(n/3) + n2

(b) B(n) = 2B(n/2) + n/ lg n

(c) C(n) =
2C(n− 1)

C(n− 2)
[Hint: This is easy!]

(d) D(n) = D(n− 1) + 1/n

(e) E(n) = E(n/2) +D(n)

(f) F (n) = 2F
(
b(n+ 3)/4c − √5n lg n+ 6

)
+ 7
√
n+ 8− lg9 lg lg n+ 10lg

∗ n − 11/n12

(g) G(n) = 3G(n− 1)− 3G(n− 2) +G(n− 3)

?(h) H(n) = 4H(n/2)− 4H(n/4) + 1 [Hint: Careful!]

(i) I(n) = I(n/3) + I(n/4) + I(n/6) + I(n/8) + I(n/12) + I(n/24) + n

F(j) J(n) =
√
n · J(2√n) + n

[Hint: First solve the secondary recurrence j(n) = 1 + j(2
√
n).]

1

CS 373U Homework 0 (due January 28, 2004) Spring 2004

3. Scientists have recently discovered a planet, tentatively named “Ygdrasil”, which is inhabited
by a bizarre species called “nertices” (singular “nertex”). All nertices trace their ancestry
back to a particular nertex named Rudy. Rudy is still quite alive, as is every one of his many
descendants. Nertices reproduce asexually, like bees; each nertex has exactly one parent
(except Rudy). There are three different types of nertices—red, green, and blue. The color
of each nertex is correlated exactly with the number and color of its children, as follows:

• Each red nertex has two children, exactly one of which is green.

• Each green nertex has exactly one child, which is not green.

• Blue nertices have no children.

In each of the following problems, let R, G, and B respectively denote the number of red,
green, and blue nertices on Ygdrasil.

(a) Prove that B = R+ 1.

(b) Prove that either G = R or G = B.

(c) Prove that G = B if and only if Rudy is green.

4. Algorithms and data structures were developed millions of years ago by the Martians, but
not quite in the same way as the recent development here on Earth. Intelligent life evolved
independently on Mars’ two moons, Phobos and Deimos.1 When the two races finally met on
the surface of Mars, after thousands of years of separate philosophical, cultural, religious, and
scientific development, their disagreements over the proper structure of binary search trees
led to a bloody (or more accurately, ichorous) war, ultimately leading to the destruction of
all Martian life.

A Phobian binary search tree is a full binary tree that stores a set X of search keys. The
root of the tree stores the smallest element in X. If X has more than one element, then the
left subtree stores all the elements less than some pivot value p, and the right subtree stores
everything else. Both subtrees are nonempty Phobian binary search trees. The actual pivot
value p is never stored in the tree.

A C

I

S

A

A

C

I

S TIHA B

C E I M

N

N R T Y

A Phobian binary search tree for the set {M,A,R,T, I,N,B,Y,S,E,C,H}.

(a) Describe and analyze an algorithm Find(x, T) that returns True if x is stored in the
Phobian binary search tree T , and False otherwise.

(b) A Deimoid binary search tree is almost exactly the same as its Phobian counterpart,
except that the largest element is stored at the root, and both subtrees are Deimoid
binary search trees. Describe and analyze an algorithm to transform an n-node Pho-
bian binary search tree into a Deimoid binary search tree in O(n) time, using as little
additional space as possible.

1Greek for “fear” and “panic”, respectively. Doesn’t that make you feel better?

2

CS 373U Homework 0 (due January 28, 2004) Spring 2004

5. Penn and Teller agree to play the following game. Penn shuffles a standard deck2 of playing
cards so that every permutation is equally likely. Then Teller draws cards from the deck, one
at a time without replacement, until he draws the three of clubs (3♣), at which point the
remaining undrawn cards instantly burst into flames.

The first time Teller draws a card from the deck, he gives it to Penn. From then on, until
the game ends, whenever Teller draws a card whose value is smaller than the last card he
gave to Penn, he gives the new card to Penn.3 To make the rules unambiguous, they agree
beforehand that A = 1, J = 11, Q = 12, and K = 13.

(a) What is the expected number of cards that Teller draws?

(b) What is the expected maximum value among the cards Teller gives to Penn?

(c) What is the expected minimum value among the cards Teller gives to Penn?

(d) What is the expected number of cards that Teller gives to Penn?

Full credit will be given only for exact answers (with correct proofs, of course).

?6. [Extra credit]4

Lazy binary is a variant of standard binary notation for representing natural numbers where
we allow each “bit” to take on one of three values: 0, 1, or 2. Lazy binary notation is defined
inductively as follows.

• The lazy binary representation of zero is 0.

• Given the lazy binary representation of any non-negative integer n, we can construct the
lazy binary representation of n+ 1 as follows:

(a) increment the rightmost digit;

(b) if any digit is equal to 2, replace the rightmost 2 with 0 and increment the digit
immediately to its left.

Here are the first several natural numbers in lazy binary notation:

0, 1, 10, 11, 20, 101, 110, 111, 120, 201, 210, 1011, 1020, 1101, 1110, 1111, 1120, 1201,
1210, 2011, 2020, 2101, 2110, 10111, 10120, 10201, 10210, 11011, 11020, 11101, 11110,
11111, 11120, 11201, 11210, 12011, 12020, 12101, 12110, 20111, 20120, 20201, 20210, 21011,
21020, 21101, 21110, 101111, 101120, 101201, 101210, 102011, 102020, 102101, 102110, . . .

(a) Prove that in any lazy binary number, between any two 2s there is at least one 0, and
between two 0s there is at least one 2.

(b) Prove that for any natural number N , the sum of the digits of the lazy binary represen-
tation of N is exactly blg(N + 1)c.

2In a standard deck of 52 cards, each card has a suit in the set {♠,♥,♣,♦} and a value in the set
{A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K}, and every possible suit-value pair appears in the deck exactly once. Actually,
to make the game more interesting, Penn and Teller normally use razor-sharp ninja throwing cards.

3Specifically, he hurls them from the opposite side of the stage directly into the back of Penn’s right hand.
4The “I don’t know” rule does not apply to extra credit problems. There is no such thing as “partial extra credit”.

3

CS 373U: Combinatorial Algorithms, Spring 2004

Homework 1

Due Monday, February 9, 2004 at noon

Name:

Net ID: Alias:

Name:

Net ID: Alias:

Name:

Net ID: Alias:

• For this and all following homeworks, groups of up to three people can turn in a single solution.
Please write all your names and NetIDs on every page you turn in.

1 2 3 4 5 6∗ Total

Score

Grader

CS 373U Homework 1 (due Monday 9, 2004 at noon) Spring 2004

1. Some graphics hardware includes support for an operation called blit, or block transfer, which
quickly copies a rectangular chunk of a pixelmap (a two-dimensional array of pixel values)
from one location to another. This is a two-dimensional version of the standard C library
function memcpy().

Suppose we want to rotate an n×n pixelmap 90◦ clockwise. One way to do this is to split the
pixelmap into four n/2×n/2 blocks, move each block to its proper position using a sequence
of five blits, and then recursively rotate each block. Alternately, we can first recursively rotate
the blocks and blit them into place afterwards.

C
A B

D

C A
BD

C A
BD

C
A B

D
Two algorithms for rotating a pixelmap.

Black arrows indicate blitting the blocks into place.

White arrows indicate recursively rotating the blocks.

The following sequence of pictures shows the first algorithm (blit then recurse) in action.

In the following questions, assume n is a power of two.

(a) Prove that both versions of the algorithm are correct. [Hint: If you exploit all the
available symmetries, your proof will only be a half of a page long.]

(b) Exactly how many blits does the algorithm perform?

(c) What is the algorithm’s running time if each k × k blit takes O(k2) time?

(d) What if each k × k blit takes only O(k) time?

1

CS 373U Homework 1 (due Monday 9, 2004 at noon) Spring 2004

2. The traditional Devonian/Cornish drinking song “The Barley Mow” has the following pseu-
dolyrics1, where container [i] is the name of a container that holds 2i ounces of beer.2

BarleyMow(n):

“Here’s a health to the barley-mow, my brave boys,”

“Here’s a health to the barley-mow!”

“We’ll drink it out of the jolly brown bowl,”

“Here’s a health to the barley-mow!”

“Here’s a health to the barley-mow, my brave boys,”

“Here’s a health to the barley-mow!”

for i← 1 to n
“We’ll drink it out of the container [i], boys,”

“Here’s a health to the barley-mow!”

for j ← i downto 1
“The container [j],”

“And the jolly brown bowl!”

“Here’s a health to the barley-mow!”

“Here’s a health to the barley-mow, my brave boys,”

“Here’s a health to the barley-mow!”

(a) Suppose each container name container [i] is a single word, and you can sing four words a
second. How long would it take you to sing BarleyMow(n)? (Give a tight asymptotic
bound.)

(b) If you want to sing this song for n > 20, you’ll have to make up your own container
names, and to avoid repetition, these names will get progressively longer as n increases3.
Suppose container [n] has Θ(log n) syllables, and you can sing six syllables per second.
Now how long would it take you to sing BarleyMow(n)? (Give a tight asymptotic
bound.)

(c) Suppose each time you mention the name of a container, you drink the corresponding
amount of beer: one ounce for the jolly brown bowl, and 2i ounces for each container [i].
Assuming for purposes of this problem that you are at least 21 years old, exactly how
many ounces of beer would you drink if you sang BarleyMow(n)? (Give an exact

answer, not just an asymptotic bound.)

1Pseudolyrics are to lyrics as pseudocode is to code.
2One version of the song uses the following containers: nipperkin, gill pot, half-pint, pint, quart, pottle, gallon,

half-anker, anker, firkin, half-barrel, barrel, hogshead, pipe, well, river, and ocean. Every container in this list is
twice as big as its predecessor, except that a firkin is actually 2.25 ankers, and the last three units are just silly.

3“We’ll drink it out of the hemisemidemiyottapint, boys!”

2

CS 373U Homework 1 (due Monday 9, 2004 at noon) Spring 2004

3. In each of the problems below, you are given a ‘magic box’ that can solve one problem
quickly, and you are asked to construct an algorithm that uses the magic box to solve a
different problem.

(a) 3-Coloring: A graph is 3-colorable if it is possible to color each vertex red, green, or
blue, so that for every edge, its two vertices have two different colors. Suppose you have
a magic box that can tell you whether a given graph is 3-colorable in constant time.
Describe an algorithm that constructs a 3-coloring of a given graph (if one exists) as
quickly as possible.

(b) 3SUM: The 3SUM problem asks, given a set of integers, whether any three elements
sum to zero. Suppose you have a magic box that can solve the 3SUM problem in constant
time. Describe an algorithm that actually finds, given a set of integers, three elements
that sum to zero (if they exist) as quickly as possible.

(c) Traveling Salesman: A Hamiltonian cycle in a graph is a cycle that visits every vertex
exactly once. Given a complete graph where every edge has a weight, the traveling

salesman cycle is the Hamiltonian cycle with minimum total weight; that is, the sum
of the weight of the edges is smaller than for any other Hamiltonian cycle. Suppose
you have a magic box that can tell you the weight of the traveling salesman cycle of
a weighted graph in constant time. Describe an algorithm that actually constructs the
traveling salesman cycle of a given weighted graph as quickly as possible.

4. (a) Describe and analyze an algorithm to sort an array A[1 .. n] by calling a subroutine
SqrtSort(k), which sorts the subarray A[k + 1 .. k + d√ne] in place, given an arbitrary
integer k between 0 and n − d√ne as input. Your algorithm is only allowed to inspect
or modify the input array by calling SqrtSort; in particular, your algorithm must not
directly compare, move, or copy array elements. How many times does your algorithm
call SqrtSort in the worst case?

(b) Prove that your algorithm from part (a) is optimal up to constant factors. In other
words, if f(n) is the number of times your algorithm calls SqrtSort, prove that no
algorithm can sort using o(f(n)) calls to SqrtSort.

(c) Now suppose SqrtSort is implemented recursively, by calling your sorting algorithm
from part (a). For example, at the second level of recursion, the algorithm is sorting
arrays roughly of size n1/4. What is the worst-case running time of the resulting sorting
algorithm? (To simplify the analysis, assume that the array size n has the form 22

k

, so
that repeated square roots are always integers.)

3

CS 373U Homework 1 (due Monday 9, 2004 at noon) Spring 2004

5. In a previous incarnation, you worked as a cashier in the lost Antarctican colony of Nadira,
spending the better part of your day giving change to your customers. Because paper is a
very rare and valuable resource on Antarctica, cashiers were required by law to use the fewest
bills possible whenever they gave change. Thanks to the numerological predilections of one
of its founders, the currency of Nadira, called Dream Dollars, was available in the following
denominations: $1, $4, $7, $13, $28, $52, $91, $365.4

(a) The greedy change algorithm repeatedly takes the largest bill that does not exceed the
target amount. For example, to make $122 using the greedy algorithm, we first take a
$91 bill, then a $28 bill, and finally three $1 bills. Give an example where this greedy
algorithm uses more Dream Dollar bills than the minimum possible.

(b) Describe and analyze a recursive algorithm that computes, given an integer k, the min-
imum number of bills needed to make k Dream Dollars. (Don’t worry about making
your algorithm fast; just make sure it’s correct.)

(c) Describe a dynamic programming algorithm that computes, given an integer k, the
minimum number of bills needed to make k Dream Dollars. (This one needs to be fast.)

?6. [Extra Credit] A popular puzzle called “Lights Out!”, made by Tiger Electronics, has the
following description. The game consists of a 5× 5 array of lighted buttons. By pushing any
button, you toggle (on to off, off to on) that light and its four (or fewer) immediate neighbors.
The goal of the game is to have every light off at the same time.

We generalize this puzzle to a graph problem. We are given an arbitrary graph with a lighted
button at every vertex. Pushing the button at a vertex toggles its light and the lights at all
of its neighbors in the graph. A light configuration is just a description of which lights are on
and which are off. We say that a light configuration is solvable if it is possible to get from
that configuration to the everything-off configuration by pushing buttons. Some (but clearly
not all) light configurations are unsolvable.

(a) Suppose the graph is just a cycle of length n. Give a simple and complete characterization
of the solvable light configurations in this case. (What we’re really looking for here is
a fast algorithm to decide whether a given configuration is solvable or not.) [Hint: For
which cycle lengths is every configuration solvable?]

?(b) Characterize the set of solvable light configurations when the graph is an arbitrary tree.
F(c) A grid graph is a graph whose vertices are a regular h×w grid of integer points, with edges

between immediate vertical or horizontal neighbors. Characterize the set of solvable light
configurations for an arbitrary grid graph. (For example, the original Lights Out puzzle
can be modeled as a 5× 5 grid graph.)

4For more details on the history and culture of Nadira, including images of the various denominations of Dream
Dollars, see http://www.dream-dollars.com.

4

CS 373U: Combinatorial Algorithms, Spring 2004

Homework 2

Due Friday, February 20, 2004 at noon
(so you have the whole weekend to study for the midterm)

Name:

Net ID: Alias:

Name:

Net ID: Alias:

Name:

Net ID: Alias:

• Starting with this homework, we are changing the way we want you to submit solutions.
For each numbered problem, if you use more than one page, staple all those pages together.
Please do not staple your entire homework together. This will allow us to moreeasily
distribute the problems to the graders. Remember to print the name and NetID of every
member of your group, as well as the assignment and problem numbers, on every page you
submit. You do not need to turn in this cover page.

• Unless specifically stated otherwise, you can use the fact that the following problems are NP-
hard to prove that other problems are NP-hard: Circuit-SAT, 3SAT, Vertex Cover, Maximum
Clique, Maximum Independent Set, Hamiltonian Path, Hamiltonian Cycle, k-Colorability for
any k ≥ 3, Traveling Salesman Path, Travelling Salesman Cycle, Subset Sum, Partition,
3Partition, Hitting Set, Minimum Steiner Tree, Minesweeper, Tetris, or any other NP-hard
problem described in the lecture notes.

• This homework is a little harder than the last one. You might want to start early.

1 2 3 4 5 6∗ Total

Score

Grader

CS 373U Homework 2 (due February 20, 2004) Spring 2004

1. In lecture on February 5, Jeff presented the following algorithm to compute the length of the
longest increasing subsequence of an n-element array A[1 .. n] in O(n2) time.

LengthOfLIS(A[1 .. n]):

A[n + 1] =∞
for i← 1 to n + 1

L[i]← 1
for j ← 1 to i− 1

if A[j] < A[i] and 1 + L[j] < L[i]
L[i]← 1 + L[j]

return L[n + 1]− 1

Describe another algorithm for this problem that runs in O(n log n) time. [Hint: Use a data
structure to replace the inner loop with something faster.]

2. Every year, as part of its annual meeting, the Antarctican Snail Lovers of Union Glacier hold
a Round Table Mating Race. A large number of high-quality breeding snails are placed at
the edge of a round table. The snails are numbered in order around the table from 1 to n.
The snails wander around the table, each snail leaving a trail of slime behind it. The snails
have been specially trained never to fall off the edge of the table or to cross a slime trail (even
their own). When any two snails meet, they are declared a breeding pair, removed from the
table, and whisked away to a romantic hole in the ground to make little baby snails. Note
that some snails may never find a mate, even if n is even and the race goes on forever.

4

5

6

3

7

2

1

5

4

3

2

1

7

6

The end of an Antarctican SLUG race. Snails 1, 4, and 6 never find a mate.

The organizers must pay M [3, 5] + M [2, 7].

For every pair of snails, the Antarctican SLUG race organizers have posted a monetary reward,
to be paid to the owners if that pair of snails meets during the Mating Race. Specifically,
there is a two-dimensional array M [1 .. n, 1 .. n] posted on the wall behind the Round Table,
where M [i, j] = M [j, i] is the reward if snails i and j meet.

Describe and analyze an algorithm to compute the maximum total reward that the organizers
could be forced to pay, given the n× n array M as input.

1

CS 373U Homework 2 (due February 20, 2004) Spring 2004

3. Describe and analyze a polynomial-time algorithm to determine whether a boolean formula
in conjunctive normal form, with exactly two literals in each clause, is satisfiable.

4. This problem asks you to prove that four different variants of the minimum spanning tree
problem are NP-hard. In each case, the input is a connected undirected graph G with weighted
edges. Each problem considers a certain subset of the possible spanning trees of G, and asks
you to compute the spanning tree with minimum total weight in that subset.

(a) Prove that finding the minimum-weight depth first search tree is NP-hard. (To remind
yourself what depth first search is, and why it computes a spanning tree, see Jeff’s
introductory notes on graphs or Chapter 22 in CLRS.)

(b) Suppose a subset S of the nodes in the input graph are marked. Prove that it is NP-hard
to compute the minimum spanning tree whose leaves are all in S. [Hint: First consider
the case |S| = 2.]

(c) Prove that for any integer ` ≥ 2, it is NP-hard to compute the minimum spanning tree
with exactly ` leaves. [Hint: First consider the case ` = 2.]

(d) Prove that for any integer d ≥ 2, it is NP-hard to compute the minimum spanning tree
with maximum degree d. [Hint: First consider the case d = 2. By now this should start
to look familiar.]

You’re welcome to use reductions among these four problems. For example, even if you can’t
solve part (d), if you can prove that (d) implies (b), you will get full credit for (b). Just don’t
argue circularly.

5. Consider a machine with a row of n processors numbered 1 through n. A job is some com-
putational task that occupies a contiguous set of processors for some amount of time. Each
processor can work on only one job at a time. Each job is represented by a pair Ji = (ni, ti),
where ni is the number of processors required and ti is the amount of processing time required
to perform the job. A schedule for a set of jobs {J1, . . . , Jm} assigns each job Ji to some set
of ni contiguous processors for an interval of ti seconds, so that no processor works on more
than one job at any time. The make-span of a schedule is the time from the start to the finish
of all jobs.

The parallel scheduling problem asks, given a set of jobs as input, to compute a schedule for
those jobs with the smallest possible make-span.

(a) Prove that the parallel scheduling problem is NP-hard.

(b) Give an algorithm that computes a 3-approximation of the minimum make-span of a set
of jobs in O(m log m) time. That is, if the minimum make-span is M , your algorithm
should compute a schedule with make-span at most 3M . You can assume that n is a
power of 2.

2

CS 373U Homework 2 (due February 20, 2004) Spring 2004

?6. [Extra credit] Suppose you are standing in a field surrounded by several large balloons. You
want to use your brand new Acme Brand Zap-O-MaticTM to pop all the balloons, without
moving from your current location. The Zap-O-MaticTM shoots a high-powered laser beam,
which pops all the balloons it hits. Since each shot requires enough energy to power a small
country for a year, you want to fire as few shots as possible.

Nine balloons popped by 4 shots of the Zap-O-MaticTM

The minimum zap problem can be stated more formally as follows. Given a set C of n circles
in the plane, each specified by its radius and the (x, y) coordinates of its center, compute the
minimum number of rays from the origin that intersect every circle in C. Your goal is to find
an efficient algorithm for this problem.

(a) Describe and analyze a greedy algorithm whose output is within 1 of optimal. That is,
if m is the minimum number of rays required to hit every circle in the input, then your
greedy algorithm must output either m or m + 1. (Of course, you must prove this fact.)

(b) Describe an algorithm that solves the minimum zap problem in O(n2) time.
?(c) Describe an algorithm that solves the minimum zap problem in O(n log n) time.

Assume you have a subroutine Intersects(r, c) that determines, in O(1) time, whether a ray
r intersects a circle c. It’s not that hard to write this subroutine, but it’s not the interesting
part of the problem.

3

CS 373U: Combinatorial Algorithms, Spring 2004

Homework 3

Due Friday, March 12, 2004 at noon

Name:

Net ID: Alias:

Name:

Net ID: Alias:

Name:

Net ID: Alias:

• For each numbered problem, if you use more than one page, staple all those pages together.
Please do not staple your entire homework together. This will allow us to more
easily distribute the problems to the graders. Remember to print the name and NetID of
every member of your group, as well as the assignment and problem numbers, on every page
you submit. You do not need to turn in this cover page.

• This homework is challenging. You might want to start early.

1 2 3 4 5 6∗ Total

Score

Grader

CS 373U Homework 3 (due March 12, 2004) Spring 2004

1. Let S be a set of n points in the plane. A point p in S is called Pareto-optimal if no other
point in S is both above and to the right of p.

(a) Describe and analyze a deterministic algorithm that computes the Pareto-optimal points
in S in O(n log n) time.

(b) Suppose each point in S is chosen independently and uniformly at random from the unit
square [0, 1]× [0, 1]. What is the exact expected number of Pareto-optimal points in S?

2. Suppose we have an oracle Random(k) that returns an integer chosen independently and
uniformly at random from the set {1, . . . , k}, where k is the input parameter; Random is our
only source of random bits. We wish to write an efficient function RandomPermutation(n)
that returns a permutation of the integers 〈1, . . . , n〉 chosen uniformly at random.

(a) Consider the following implementation of RandomPermutation.

RandomPermutation(n):

for i = 1 to n
π[i]← NULL

for i = 1 to n
j ← Random(n)
while (π[j] != NULL)

j ← Random(n)
π[j]← i

return π

Prove that this algorithm is correct. Analyze its expected runtime.

(b) Consider the following partial implementation of RandomPermutation.

RandomPermutation(n):

for i = 1 to n
A[i]← Random(n)

π ← SomeFunction(A)
return π

Prove that if the subroutine SomeFunction is deterministic, then this algorithm cannot
be correct. [Hint: There is a one-line proof.]

(c) Consider a correct implementation of RandomPermutation(n) with the following
property: whenever it calls Random(k), the argument k is at most m. Prove that
this algorithm always calls Random at least Ω(n log n

log m
) times.

(d) Describe and analyze an implementation of RandomPermutation that runs in ex-
pected worst-case time O(n).

1

CS 373U Homework 3 (due March 12, 2004) Spring 2004

3. A meldable priority queue stores a set of keys from some totally-ordered universe (such as the
integers) and supports the following operations:

• MakeQueue: Return a new priority queue containing the empty set.

• FindMin(Q): Return the smallest element of Q (if any).

• DeleteMin(Q): Remove the smallest element in Q (if any).

• Insert(Q,x): Insert element x into Q, if it is not already there.

• DecreaseKey(Q,x, y): Replace an element x ∈ Q with a smaller key y. (If y > x, the
operation fails.) The input is a pointer directly to the node in Q containing x.

• Delete(Q,x): Delete the element x ∈ Q. The input is a pointer directly to the node
in Q containing x.

• Meld(Q1, Q2): Return a new priority queue containing all the elements of Q1 and Q2;
this operation destroys Q1 and Q2.

A simple way to implement such a data structure is to use a heap-ordered binary tree, where
each node stores a key, along with pointers to its parent and two children. Meld can be
implemented using the following randomized algorithm:

Meld(Q1, Q2):

if Q1 is empty return Q2

if Q2 is empty return Q1

if key(Q1) > key(Q2)
swap Q1 ↔ Q2

with probability 1/2
left(Q1)←Meld(left(Q1), Q2)

else
right(Q1)←Meld(right(Q1), Q2)

return Q1

(a) Prove that for any heap-ordered binary trees Q1 and Q2 (not just those constructed by
the operations listed above), the expected running time of Meld(Q1, Q2) is O(log n),
where n = |Q1| + |Q2|. [Hint: How long is a random root-to-leaf path in an n-node
binary tree if each left/right choice is made with equal probability?]

(b) [Extra credit] Prove that Meld(Q1, Q2) runs in O(log n) time with high probability.

(c) Show that each of the other meldable priority queue operations cab be implemented with
at most one call to Meld and O(1) additional time. (This implies that every operation
takes O(log n) time with high probability.)

2

CS 373U Homework 3 (due March 12, 2004) Spring 2004

4. A majority tree is a complete binary tree with depth n, where every leaf is labeled either 0
or 1. The value of a leaf is its label; the value of any internal node is the majority of the
values of its three children. Consider the problem of computing the value of the root of a
majority tree, given the sequence of 3n leaf labels as input. For example, if n = 2 and the
leaves are labeled 1, 0, 0, 0, 1, 0, 1, 1, 1, the root has value 0.

0 01 00 1 11 1

0 0

0

1

A majority tree with depth n = 2.

(a) Prove that any deterministic algorithm that computes the value of the root of a majority
tree must examine every leaf. [Hint: Consider the special case n = 1. Recurse.]

(b) Describe and analyze a randomized algorithm that computes the value of the root in
worst-case expected time O(cn) for some constant c < 3. [Hint: Consider the special
case n = 1. Recurse.]

5. Suppose n lights labeled 0, . . . , n− 1 are placed clockwise around a circle. Initially, each light
is set to the off position. Consider the following random process.

LightTheCircle(n):

k ← 0
turn on light 0
while at least one light is off

with probability 1/2
k ← (k + 1) mod n

else
k ← (k − 1) mod n

if light k is off, turn it on

Let p(i, n) be the probability that light i is the last to be turned on by LightTheCircle(n, 0).
For example, p(0, 2) = 0 and p(1, 2) = 1. Find an exact closed-form expression for p(i, n) in
terms of n and i. Prove your answer is correct.

6. [Extra Credit] Let G be a bipartite graph on n vertices. Each vertex v has an associated
set C(v) of lg 2n colors with which v is compatible. We wish to find a coloring of the vertices
in G so that every vertex v is assigned a color from its set C(v) and no edge has the same
color at both ends. Describe and analyze a randomized algorithm that computes such a
coloring in expected worst-case time O(n log2 n). [Hint: For any events A and B, Pr[A∪B] ≤
Pr[A] + Pr[B].]

3

CS 373U: Combinatorial Algorithms, Spring 2004

Homework 4

Due Friday, April 2, 2004 at noon

Name:

Net ID: Alias:

Name:

Net ID: Alias:

Name:

Net ID: Alias:

• For each numbered problem, if you use more than one page, staple all those pages together.
Please do not staple your entire homework together. This will allow us to more
easily distribute the problems to the graders. Remember to print the name and NetID of
every member of your group, as well as the assignment and problem numbers, on every page
you submit. You do not need to turn in this cover page.

• As with previous homeworks, we strongly encourage you to begin early.

1 2 3 4 5 6∗ Total

Score

Grader

CS 373U Homework 4 (due April 2, 2004) Spring 2004

1. Suppose we can insert or delete an element into a hash table in constant time. In order to
ensure that our hash table is always big enough, without wasting a lot of memory, we will
use the following global rebuilding rules:

• After an insertion, if the table is more than 3/4 full, we allocate a new table twice as big
as our current table, insert everything into the new table, and then free the old table.

• After a deletion, if the table is less than 1/4 full, we allocate a new table half as big as
our current table, insert everything into the new table, and then free the old table.

Show that for any sequence of insertions and deletions, the amortized time per operation is
still a constant. Do not use the potential method (like CLRS does); there is a much easier
solution.

2. Remember the difference between stacks and queues? Good.

(a) Describe how to implement a queue using two stacks and O(1) additional memory, so
that the amortized time for any enqueue or dequeue operation is O(1). The only access
you have to the stacks is through the standard subroutines Push and Pop.

(b) A quack is a data structure combining properties of both stacks and queues. It can be
viewed as a list of elements written left to right such that three operations are possible:

• Push: add a new item to the left end of the list;

• Pop: remove the item on the left end of the list;

• Pull: remove the item on the right end of the list.

Implement a quack using three stacks and O(1) additional memory, so that the amortized
time for any push, pop, or pull operation is O(1). Again, you are only allowed to access
the stacks through the standard functions Push and Pop.

3. Some applications of binary search trees attach a secondary data structure to each node in the
tree, to allow for more complicated searches. Maintaining these secondary structures usually
complicates algorithms for keeping the top-level search tree balanced.

Suppose we have a binary search tree T where every node v stores a secondary structure of
size O(|v|), where |v| denotes the number of descendants of v in T . Performing a rotation
at a node v in T now requires O(|v|) time, because we have to rebuild one of the secondary
structures.

(a) [1 pt] Overall, how much space does this data structure use in the worst case?

(b) [1 pt] How much space does this structure use if the top-level search tree T is balanced?

(c) [2 pt] Suppose T is a splay tree. Prove that the amortized cost of a splay (and therefore
of a search, insertion, or deletion) is Ω(n). [Hint: This is easy!]

(d) [3 pts] Now suppose T is a scapegoat tree, and that rebuilding the subtree rooted at v
requires Θ(|v| log|v|) time (because we also have to rebuild all the secondary structures).
What is the amortized cost of inserting a new element into T ?

(e) [3 pts] Finally, suppose T is a treap. What’s the worst-case expected time for inserting
a new element into T ?

1

CS 373U Homework 4 (due April 2, 2004) Spring 2004

4. In a dirty binary search tree, each node is labeled either clean or dirty. The lazy deletion
scheme used for scapegoat trees requires us to purge the search tree, keeping all the clean
nodes and deleting all the dirty nodes, as soon as half the nodes become dirty. In addition,
the purged tree should be perfectly balanced.

Describe an algorithm to purge an arbitrary n-node dirty binary search tree in O(n) time,
using only O(log n) additional memory. For 5 points extra credit, reduce the additional
memory requirement to O(1) without repeating an old CS373 homework solution.1

5. This problem considers a variant of the lazy binary notation introduced in the extra credit
problem from Homework 0. In a doubly lazy binary number, each bit can take one of four

values: −1, 0, 1, or 2. The only legal representation for zero is 0. To increment, we add 1
to the least significant bit, then carry the rightmost 2 (if any). To decrement, we subtract 1
from the lest significant bit, and then borrow the rightmost −1 (if any).

LazyIncrement(B[0 .. n]):

B[0]← B[0] + 1
for i← 1 to n− 1

if B[i] = 2
B[i]← 0
B[i + 1]← B[i + 1] + 1
return

LazyDecrement(B[0 .. n]):

B[0]← B[0]− 1
for i← 1 to n− 1

if B[i] = −1
B[i]← 1
B[i + 1]← B[i + 1]− 1
return

For example, here is a doubly lazy binary count from zero up to twenty and then back down
to zero. The bits are written with the least significant bit (i.e., B[0]) on the right. For suc-
cinctness, we write 1 instead of −1 and omit any leading 0’s.

0
++

−→ 1
++

−→ 10
++

−→ 11
++

−→ 20
++

−→ 101
++

−→ 110
++

−→ 111
++

−→ 120
++

−→ 201
++

−→ 210
++

−→ 1011
++

−→ 1020
++

−→ 1101
++

−→ 1110
++

−→ 1111
++

−→ 1120
++

−→ 1201
++

−→ 1210
++

−→ 2011
++

−→ 2020
--

−→ 2011
--

−→ 2010
--

−→ 2001
--

−→ 2000
--

−→ 2011
--

−→ 2110
--

−→ 2101
--

−→ 1100
--

−→ 1111
--

−→ 1010
--

−→ 1001
--

−→ 1000
--

−→ 1011
--

−→ 1110
--

−→ 1101
--

−→ 100
--

−→ 111
--

−→ 10
--

−→ 1
--

−→ 0

Prove that for any intermixed sequence of increments and decrements of a doubly lazy binary
number, starting with 0, the amortized time for each operation is O(1). Do not assume, as
in the example above, that all the increments come before all the decrements.

1
That was for a slightly different problem anyway.

2

CS 373U Homework 4 (due April 2, 2004) Spring 2004

6. [Extra credit] My wife is teaching a class2 where students work on homeworks in groups
of exactly three people, subject to the following rule: No two students may work together on

more than one homework. At the beginning of the semester, it was easy to find homework
groups, but as the course progresses, it is becoming harder and harder to find a legal grouping.
Finally, in despair, she decides to ask a computer scientist to write a program to find the
groups for her.

(a) We can formalize this homework-group-assignment problem as follows. The input is a
graph, where the vertices are the n students, and two students are joined by an edge
if they have not yet worked together. Every node in this graph has the same degree;
specifically, if there have been k homeworks so far, each student is connected to exactly
n − 1 − 2k other students. The goal is to find n/3 disjoint triangles in the graph, or
conclude that no such triangles exist. Prove (or disprove!) that this problem is NP-hard.

(b) Suppose my wife had planned ahead and assigned groups for every homework at the
beginning of the semester. How many homeworks can she assign, as a function of n,
without violating the no-one-works-together-twice rule? Prove the best upper and lower
bounds you can. To prove the upper bound, describe an algorithm that actually assigns
the groups for each homework.

2
Math 302: Non-Euclidean Geometry. Problem 1 from last week’s homework assignment: “Invert Mr. Happy.”

3

CS 373U: Combinatorial Algorithms, Spring 2004

Homework 5

Due Wednesday, April 28, 2004 at noon

Name:

Net ID: Alias:

Name:

Net ID: Alias:

Name:

Net ID: Alias:

• For each numbered problem, if you use more than one page, staple all those pages together.
Please do not staple your entire homework together. This will allow us to more
easily distribute the problems to the graders. Remember to print the name and NetID of
every member of your group, as well as the assignment and problem numbers, on every page
you submit. You do not need to turn in this cover page.

• As with previous homeworks, we strongly encourage you to begin early.

• This will be the last graded homework.

1 2 3 4 5 Total

Score

Grader

CS 373U Homework 5 (due April 28, 2004) Spring 2004

1. (a) Prove that every graph with the same number of vertices and edges has a cycle.

(b) Prove that every graph with exactly two fewer edges than vertices is disconnected.

Both proofs should be entirely self-contained. In particular, they should not use the word
“tree” or any properties of trees that you saw in CS 225 or CS 273.

2. A palindrome is a string of characters that is exactly the same as its reversal, like X, FOOF,
RADAR, or AMANAPLANACATACANALPANAMA.

(a) Describe and analyze an algorithm to compute the longest prefix of a given string that is
a palindrome. For example, the longest palindrome prefix of RADARDETECTAR is RADAR,
and the longest palindrome prefix of ALGORITHMSHOMEWORK is the single letter A.

(b) Describe and analyze an algorithm to compute a longest subsequence of a given string
that is a palindrome. For example, the longest palindrome subsequnce of RADARDETECTAR
is RAETEAR (or RADADAR or RADRDAR or RATETAR or RATCTAR), and the longest palindrome
subsequence of ALGORITHMSHOMEWORK is OMOMO (or RMHMR or OHSHO or. . .).

3. Describe and analyze an algorithm that decides, given two binary trees P and T , whether T
is a subtree of P . There is no actual data stored in the nodes—these are not binary search
trees or binary heaps. You are only trying to match the shape of the trees.

P T

P appears exactly once as a subtree of T .

4. Describe and analyze an algorithm that computes the second smallest spanning tree of a given
connected, undirected, edge-weighted graph.

5. Show that if the input graph is allowed to have negative edges (but no negative cycles),
Dijkstra’s algorithm1 runs in exponential time in the worst case. Specifically, describe how
to construct, for every integer n, a weighted directed graph Gn without negative cycles that
forces Dijkstra’s algorithm to perform Ω(2n) relaxation steps. Give your description in the
form of an algorithm! [Hint: Towers of Hanoi.]

1This refers to the version of Dijkstra’s algorithm described in Jeff’s lecture notes. The version in CLRS is always
fast, but sometimes gives incorrect results for graphs with negative edges.

1

CS 373U Homework 6 (Practice only) Spring 2004

1. Let P be a set of n points in the plane. Recall that a point p ∈ P is Pareto-optimal if no other
point is both above and to the right of p. Intuitively, the sorted sequence of Pareto-optimal
points describes a staircase with all the points in P below and to the left. Your task is to
describe some algorithms that compute this staircase.

The staircase of a set of points

(a) Describe an algorithm to compute the staircase of P in O(nh) time, where h is the
number of Pareto-optimal points.

(b) Describe a divide-and-conquer algorithm to compute the staircase of P in O(n log n)
time. [Hint: I know of at least two different ways to do this.]

⋆(c) Describe an algorithm to compute the staircase of P in O(n log h) time, where h is the
number of Pareto-optimal points. [Hint: I know of at least two different ways to do this.]

(d) Finally, suppose the points in P are already given in sorted order from left to right.
Describe an algorithm to compute the staircase of P in O(n) time. [Hint: I know of at
least two different ways to do this.]

2. Let R be a set of n rectangles in the plane.

(a) Describe and analyze a plane sweep algorithm to decide, in O(n log n) time, whether any
two rectangles in R intersect.

⋆(b) The depth of a point is the number of rectangles in R that contain that point. The
maximum depth of R is the maximum, over all points p in the plane, of the depth of p.
Describe a plane sweep algorithm to compute the maximum depth of R in O(n log n)
time.

A point with depth 4 in a set of rectangles.

(c) Describe and analyze a polynomial-time reduction from the maximum depth problem in
part (b) to MaxClique: Given a graph G, how large is the largest clique in G?

(d) MaxClique is NP-hard. So does your reduction imply that P=NP? Why or why not?

1

CS 373U Homework 6 (Practice only) Spring 2004

3. Let G be a set of n green points, called “Ghosts”, and let B be a set of n blue points, called
“ghostBusters”, so that no three points lie on a common line. Each Ghostbuster has a gun
that shoots a stream of particles in a straight line until it hits a ghost. The Ghostbusters
want to kill all of the ghosts at once, by having each Ghostbuster shoot a different ghost. It
is very important that the streams do not cross.

A non-crossing matching between 7 ghosts and 7 Ghostbusters

(a) Prove that the Ghostbusters can succeed. More formally, prove that there is a collection
of n non-intersecting line segments, each joining one point in G to one point in B. [Hint:
Think about the set of joining segments with minimum total length.]

(b) Describe and analyze an algorithm to find a line ℓ that passes through one ghost and
one Ghostbuster, so that same number of ghosts as Ghostbusters are above ℓ.

⋆(c) Describe and analyze an algorithm to find a line ℓ such that exactly half the ghosts and
exactly half the Ghostbusters are above ℓ. (Assume n is even.)

(d) Using your algorithm for part (b) or part (c) as a subroutine, describe and analyze an
algorithm to find the line segments described in part (a). (Assume n is a power of two
if necessary.)

Spengler: Don’t cross the streams.
Venkman: Why?
Spengler: It would be bad.
Venkman: I’m fuzzy on the whole good/bad thing. What do you mean “bad”?
Spengler: Try to imagine all life as you know it stopping instantaneously and every

molecule in your body exploding at the speed of light.
Stantz: Total protonic reversal!
Venkman: That’s bad. Okay. Alright, important safety tip, thanks Egon.

— Dr. Egon Spengler (Harold Ramis), Dr. Peter Venkman (Bill Murray),
and Dr. Raymond Stanz (Dan Aykroyd), Ghostbusters, 1984

2

CS 373U Homework 6 (Practice only) Spring 2004

4. The convex layers of a point set P consist of a series of nested convex polygons. The convex
layers of the empty set are empty. Otherwise, the first layer is just the convex hull of P , and
the remaining layers are the convex layers of the points that are not on the convex hull of P .

The convex layers of a set of points.

Describe and analyze an efficient algorithm to compute the convex layers of a given n-point
set. For full credit, your algorithm should run in O(n2) time.

5. Suppose we are given a set of n lines in the plane, where none of the lines passes through
the origin (0, 0) and at most two lines intersect at any point. These lines divide the plane
into several convex polygonal regions, or cells. Describe and analyze an efficient algorithm to
compute the cell containing the origin. The output should be a doubly-linked list of the cell’s
vertices. [Hint: There are literally dozens of solutions. One solution is to reduce this problem
to the convex hull problem. Every other solution looks like a convex hull algorithm.]

The cell containing the origin in an arrangement of lines.

3

CS 373 U Midterm 1 Questions (February 27, 2004) Spring 2004

Write your answers in the separate answer booklet.

1. Multiple Choice: Each question below has one of the following answers.

A: Θ(1) B: Θ(log n) C: Θ(n) D: Θ(n log n) E: Θ(n2) X: I don’t know.

For each question, write the letter that corresponds to your answer. You do not need to
justify your answers. Each correct answer earns you 1 point. Each X earns you 1

4
point.

Each incorrect answer costs you 1

2
point. Your total score will be rounded down to an

integer. Negative scores will be rounded up to zero.

(a) What is
n
∑

i=1

lg i?

(b) What is
lg n
∑

i=1

i2i?

(c) How many decimal digits are required write the nth Fibonacci number?

(d) What is the solution of the recurrence T (n) = 4T (n/8) + n log n?

(e) What is the solution of the recurrence T (n) = T (n − 3) + 5

n
?

(f) What is the solution of the recurrence T (n) = 5T
(⌈

n+13

3

⌉

+ b√nc
)

+(10n−7)2 − lg
3

n

lg lg n
?

(g) How long does it take to construct a Huffman code, given an array of n character
frequencies as input?

(h) How long does it take to sort an array of size n using quicksort?

(i) Given an unsorted array A[1 .. n], how long does it take to construct a binary search tree
for the elements of A?

(j) A train leaves Chicago at 8:00pm and travels south at 75 miles per hour. Another train
leaves New Orleans at 1:00pm and travels north at 60 miles per hour. The conductors
of both trains are playing a game of chess over the phone. After each player moves, the
other player must move before his train has traveled five miles. How many moves do the
two players make before their trains pass each other (somewhere near Memphis)?

2. Describe and analyze efficient algorithms to solve the following problems:

(a) Given a set of n integers, does it contain a pair of elements a, b such that a + b = 0?

(b) Given a set of n integers, does it contain three elements a, b, c such that a + b = c?

3. A tonian path in a graph G is a simple path in G that visits more than half of the vertices
of G. (Intuitively, a tonian path is “most of a Hamiltonian path”.) Prove that it is NP-hard
to determine whether or not a given graph contains a tonian path.

A tonian path in a 9-vertex graph.

1

CS 373 U Midterm 1 Questions (February 27, 2004) Spring 2004

4. Vankin’s Mile is a solitaire game played on an n×n square grid. The player starts by placing
a token on any square of the grid. Then on each turn, the player moves the token either
one square to the right or one square down. The game ends when player moves the token
off the edge of the board. Each square of the grid has a numerical value, which could be
positive, negative, or zero. The player starts with a score of zero; whenever the token lands
on a square, the player adds its value to his score. The object of the game is to score as many
points as possible.

For example, given the grid below, the player can score 8 − 6 + 7 − 3 + 4 = 10 points by
placing the initial token on the 8 in the second row, and then moving down, down, right,
down, down. (This is not the best possible score for these values.)

-1 7 -8 10 -5

-4 -9 8
⇓

-6 0

5 -2 -6
⇓

-6 7

-7 4 7⇒ -3
⇓

-3

7 1 -6 4
⇓

-9

Describe and analyze an algorithm to compute the maximum possible score for a game of
Vankin’s Mile, given the n × n array of values as input.

5. Suppose you are given two sorted arrays A[1 ..m] and B[1 .. n] and an integer k. Describe an
algorithm to find the kth smallest element in the union of A and B in Θ(log(m + n)) time.
For example, given the input

A[1 .. 8] = [0, 1, 6, 9, 12, 13, 18, 20] B[1 .. 5] = [2, 5, 8, 17, 19] k = 6

your algorithm should return 8. You can assume that the arrays contain no duplicates. [Hint:
What can you learn from comparing one element of A to one element of B?]

2

CS 373 U Conflict Midterm 1 Questions (February 24, 2004) Spring 2004

Write your answers in the separate answer booklet.

1. Multiple Choice: Each question below has one of the following answers.

A: Θ(1) B: Θ(log n) C: Θ(n) D: Θ(n log n) E: Θ(n2) X: I don’t know.

For each question, write the letter that corresponds to your answer. You do not need to
justify your answers. Each correct answer earns you 1 point. Each X earns you 1

4
point.

Each incorrect answer costs you 1

2
point. Your total score will be rounded down to an

integer. Negative scores will be rounded up to zero.

(a) What is
n
∑

i=1

n

i
?

(b) What is
lg n
∑

i=1

4i?

(c) How many bits are required to write n! in binary?

(d) What is the solution of the recurrence T (n) = 4T (n/2) + n log n?

(e) What is the solution of the recurrence T (n) = T (n − 3) + 5
n?

(f) What is the solution of the recurrence T (n) = 9T
(⌈

n+13
3

⌉)

+ 10n − 7
√

n − lg3 n
lg lg n?

(g) How long does it search for a value in an n-node binary search tree?

(h) Given a sorted array A[1 .. n], how long does it take to construct a binary search tree for
the elements of A?

(i) How long does it take to construct a Huffman code, given an array of n character
frequencies as input?

(j) A train leaves Chicago at 8:00pm and travels south at 75 miles per hour. Another train
leaves New Orleans at 1:00pm and travels north at 60 miles per hour. The conductors
of both trains are playing a game of chess over the phone. After each player moves, the
other player must move before his train has traveled five miles. How many moves do the
two players make before their trains pass each other (somewhere near Memphis)?

2. Describe and analyze an algorithm to find the length of the longest substring that appears
both forward and backward in an input string T [1 . n]. The forward and backward substrings
must not overlap. Here are several examples:

• Given the input string ALGORITHM, your algorithm should return 0.

• Given the input string RECURSION, your algorithm should return 1, for the substring R.

• Given the input string REDIVIDE, your algorithm should return 3, for the substring EDI.
(The forward and backward substrings must not overlap!)

• Given the input string DYNAMICPROGRAMMINGMANYTIMES, your algorithm should
return 4, for the substring YNAM.

For full credit, your algorithm should run in O(n2) time.

1

CS 373 U Conflict Midterm 1 Questions (February 24, 2004) Spring 2004

3. The median of a set of size n is its dn/2eth largest element, that is, the element that is as
close as possible to the middle of the set in sorted order. It’s quite easy to find the median of
a set in O(n log n) time—just sort the set and look in the middle—but you (correctly!) think
that you can do better.

During your lifelong quest for a faster median-finding algorithm, you meet and befriend the
Near-Middle Fairy. Given any set X, the Near-Middle Fairy can find an element m ∈ X that
is near the middle of X in O(1) time. Specifically, at least a third of the elements of X are
smaller than m, and at least a third of the elements of X are larger than m.

Describe and analyze an algorithm to find the median of a set in O(n) time if you are allowed
to ask the Near-Middle Fairy for help. [Hint: You may need the Partition subroutine from
Quicksort.]

4. SubsetSum and Partition are two closely related NP-hard problems.

• SubsetSum: Given a set X of integers and an integer k, does X have a subset whose
elements sum up to k?

• Partition: Given a set X of integers and an integer k, can X be partitioned into two
subsets whose sums are equal?

(a) Describe and analyze a polynomial-time reduction from SubsetSum to Partition.

(b) Describe and analyze a polynomial-time reduction from Partition to SubsetSum.

5. Describe and analyze efficient algorithms to solve the following problems:

(a) Given a set of n integers, does it contain a pair of elements a, b such that a + b = 0?

(b) Given a set of n integers, does it contain three elements a, b, c such that a + b + c = 0?

2

CS 373 U Final Exam Questions (May 11, 2004) Spring 2004

Write your answers in the separate answer booklet.

1. In the well-known Tower of Hanoi problem, we have three spikes, one of which has a tower
of n disks of different sizes, stacked with smaller disks on top of larger ones. In a single step,
we are allowed to take the top disk on any spike and move it to the top of another spike. We
are never allowed to place a larger disk on top of a smaller one. Our goal is to move all the
disks from one spike to another.

Hmmm.... You’ve probably known how to solve this problem since CS 125, so make it more
interesting, let’s add another constraint: The three spikes are arranged in a row, and we are
also forbidden to move a disk directly from the left spike to the right spike or vice versa. In
other words, we must move a disk either to or from the middle spike at every step.

1
2

3 4

The first four steps required to move the disks from the left spike to the right spike.

(a) [4 pts] Describe an algorithm that moves the stack of n disks from the left needle to
the right needle in as few steps as possible.

(b) [6 pts] Exactly how many steps does your algorithm take to move all n disks? A
correct Θ-bound is worth 3 points. [Hint: Set up and solve a recurrence.]

2. Consider a random walk on a path with vertices numbered 1, 2, . . . , n from left to right. At
each step, we flip a coin to decide which direction to walk, moving one step left or one step
right with equal probability. The random walk ends when we fall off one end of the path,
either by moving left from vertex 1 or by moving right from vertex n. In Midterm 2, you
were asked to prove that if we start at vertex 1, the probability that the walk ends by falling
off the left end of the path is exactly n/(n+ 1).

(a) [6 pts] Prove that if we start at vertex 1, the expected number of steps before the
random walk ends is exactly n. [Hint: Set up and solve a recurrence. Use the result
from Midterm 2.]

(b) [4 pts] Suppose we start at vertex n/2 instead. State a tight Θ-bound on the expected
length of the random walk in this case. No proof is required. [Hint: Set up and solve
a recurrence. Use part (a), even if you can’t prove it.]

3. Prove that any connected acyclic graph with n vertices has exactly n− 1 edges. Do not use
the word “tree” or any well-known properties of trees; your proof should follow entirely from
the definitions.

1

CS 373 U Final Exam Questions (May 11, 2004) Spring 2004

4. Consider a path between two vertices s and t in an undirected weighted graph G. The
bottleneck length of this path is the maximum weight of any edge in the path. The bottleneck
distance between s and t is the minimum bottleneck length of any path from s to t. (If there
are no paths from u to v, the bottleneck distance between s and t is ∞.)

s

t

1 11

7

128

5

10

9

2

3

6

4

The bottleneck distance between s and t is 5.

Describe and analyze an algorithm to compute the bottleneck distance between every pair of
vertices in an arbitrary undirected weighted graph. Assume that no two edges have the same
weight.

5. The 5Color asks, given a graph G, whether the vertices of a graph G can be colored with
five colors so that no edge has two endpoints with the same color. You already know from
class that this problem is NP-complete.

Now consider the related problem 5Color±1: Given a graphG, can we color each vertex with
an integer from the set {0, 1, 2, 3, 4}, so that for every edge, the colors of the two endpoints
differ by exactly 1 modulo 5? (For example, a vertex with color 4 can only be adjacent to
vertices colored 0 or 3.) We would like to show that 5Color±1 is NP-complete as well.

(a) [2 pts] Show that 5Color±1 is in NP.

(b) [1 pt] To prove that 5Color±1 is NP-hard (and therefore NP-complete), we must
describe a polynomial time algorithm for one of the following problems. Which one?

• Given an arbitrary graph G, compute a graph H such that 5Color(G) is true if
and only if 5Color±1(H) is true.

• Given an arbitrary graph G, compute a graph H such that 5Color±1(G) is true
if and only if 5Color(H) is true.

(c) [1 pt] Explain briefly why the following argument is not correct.

For any graph G, if 5Color±1(G) is true, then 5Color(G) is true (using the same
coloring). Therefore if we could solve 5Color±1 quickly, we could also solve 5Color
quickly. In other words, 5Color±1 is at least as hard as 5Color. We know that
5Color is NP-hard, so 5Color±1 must also be NP-hard!

(d) [6 pts] Prove that 5Color±1 is NP-hard. [Hint: Look at some small examples. Replace
the edges of G with a simple gadget, so that the resulting graph H has the desired
property from part (b).]

2

CS 373 U Final Exam Questions (May 11, 2004) Spring 2004

6. Let P be a set of points in the plane. Recall that a point p ∈ P is Pareto-optimal if no
other points in P are both above and to the right of p. Intuitively, the sequence of Pareto-
optimal points forms a staircase with all the other points in P below and to the left. The
staircase layers of P are defined recursively as follows. The empty set has no staircase
layers. Otherwise, the first staircase layer contains all the Pareto-optimal points in P , and
the remaining layers are the staircase layers of P minus the first layer.

1

1

1

1

2

2

4

3

2

3

5

2

3

4 2

A set of points with 5 staircase layers

Describe and analyze an algorithm to compute the number of staircase layers of a point set P
as quickly as possible. For example, given the points illustrated above, your algorithm would
return the number 5.

7. Consider the following puzzle played on an n × n square grid, where each square is labeled
with a positive integer. A token is placed on one of the squares. At each turn, you may
move the token left, right, up, or down; the distance you move the token must be equal to
the number on the current square. For example, if the token is on a square labeled ”3”, you
are allowed more the token three squares down, three square left, three squares up, or three
squares right. You are never allowed to move the token off the board.

5 1 2 3 4 3
3 5 4 1 4 2
2 4 1 3 4 2
3 1 4 2 3 5
2 3 1 2 3 1
1 4 3 2 4 5

5 1 2 3 4 3
3 5 4 1 4 2
2 4 1 3 4 2
3 1 4 2 3 5
2 3 1 2 3 1
1 4 3 2 4 5

A sequence of legal moves from the top left corner to the bottom right corner.

(a) [4 pts] Describe and analyze an algorithm to determine, given an n× n array of labels
and two squares s and t, whether there is a sequence of legal moves that takes the token
from s to t.

(b) [6 pts] Suppose you are only given the n×n array of labels. Describe how to preprocess
these values, so that afterwards, given any two squares s and t, you can determine in
O(1) time whether there is a sequence of legal moves from s to t.

3

CS 373 U Makeup Final Exam Questions (August 2, 2004) Spring 2004

Answer four of these seven problems; the lowest three scores will be dropped.

1. Suppose we are given an array A[1 .. n] with the special property that A[1] ≥ A[2] and
A[n − 1] ≤ A[n]. We say that an element A[x] is a local minimum if it is less than or equal
to both its neighbors, or more formally, if A[x− 1] ≥ A[x] and A[x] ≤ A[x+1]. For example,
there are five local minima in the following array:

9 7 7 2 1 3 7 5 4 7 3 3 4 8 6 9

We can obviously find a local minimum in O(n) time by scanning through the array. Describe
and analyze an algorithm that finds a local minimum in O(log n) time. [Hint: With the given
boundary conditions, the array must have at least one local minimum. Why?]

2. Consider a random walk on a path with vertices numbered 1, 2, . . . , n from left to right. At
each step, we flip a coin to decide which direction to walk, moving one step left or one step
right with equal probability. The random walk ends when we fall off one end of the path,
either by moving left from vertex 1 or by moving right from vertex n. In Midterm 2, you
were asked to prove that if we start at vertex 1, the probability that the walk ends by falling
off the left end of the path is exactly n/(n+ 1).

(a) [6 pts] Prove that if we start at vertex 1, the expected number of steps before the
random walk ends is exactly n. [Hint: Set up and solve a recurrence. Use the result
from Midterm 2.]

(b) [4 pts] Suppose we start at vertex n/2 instead. State and prove a tight Θ-bound on the
expected length of the random walk in this case. [Hint: Set up and solve a recurrence.
Use part (a), even if you can’t prove it.]

3. Prove that any connected acyclic graph with n ≥ 2 vertices has at least two vertices with
degree 1. Do not use the words “tree” of “leaf”, or any well-known properties of trees; your
proof should follow entirely from the definitions.

4. Consider the following sketch of a “reverse greedy” algorithm. The input is a connected
undirected graph G with weighted edges, represented by an adjacency list.

ReverseGreedyMST(G):

sort the edges E of G by weight
for i← 1 to |E|

e← ith heaviest edge in E
if G \ e is connected

remove e from G

(a) [4 pts] What is the worst-case running time of this algorithm? (Answering this question
will require fleshing out a few details.)

(b) [6 pts] Prove that the algorithm transforms G into its minimum spanning tree.

1

CS 373 U Makeup Final Exam Questions (August 2, 2004) Spring 2004

5. SubsetSum and Partition are two closely related NP-hard problems.

• SubsetSum: Given a set X of integers and an integer k, does X have a subset whose
elements sum up to k?

• Partition: Given a set X of integers, can X be partitioned into two subsets whose
sums are equal?

(a) [2 pts] Prove that Partition and SubsetSum are both in NP.

(b) [1 pt] Suppose we knew that SubsetSum is NP-hard, and we wanted to prove that
Partition is NP-hard. Which of the following arguments should we use?

• Given a set X and an integer k, compute a set Y such that Partition(Y) is true
if and only if SubsetSum(X, k) is true.

• Given a set X, construct a set Y and an integer k such that Partition(X) is true
if and only if SubsetSum(Y, k) is true.

(c) [3 pts] Describe and analyze a polynomial-time reduction from Partition to Subset-
Sum. (See part (b).)

(d) [4 pts] Describe and analyze a polynomial-time reduction from SubsetSum to Parti-
tion. (See part (b).)

6. Let P be a set of points in the plane. The convex layers of P are defined recursively as
follows. If P is empty, it ha no convex layers. Otherwise, the first convex layer is the convex
hull of P , and the remaining convex layers are the convex layers of P minus its convex hull.

2

1

1

1

2

2

2

3

3

2

1

1

3

1 1

4

A set of points with 4 convex layers

Describe and analyze an algorithm to compute the number of convex layers of a point set P
as quickly as possible. For example, given the points illustrated above, your algorithm would
return the number 4.

2

CS 373 U Makeup Final Exam Questions (August 2, 2004) Spring 2004

7. (a) [4 pts] Describe and analyze an algorithm to compute the size of the largest connected
component of black pixels in an n× n bitmap B[1 .. n, 1 .. n].

For example, given the bitmap below as input, your algorithm should return the num-
ber 9, because the largest conected black component (marked with white dots on the
right) contains nine pixels.

9

(b) [4 pts] Design and analyze an algorithm Blacken(i, j) that colors the pixel B[i, j] black
and returns the size of the largest black component in the bitmap. For full credit, the
amortized running time of your algorithm (starting with an all-white bitmap) must be
as small as possible.

For example, at each step in the sequence below, we blacken the pixel marked with an X.
The largest black component is marked with white dots; the number underneath shows
the correct output of the Blacken algorithm.

9 14 14 16 17

(c) [2 pts] What is the worst-case running time of your Blacken algorithm?

3

CS 373 U Midterm 2 Questions (April 6, 2004) Spring 2004

Write your answers in the separate answer booklet.

1. A data stream is an extremely long sequence of items that you can only read only once,
in order. A good example of a data stream is the sequence of packets that pass through a
router. Data stream algorithms must process each item in the stream quickly, using very little
memory; there is simply too much data to store, and it arrives too quickly for any complex
computations. Every data stream algorithm looks roughly like this:

DoSomethingInteresting(stream S):

repeat
x← next item in S
〈〈do something fast with x〉〉

until S ends
return 〈〈something〉〉

Describe and analyze an algorithm that chooses one element uniformly at random from a data
stream, without knowing the length of the stream in advance. Your algorithm should spend
O(1) time per stream element and use O(1) space (not counting the stream itself). Assume
you have a subroutine Random(n) that returns a random integer between 1 and n, each with
equal probability, given any integer n as input.

2. Consider a random walk on a path with vertices numbered 1, 2, . . . , n from left to right. We
start at vertex 1. At each step, we flip a coin to decide which direction to walk, moving one
step left or one step right with equal probability. The random walk ends when we fall off one
end of the path, either by moving left from vertex 1 or by moving right from vertex n.

Prove that the probability that the walk ends by falling off the left end of the path is exactly
n/(n + 1). [Hint: Set up a recurrence and verify that n/(n + 1) satisfies it.]

3. Consider the following algorithms for maintaining a family of disjoint sets. The Union

algorithm uses a heuristic called union by size.

MakeSet(x):

parent(x)← x
size(x)← 1

Find(x):

while x 6= parent(x)
x← parent(x)

return x

Union(x, y):

x̄← Find(x)
ȳ ← Find(y)
if size(x̄) < size(ȳ)

parent(x̄)← ȳ
size(x̄)← size(x̄) + size(ȳ)

else
parent(ȳ)← x̄
size(ȳ)← size(x̄) + size(ȳ)

Prove that if we use union by size, Find(x) runs in O(log n) time in the worst case, where
n is the size of the set containing element x.

1

CS 373 U Midterm 2 Questions (April 6, 2004) Spring 2004

4. Recall the SubsetSum problem: Given a set X of integers and an integer k, does X have a
subset whose elements sum to k?

(a) [7 pts] Describe and analyze an algorithm that solves SubsetSum in time O(nk).

(b) [3 pts] SubsetSum is NP-hard. Does part (a) imply that P=NP? Justify your answer.

5. Suppose we want to maintain a set X of numbers under the following operations:

• Insert(x): Add x to the set X.

• PrintAndDeleteBetween(a, z): Print every element x ∈ X such that a ≤ x ≤ z, in
order from smallest to largest, and then delete those elements from X.

For example, PrintAndDeleteBetween(−∞,∞) prints all the elements of X in sorted
order and then deletes everything.

(a) [6 pts] Describe and analyze a data structure that supports these two operations, each
in O(log n) amortized time, where n is the maximum number of elements in X.

(b) [2 pts] What is the running time of your Insert algorithm in the worst case?

(c) [2 pts] What is the running time of your PrintAndDeleteBetween algorithm in the
worst case?

2

CS 473G: Combinatorial Algorithms, Fall 2005

Homework 0

Due Thursday, September 1, 2005, at the beginning of class (12:30pm CDT)

Name:

Net ID: Alias:

I understand the Homework Instructions and FAQ.

• Neatly print your full name, your NetID, and an alias of your choice in the boxes above.
Grades will be listed on the course web site by alias. Please write the same alias on every
homework and exam! For privacy reasons, your alias should not resemble your name or
NetID. By providing an alias, you agree to let us list your grades; if you do not provide an
alias, your grades will not be listed. Never give us your Social Security number!

• Read the “Homework Instructions and FAQ” on the course web page, and then check the box
above. This page describes what we expect in your homework solutions—start each numbered
problem on a new sheet of paper, write your name and NetID on every page, don’t turn in
source code, analyze and prove everything, use good English and good logic, and so on—as
well as policies on grading standards, regrading, and plagiarism. See especially the course
policies regarding the magic phrases “I don’t know” and “and so on”. If you have
any questions, post them to the course newsgroup or ask during lecture.

• Don’t forget to submit this cover sheet with the rest of your homework solutions.

• This homework tests your familiarity with prerequisite material—big-Oh notation, elemen-
tary algorithms and data structures, recurrences, discrete probability, and most importantly,
induction—to help you identify gaps in your knowledge. You are responsible for filling
those gaps on your own. Chapters 1–10 of CLRS should be sufficient review, but you may
also want consult your discrete mathematics and data structures textbooks.

• Every homework will have five required problems. Most homeworks will also include one
extra-credit problem and several practice (no-credit) problems. Each numbered problem is
worth 10 points.

1 2 3 4 5 6∗ Total

Score

Grader

CS 473G Homework 0 (due September 1, 2005) Fall 2005

1. Solve the following recurrences. State tight asymptotic bounds for each function in the form
Θ(f(n)) for some recognizable function f(n). You do not need to turn in proofs (in fact, please
don’t turn in proofs), but you should do them anyway, just for practice. Assume reasonable
but nontrivial base cases. If your solution requires specific base cases, state them!

(a) A(n) = 2A(n/4) +
√
n

(b) B(n) = max
n/3<k<2n/3

(
B(k) +B(n− k) + n

)

(c) C(n) = 3C(n/3) + n/ lg n

(d) D(n) = 3D(n− 1)− 3D(n− 2) +D(n− 3)

(e) E(n) =
E(n− 1)

3E(n− 2)
[Hint: This is easy!]

(f) F (n) = F (n− 2) + 2/n

(g) G(n) = 2G
(
d(n+ 3)/4e − 5n/

√
lg n+ 6 lg lg n

)
+ 7 8
√
n− 9− lg10 n/ lg lg n+ 11lg

∗ n − 12

?(h) H(n) = 4H(n/2)− 4H(n/4) + 1 [Hint: Careful!]

(i) I(n) = I(n/2) + I(n/4) + I(n/8) + I(n/12) + I(n/24) + n

F(j) J(n) = 2
√
n · J(√n) + n

[Hint: First solve the secondary recurrence j(n) = 1 + j(
√
n).]

2. Penn and Teller agree to play the following game. Penn shuffles a standard deck1 of playing
cards so that every permutation is equally likely. Then Teller draws cards from the deck, one
at a time without replacement, until he draws the three of clubs (3♣), at which point the
remaining undrawn cards instantly burst into flames and the game is over.

The first time Teller draws a card from the deck, he gives it to Penn. From then on, until
the game ends, whenever Teller draws a card whose value is smaller than the previous card
he gave to Penn, he gives the new card to Penn. To make the rules unambiguous, they agree
on the numerical values A = 1, J = 11, Q = 12, and K = 13.

(a) What is the expected number of cards that Teller draws?

(b) What is the expected maximum value among the cards Teller gives to Penn?

(c) What is the expected minimum value among the cards Teller gives to Penn?

(d) What is the expected number of cards that Teller gives to Penn?

Full credit will be given only for exact answers (with correct proofs, of course).

1In a standard deck of 52 cards, each card has a suit in the set {♠,♥,♣,♦} and a value in the set
{A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K}, and every possible suit-value pair appears in the deck exactly once. Penn and
Teller normally use exploding razor-sharp ninja throwing cards for this trick.

1

CS 473G Homework 0 (due September 1, 2005) Fall 2005

3. A rolling die maze is a puzzle involving a standard six-sided die2 and a grid of squares. You
should imagine the grid lying on top of a table; the die always rests on and exactly covers
one square. In a single step, you can roll the die 90 degrees around one of its bottom edges,
moving it to an adjacent square one step north, south, east, or west.

Rolling a die.

Some squares in the grid may be blocked ; the die can never rest on a blocked square. Other
squares may be labeled with a number; whenever the die rests on a labeled square, the number
of pips on the top face of the die must equal the label. Squares that are neither labeled nor
marked are free. You may not roll the die off the edges of the grid. A rolling die maze is
solvable if it is possible to place a die on the lower left square and roll it to the upper right
square under these constraints.

For example, here are two rolling die mazes. Black squares are blocked. The maze on the left
can be solved by placing the die on the lower left square with 1 pip on the top face, and then
rolling it north, then north, then east, then east. The maze on the right is not solvable.

Two rolling die mazes. Only the maze on the left is solvable.

(a) Suppose the input is a two-dimensional array L[1 .. n][1 .. n], where each entry L[i][j]
stores the label of the square in the ith row and jth column, where 0 means the square
is free and −1 means the square is blocked. Describe and analyze a polynomial-time
algorithm to determine whether the given rolling die maze is solvable.

?(b) Now suppose the maze is specified implicitly by a list of labeled and blocked squares.
Specifically, suppose the input consists of an integer M , specifying the height and width
of the maze, and an array S[1 .. n], where each entry S[i] is a triple (x, y, L) indicating
that square (x, y) has label L. As in the explicit encoding, label −1 indicates that the
square is blocked; free squares are not listed in S at all. Describe and analyze an efficient
algorithm to determine whether the given rolling die maze is solvable. For full credit,
the running time of your algorithm should be polynomial in the input size n.

[Hint: You have some freedom in how to place the initial die. There are rolling die mazes
that can only be solved if the initial position is chosen correctly.]

2A standard die is a cube, where each side is labeled with a different number of dots, called pips, between 1 and 6.
The labeling is chosen so that any pair of opposite sides has a total of 7 pips.

2

CS 473G Homework 0 (due September 1, 2005) Fall 2005

4. Whenever groups of pigeons gather, they instinctively establish a pecking order. For any pair
of pigeons, one pigeon always pecks the other, driving it away from food or potential mates.
The same pair of pigeons will always chooses the same pecking order, even after years of
separation, no matter what other pigeons are around. (Like most things, revenge is a foreign
concept to pigeons.) Surprisingly, the overall pecking order in a set of pigeons can contain
cycles—for example, pigeon A pecks pigeon B, which pecks pigeon C, which pecks pigeon A.

Prove that any set of pigeons can be arranged in a row so that every pigeon pecks the pigeon
immediately to its right.

5. Scientists have recently discovered a planet, tentatively named “Ygdrasil”, which is inhabited
by a bizarre species called “vodes”. All vodes trace their ancestry back to a particular vode
named Rudy. Rudy is still quite alive, as is every one of his many descendants. Vodes
reproduce asexually, like bees; each vode has exactly one parent (except Rudy, who has no
parent). There are three different colors of vodes—cyan, magenta, and yellow. The color of
each vode is correlated exactly with the number and colors of its children, as follows:

• Each cyan vode has two children, exactly one of which is yellow.

• Each yellow vode has exactly one child, which is not yellow.

• Magenta vodes have no children.

In each of the following problems, let C, M , and Y respectively denote the number of cyan,
magenta, and yellow vodes on Ygdrasil.

(a) Prove that M = C + 1.

(b) Prove that either Y = C or Y = M .

(c) Prove that Y = M if and only if Rudy is yellow.

[Hint: Be very careful to prove that you have considered all possibilities.]

3

CS 473G Homework 0 (due September 1, 2005) Fall 2005

?6. [Extra credit]3

Lazy binary is a variant of standard binary notation for representing natural numbers where
we allow each “bit” to take on one of three values: 0, 1, or 2. Lazy binary notation is defined
inductively as follows.

• The lazy binary representation of zero is 0.

• Given the lazy binary representation of any non-negative integer n, we can construct the
lazy binary representation of n+ 1 as follows:

(a) increment the rightmost digit;

(b) if any digit is equal to 2, replace the rightmost 2 with 0 and increment the digit
immediately to its left.

Here are the first several natural numbers in lazy binary notation:

0, 1, 10, 11, 20, 101, 110, 111, 120, 201, 210, 1011, 1020, 1101, 1110, 1111, 1120, 1201,
1210, 2011, 2020, 2101, 2110, 10111, 10120, 10201, 10210, 11011, 11020, 11101, 11110,
11111, 11120, 11201, 11210, 12011, 12020, 12101, 12110, 20111, 20120, 20201, 20210, 21011,
21020, 21101, 21110, 101111, 101120, 101201, 101210, 102011, 102020, 102101, 102110, . . .

(a) Prove that in any lazy binary number, between any two 2s there is at least one 0, and
between two 0s there is at least one 2.

(b) Prove that for any natural number N , the sum of the digits of the lazy binary represen-
tation of N is exactly blg(N + 1)c.

3The “I don’t know” rule does not apply to extra credit problems. There is no such thing as “partial extra credit”.

4

CS 473G Homework 0 (due September 1, 2005) Fall 2005

Practice Problems

The remaining problems are for practice only. Please do not submit solutions. On the other hand,
feel free to discuss these problems in office hours or on the course newsgroup.

1. Sort the functions in each box from asymptotically smallest to asymptotically largest, indi-
cating ties if there are any. You do not need to turn in proofs (in fact, please don’t turn in
proofs), but you should do them anyway, just for practice.

1 lg n lg2 n
√
n n n2 2

√
n

√
2
n

2
√
lgn 2lg

√
n
√
2lgn

√
2
lgn

lg 2
√
n lg

√
2
n

lg
√
2n

√
lg 2n

lg n
√
2 lg

√
n
2

lg
√
n2

√
lg n2 lg2

√
n lg

√
2 n

√
lg2 n

√
lg n

2

To simplify your answers, write f(n)� g(n) to mean f(n) = o(g(n)), and write f(n) ≡ g(n)
to mean f(n) = Θ(g(n)). For example, the functions n2, n,

(
n
2

)
, n3 could be sorted either as

n� n2 ≡
(
n
2

)
� n3 or as n�

(
n
2

)
≡ n2 � n3.

2. Recall the standard recursive definition of the Fibonacci numbers: F0 = 0, F1 = 1, and
Fn = Fn−1 + Fn−2 for all n ≥ 2. Prove the following identities for all positive integers
n and m.

(a) Fn is even if and only if n is divisible by 3.

(b)
n∑

i=0
Fi = Fn+2 − 1

(c) F 2
n − Fn+1Fn−1 = (−1)n+1

F(d) If n is an integer multiple of m, then Fn is an integer multiple of Fm.

3. Penn and Teller have a special deck of fifty-two cards, with no face cards and nothing but
clubs—the ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, . . . , 52 of clubs. (They’re big cards.) Penn
shuffles the deck until each each of the 52! possible orderings of the cards is equally likely. He
then takes cards one at a time from the top of the deck and gives them to Teller, stopping as
soon as he gives Teller the three of clubs.

(a) On average, how many cards does Penn give Teller?

(b) On average, what is the smallest-numbered card that Penn gives Teller?
?(c) On average, what is the largest-numbered card that Penn gives Teller?

Prove that your answers are correct. (If you have to appeal to “intuition” or “common sense”,
your answers are probably wrong.) [Hint: Solve for an n-card deck, and then set n to 52.]

5

CS 473G Homework 0 (due September 1, 2005) Fall 2005

4. Algorithms and data structures were developed millions of years ago by the Martians, but
not quite in the same way as the recent development here on Earth. Intelligent life evolved
independently on Mars’ two moons, Phobos and Deimos.4 When the two races finally met on
the surface of Mars, after thousands of years of separate philosophical, cultural, religious, and
scientific development, their disagreements over the proper structure of binary search trees
led to a bloody (or more accurately, ichorous) war, ultimately leading to the destruction of
all Martian life.

A Phobian binary search tree is a full binary tree that stores a set X of search keys. The
root of the tree stores the smallest element in X. If X has more than one element, then the
left subtree stores all the elements less than some pivot value p, and the right subtree stores
everything else. Both subtrees are nonempty Phobian binary search trees. The actual pivot
value p is never stored in the tree.

A C

I

S

A

A

C

I

S TIHA B

C E I M

N

N R T Y

A Phobian binary search tree for the set {M,A,R,T, I,N,B,Y,S,E,C,H}.

(a) Describe and analyze an algorithm Find(x, T) that returns True if x is stored in the
Phobian binary search tree T , and False otherwise.

(b) A Deimoid binary search tree is almost exactly the same as its Phobian counterpart,
except that the largest element is stored at the root, and both subtrees are Deimoid
binary search trees. Describe and analyze an algorithm to transform an n-node Pho-
bian binary search tree into a Deimoid binary search tree in O(n) time, using as little
additional space as possible.

5. Tatami are rectangular mats used to tile floors in traditional Japanese houses. Exact dimen-
sions of tatami mats vary from one region of Japan to the next, but they are always twice as
long in one dimension than in the other. (In Tokyo, the standard size is 180cm×90cm.)

(a) How many different ways are there to tile a 2 × n rectangular room with 1 × 2 tatami
mats? Set up a recurrence and derive an exact closed-form solution. [Hint: The answer
involves a familiar recursive sequence.]

(b) According to tradition, tatami mats are always arranged so that four corners never meet.
How many different traditional ways are there to tile a 3×n rectangular room with 1×2
tatami mats? Set up a recurrence and derive an exact closed-form solution.

?(c) How many different traditional ways are there to tile an n× n square with 1× 2 tatami
mats? Prove your answer is correct.

4Greek for “fear” and “panic”, respectively. Doesn’t that make you feel better?

6

CS 473G: Combinatorial Algorithms, Fall 2005

Homework 1

Due Tuesday, September 13, 2005, by midnight (11:59:59pm CDT)

Name:

Net ID: Alias:

Name:

Net ID: Alias:

Name:

Net ID: Alias:

Starting with Homework 1, homeworks may be done in teams of up to three people. Each team
turns in just one solution, and every member of a team gets the same grade.

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes
above. Staple this sheet to the top of your answer to problem 1.

There are two steps required to prove NP-completeness: (1) Prove that the problem is in NP,
by describing a polynomial-time verification algorithm. (2) Prove that the problem is NP-hard,
by describing a polynomial-time reduction from some other NP-hard problem. Showing that the
reduction is correct requires proving an if-and-only-if statement; don’t forget to prove both the “if”
part and the “only if” part.

Required Problems

1. Some NP-Complete problems

(a) Show that the problem of deciding whether one graph is a subgraph of another is NP-
complete.

(b) Given a boolean circuit that embeds in the plane so that no 2 wires cross, PlanarCir-
cuitSat is the problem of determining if there is a boolean assignment to the inputs
that makes the circuit output true. Prove that PlanarCircuitSat is NP-Complete.

(c) Given a set S with 3n numbers, 3partition is the problem of determining if S can be
partitioned into n disjoint subsets, each with 3 elements, so that every subset sums to the
same value. Given a set S and a collection of three element subsets of S, X3M (or exact
3-dimensional matching) is the problem of determining whether there is a subcollection
of n disjoint triples that exactly cover S.

Describe a polynomial-time reduction from 3partition to X3M.

CS 473G Homework 1 (due September 13, 2005) Fall 2005

(d) A domino is a 1× 2 rectangle divided into two squares, each of which is labeled with an
integer.1 In a legal arrangement of dominoes, the dominoes are lined up end-to-end so
that the numbers on adjacent ends match.

A legal arrangement of dominos, where every integer between 1 and 6 appears twice

Prove that the following problem is NP-complete: Given an arbitrary collection D of
dominoes, is there a legal arrangement of a subset of D in which every integer between
1 and n appears exactly twice?

2. Prove that the following problems are all polynomial-time equivalent, that is, if any of these
problems can be solved in polynomial time, then all of them can.

• Clique: Given a graph G and an integer k, does there exist a clique of size k in G?

• FindClique: Given a graph G and an integer k, find a clique of size k in G if one exists.

• MaxClique: Given a graph G, find the size of the largest clique in the graph.

• FindMaxClique: Given a graph G, find a clique of maximum size in G.

3. Consider the following problem: Given a set of n points in the plane, find a set of line segments
connecting the points which form a closed loop and do not intersect each other.

Describe a linear time reduction from the problem of sorting n numbers to the problem
described above.

4. In graph coloring, the vertices of a graph are assigned colors so that no adjacent vertices
recieve the same color. We saw in class that determining if a graph is 3-colorable is NP-
Complete.

Suppose you are handed a magic black box that, given a graph as input, tells you in constant
time whether or not the graph is 3-colorable. Using this black box, give a polynomial-time
algorithm to 3-color a graph.

5. Suppose that Cook had proved that graph coloring was NP-complete first, instead of Cir-
cuitSAT. Using only the fact that graph coloring is NP-complete, show that CircuitSAT
is NP-complete.

1These integers are usually represented by pips, exactly like dice. On a standard domino, the number of pips on
each side is between 0 and 6; we will allow arbitrary integer labels. A standard set of dominoes has one domino for
each possible unordered pair of labels; we do not require that every possible label pair is in our set.

2

CS 473G Homework 1 (due September 13, 2005) Fall 2005

Practice Problems

1. Given an initial configuration consisting of an undirected graph G = (V,E) and a function
p : V → IN indicating an initial number of pebbles on each vertex, Pebble-Destruction
asks if there is a sequence of pebbling moves starting with the initial configuration and ending
with a single pebble on only one vertex of V . Here, a pebbling move consists of removing
two pebbles from a vertex v and adding one pebble to a neighbor of v. Prove that Pebble-
Destruction is NP-complete.

2. Consider finding the median of 5 numbers by using only comparisons. What is the exact worst
case number of comparisons needed to find the median? To prove your answer is correct, you
must exhibit both an algorithm that uses that many comparisons and a proof that there is
no faster algorithm. Do the same for 6 numbers.

3. Partition is the problem of deciding, given a set S of numbers, whether it can be partitioned
into two subsets whose sums are equal. (A partition of S is a collection of disjoint subsets
whose union is S.) SubsetSum is the problem of deciding, given a set S of numbers and a
target sum t, whether any subset of number in S sum to t.

(a) Describe a polynomial-time reduction from SubsetSum to Partition.

(b) Describe a polynomial-time reduction from Partition to SubsetSum.

4. Recall from class that the problem of deciding whether a graph can be colored with three
colors, so that no edge joins nodes of the same color, is NP-complete.

(a) Using the gadget in Figure 1(a), prove that deciding whether a planar graph can be 3-
colored is NP-complete. [Hint: Show that the gadget can be 3-colored, and then replace
any crossings in a planar embedding with the gadget appropriately.]

(a) (b)

Figure 1. (a) Gadget for planar 3-colorability. (b) Gadget for degree-4 planar 3-colorability.

(b) Using the previous result and the gadget in figure 1(b), prove that deciding whether a
planar graph with maximum degree 4 can be 3-colored is NP-complete. [Hint: Show
that you can replace any vertex with degree greater than 4 with a collection of gadgets
connected in such a way that no degree is greater than four.]

3

CS 473G Homework 1 (due September 13, 2005) Fall 2005

5. (a) Prove that if G is an undirected bipartite graph with an odd number of vertices, then
G is nonhamiltonian. Describe a polynomial-time algorithm to find a hamiltonian cycle
in an undirected bipartite graph, or establish that no such cycle exists.

(b) Describe a polynomial time algorithm to find a hamiltonian path in a directed acyclic
graph, or establish that no such path exists.

(c) Why don’t these results imply that P=NP?

6. Consider the following pairs of problems:

(a) MIN SPANNING TREE and MAX SPANNING TREE

(b) SHORTEST PATH and LONGEST PATH

(c) TRAVELING SALESMAN PROBLEM and VACATION TOUR PROBLEM (the longest
tour is sought).

(d) MIN CUT and MAX CUT (between s and t)

(e) EDGE COVER and VERTEX COVER

(f) TRANSITIVE REDUCTION and MIN EQUIVALENT DIGRAPH

(all of these seem dual or opposites, except the last, which are just two versions of minimal
representation of a graph).

Which of these pairs are polytime equivalent and which are not? Why?

7. Prove that Primality (Given n, is n prime?) is in NP ∩ co-NP. [Hint: co-NP is easy—What’s
a certificate for showing that a number is composite? For NP, consider a certificate involving
primitive roots and recursively their primitive roots. Show that this tree of primitive roots
can be verified an used to show that n is prime in polynomial time.]

8. How much wood would a woodchuck chuck if a woodchuck could chuck wood?

4

CS 473G: Combinatorial Algorithms, Fall 2005

Homework 2

Due Thursday, September 22, 2005, by midnight (11:59:59pm CDT)

Name:

Net ID: Alias:

Name:

Net ID: Alias:

Name:

Net ID: Alias:

Starting with Homework 1, homeworks may be done in teams of up to three people. Each team
turns in just one solution, and every member of a team gets the same grade.

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes above.
Staple this sheet to the top of your homework.

Required Problems

1. (a) Suppose Lois has an algorithm to compute the shortest common supersequence of two
arrays of integers in O(n) time. Describe an O(n log n)-time algorithm to compute
the longest common subsequence of two arrays of integers, using Lois’s algorithm as a
subroutine.

(b) Describe an O(n log n)-time algorithm to compute the longest increasing subsequence of
an array of integers, using Lois’s algorithm as a subroutine.

(c) Now suppose Lisa has an algorithm that can compute the longest increasing subsequence
of an array of integers in O(n) time. Describe an O(n log n)-time algorithm to compute
the longest common subsequence of two arrays A[1 .. n] and B[1 .. n] of integers, where
A[i] 6= A[j] for all i 6= j, using Lisa’s algorithm as a subroutine.1

1For extra credit, remove the assumption that the elements of A are distinct. This is probably impossible.

CS 473G Homework 2 (due September 22, 2005) Fall 2005

2. In a previous incarnation, you worked as a cashier in the lost 19th-century Antarctican colony
of Nadira, spending the better part of your day giving change to your customers. Because
paper is a very rare and valuable resource on Antarctica, cashiers were required by law to use
the fewest bills possible whenever they gave change. Thanks to the numerological predilections
of one of its founders, the currency of Nadira, called Dream Dollars, was available in the
following denominations: $1, $4, $7, $13, $28, $52, $91, $365.2

(a) The greedy change algorithm repeatedly takes the largest bill that does not exceed the
target amount. For example, to make $122 using the greedy algorithm, we first take a
$91 bill, then a $28 bill, and finally three $1 bills. Give an example where this greedy
algorithm uses more Dream Dollar bills than the minimum possible.

(b) Describe and analyze an efficient algorithm that computes, given an integer n, the min-
imum number of bills needed to make n Dream Dollars.

3. Scientists have branched out from the bizarre planet of Yggdrasil to study the vodes which
have settled on Ygdrasil’s moon, Xryltcon. All vodes on Xryltcon are descended from the first
vode to arrive there, named George. Each vode has a color, either cyan, magenta, or yellow,
but breeding patterns are not the same as on Yggdrasil; every vode, regardless of color, has
either two children (with arbitrary colors) or no children.

George and all his descendants are alive and well, and they are quite excited to meet
the scientists who wish to study them. Unsurprisingly, these vodes have had some strange
mutations in their isolation on Xryltcon. Each vode has a weirdness rating; weirder vodes are
more interesting to the visiting scientists. (Some vodes even have negative weirdness ratings;
they make other vodes more boring just by standing next to them.)

Also, Xryltconian society is strictly governed by a number of sacred cultural traditions.

• No cyan vode may be in the same room as its non-cyan children (if it has any).

• No magenta vode may be in the same room as its parent (if it has one).

• Each yellow vode must be attended at all times by its grandchildren (if it has any).

• George must be present at any gathering of more than fifty vodes.

The scientists have exactly one chance to study a group of vodes in a single room. You
are given the family tree of all the vodes on Xryltcon, along with the wierdness value of each
vode. Design and analyze an efficient algorithm to decide which vodes the scientists should
invite to maximize the sum of the wierdness values of the vodes in the room. Be careful to
respect all of the vodes’ cultural taboos.

2For more details on the history and culture of Nadira, including images of the various denominations of Dream
Dollars, see http://www.dream-dollars.com. Really.

2

CS 473G Homework 2 (due September 22, 2005) Fall 2005

4. A subtree of a (rooted, ordered) binary tree T consists of a node and all its descendants.
Design and analyze an efficient algorithm to compute the largest common subtree of two
given binary trees T1 and T2, that is, the largest subtree of T1 that is isomorphic to a subtree
in T2. The contents of the nodes are irrelevant; we are only interested in matching the
underlying combinatorial structure.

Two binary trees, with their largest common subtree emphasized

5. Let D[1 .. n] be an array of digits, each an integer between 0 and 9. An digital subsequence
of D is an sequence of positive integers composed in the usual way from disjoint substrings
of D. For example, 3, 4, 5, 6, 23, 38, 62, 64, 83, 279 is an increasing digital subsequence of the
first several digits of π:

3 , 1, 4 , 1, 5 , 9, 6 , 2, 3 , 4, 3, 8 , 4, 6, 2 , 6, 4 , 3, 3, 8, 3 , 2, 7, 9

The length of a digital subsequence is the number of integers it contains, not the number of
digits; the previous example has length 10.

Describe and analyze an efficient algorithm to compute the longest increasing digital
subsequence of D. [Hint: Be careful about your computational assumptions. How long does
it take to compare two k-digit numbers?]

?6. [Extra credit] The chromatic number of a graph G is the minimum number of colors needed
to color the nodes of G so that no pair of adjacent nodes have the same color.

(a) Describe and analyze a recursive algorithm to compute the chromatic number of an
n-vertex graph in O(4n poly(n)) time. [Hint: Catalan numbers play a role here.]

(b) Describe and analyze an algorithm to compute the chromatic number of an n-vertex
graph in O(3n poly(n)) time. [Hint: Use dynamic programming. What is (1 + x)n?]

(c) Describe and analyze an algorithm to compute the chromatic number of an n-vertex
graph in O((1 + 31/3)n poly(n)) time. [Hint: Use (but don’t regurgitate) the algorithm
in the lecture notes that counts all the maximal independent sets in an n-vertex graph
in O(3n/3) time.]

3

CS 473G Homework 2 (due September 22, 2005) Fall 2005

Practice Problems

?1. Describe an algorithm to solve 3SAT in time O(φn poly(n)), where φ = (1 +
√
5)/2. [Hint:

Prove that in each recursive call, either you have just eliminated a pure literal, or the formula
has a clause with at most two literals.]

2. Describe and analyze an algorithm to compute the longest increasing subsequence in an
n-element array of integers in O(n log n) time. [Hint: Modify the O(n2)-time algorithm
presented in class.]

3. The edit distance between two strings A and B, denoted Edit(A,B), is the minimum number
of insertions, deletions, or substitutions required to transform A into B (or vice versa). Edit
distance is sometimes also called the Levenshtein distance.

Let A = {A1, A2, . . . , Ak} be a set of strings. The edit radius of A is the minimum over
all strings X of the maximum edit distance from X to any string Ai:

EditRadius(A) = min
strings X

max
1≤i≤k

Edit(X,Ai)

A string X that achieves this minimum is called an edit center of A. A set of strings may
have several edit centers, but the edit radius is unique.

Describe an efficient algorithm to compute the edit radius of three given strings.

4. Given 5 sequences of numbers, each of length n, design and analyze an efficent algorithm to
compute the longest common subsequence among all 5 sequences.

5. Suppose we want to display a paragraph of text on a computer screen. The text consists of n
words, where the ith word is W [i] pixels wide. We want to break the paragraph into several
lines, each exactly L pixels long. Depending on which words we put on each line, we will
need to insert different amounts of white space between the words. The paragraph should
be fully justified, meaning that the first word on each line starts at its leftmost pixel, and
except for the last line, the last character on each line ends at its rightmost pixel. (Look at
the paragraph you are reading right now!) There must be at least one pixel of white space
between any two words on the same line. Thus, if a line contains words i through j, then the
amount of extra white space on that line is L− j + i−∑j

k=iW [k].

Define the slop of a paragraph layout as the sum, over all lines except the last, of the cube
of the extra white space in each line. Describe an efficient algorithm to layout the paragraph
with minimum slop, given the list W [1 .. n] of word widths as input. You can assume that
W [i] < L/2 for each i, so that each line contains at least two words.

4

CS 473G Homework 2 (due September 22, 2005) Fall 2005

6. A partition of a positive integer n is a multiset of positive integers that sum to n. Traditionally,
the elements of a partition are written in non-decreasing order, separated by + signs. For
example, the integer 7 has exactly twelve partitions:

1 + 1 + 1 + 1 + 1 + 1 + 1 3 + 1 + 1 + 1 + 1 4 + 1 + 1 + 1
2 + 1 + 1 + 1 + 1 + 1 3 + 2 + 1 + 1 4 + 2 + 1
2 + 2 + 1 + 1 + 1 3 + 2 + 2 4 + 3
2 + 2 + 2 + 1 3 + 3 + 1 7

The roughness of a partition a1 + a2 + · · ·+ ak is defined as follows:

ρ(a1 + a2 + · · ·+ ak) =

k−1∑

i=1

|ai+1 − ai − 1| + ak − 1

A smoothest partition of n is the partition of n with minimum roughness. Intuitively, the
smoothest partition is the one closest to a descending arithmetic series k + · · · + 3 + 2 + 1,
which is the only partition that has roughness 0. For example, the smoothest partitions of 7
are 4 + 2 + 1 and 3 + 2 + 1 + 1:

ρ(1 + 1 + 1 + 1 + 1 + 1 + 1) = 6 ρ(3 + 1 + 1 + 1 + 1) = 4 ρ(4 + 1 + 1 + 1) = 4
ρ(2 + 1 + 1 + 1 + 1 + 1) = 4 ρ(3 + 2 + 1 + 1) = 1 ρ(4 + 2 + 1) = 1
ρ(2 + 2 + 1 + 1 + 1) = 3 ρ(3 + 2 + 2) = 2 ρ(4 + 3) = 2
ρ(2 + 2 + 2 + 1) = 2 ρ(3 + 3 + 1) = 2 ρ(7) = 7

Describe and analyze an algorithm to compute, given a positive integer n, a smoothest
partition of n.

5

CS 473G: Combinatorial Algorithms, Fall 2005

Homework 3

Due Tuesday, October 18, 2005, at midnight

Name:

Net ID: Alias:

Name:

Net ID: Alias:

Name:

Net ID: Alias:

Starting with Homework 1, homeworks may be done in teams of up to three people. Each team
turns in just one solution, and every member of a team gets the same grade.

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes above.
Staple this sheet to the top of your homework.

1. Consider the following greedy approximation algorithm to find a vertex cover in a graph:

GreedyVertexCover(G):
C ← ∅
while G has at least one edge

v ← vertex in G with maximum degree
G← G \ v
C ← C ∪ v

return C

In class we proved that the approximation ratio of this algorithm is O(log n); your task is to
prove a matching lower bound. Specifically, prove that for any integer n, there is a graph G
with n vertices such that GreedyVertexCover(G) returns a vertex cover that is Ω(log n)
times larger than optimal.

2. Prove that for any constant k and any graph coloring algorithm A, there is a graph G such
that A(G) > OPT (G) + k, where A(G) is the number of colors generated by algorithm A
for graph G, and OPT (G) is the optimal number of colors for G.

[Note: This does not contradict the possibility of a constant factor approximation algorithm.]

CS 473G Homework 3 (due October 18, 2005) Fall 2005

3. Let R be a set of rectangles in the plane, with horizontal and vertical edges. A stabbing set
for R is a set of points S such that every rectangle in R contains at least one point in S. The
rectangle stabbing problem asks, given a set R of rectangles, for the smallest stabbing set S.

(a) Prove that the rectangle stabbing problem is NP-hard.

(b) Describe and analyze an efficient approximation algorithm for the rectangle stabbing
problem. Give bounds on the approximation ratio of your algorithm.

4. Consider the following approximation scheme for coloring a graph G.

TreeColor(G):
T ← any spanning tree of G
Color the tree T with two colors
c← 2

for each edge (u, v) ∈ G \ T
T ← T ∪ {(u, v)}
if color(u) = color(v) 〈〈Try recoloring u with an existing color〉〉

for i← 1 to c
if no neighbor of u in T has color i

color(u)← i

if color(u) = color(v) 〈〈Try recoloring v with an existing color〉〉
for i← 1 to c

if no neighbor of v in T has color i
color(v)← i

if color(u) = color(v) 〈〈Give up and use a new color〉〉
c← c+ 1
color(u)← c

return c

(a) Prove that this algorithm correctly colors any bipartite graph.

(b) Prove an upper bound C on the number of colors used by this algorithm. Give a sample
graph and run that requires C colors.

(c) Does this algorithm approximate the minimum number of colors up to a constant factor?
In other words, is there a constant α such that TreeColor(G) < α ·OPT (G) for any
graph G? Justify your answer.

2

CS 473G Homework 3 (due October 18, 2005) Fall 2005

5. In the bin packing problem, we are given a set of n items, each with weight between 0 and 1,
and we are asked to load the items into as few bins as possible, such that the total weight in
each bin is at most 1. It’s not hard to show that this problem is NP-Hard; this question asks
you to analyze a few common approximation algorithms. In each case, the input is an array
W [1 .. n] of weights, and the output is the number of bins used.

NextFit(W [1 .. n]):
b← 0
Total[0]←∞
for i← 1 to n

if Total[b] +W [i] > 1
b← b+ 1
Total[b]←W [i]

else
Total[b]← Total[b] +W [i]

return b

FirstFit(W [1 .. n]):
b← 0

for i← 1 to n
j ← 1; found← False

while j ≤ b and found = False
if Total[j] +W [i] ≤ 1

Total[j]← Total[j] +W [i]
found← True

j ← j + 1

if found = False
b← b+ 1
Total[b] = W [i]

return b

(a) Prove that NextFit uses at most twice the optimal number of bins.

(b) Prove that FirstFit uses at most twice the optimal number of bins.

(c) Prove that if the weight array W is initially sorted in decreasing order, then FirstFit
uses at most (4 · OPT + 1)/3 bins, where OPT is the optimal number of bins. The
following facts may be useful (but you need to prove them if your proof uses them):

• In the packing computed by FirstFit, every item with weight more than 1/3 is
placed in one of the first OPT bins.

• FirstFit places at most OPT − 1 items outside the first OPT bins.

3

CS 473G: Combinatorial Algorithms, Fall 2005

Homework 4

Due Thursday, October 27, 2005, at midnight

Name:

Net ID: Alias:

Name:

Net ID: Alias:

Name:

Net ID: Alias:

Name:

Net ID: Alias:

Homeworks may be done in teams of up to three people. Each team turns in just one solution;
every member of a team gets the same grade.

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes above.
Staple this sheet to the top of your solution to problem 1.

If you are an I2CS student, print “(I2CS)” next to your name. Teams that include
both on-campus and I2CS students can have up to four members. Any team containing
both on-campus and I2CS students automatically receives 3 points of extra credit.

For the rest of the semester, unless specifically stated otherwise, you
may assume that the function Random(m) returns an integer chosen
uniformly at random from the set {1, 2, , . . . ,m} in O(1) time. For
example, a fair coin flip is obtained by calling Random(2).

1. Consider the following randomized algorithm for choosing the largest bolt. Draw a bolt
uniformly at random from the set of n bolts, and draw a nut uniformly at random from the
set of n nuts. If the bolt is smaller than the nut, discard the bolt, draw a new bolt uniformly
at random from the unchosen bolts, and repeat. Otherwise, discard the nut, draw a new nut
uniformly at random from the unchosen nuts, and repeat. Stop either when every nut has
been discarded, or every bolt except the one in your hand has been discarded.

What is the exact expected number of nut-bolt tests performed by this algorithm? Prove
your answer is correct. [Hint: What is the expected number of unchosen nuts and bolts when
the algorithm terminates?]

CS 473G Homework 4 (due October 26, 2005) Fall 2005

2. A meldable priority queue stores a set of keys from some totally-ordered universe (such as the
integers) and supports the following operations:

• MakeQueue: Return a new priority queue containing the empty set.

• FindMin(Q): Return the smallest element of Q (if any).

• DeleteMin(Q): Remove the smallest element in Q (if any).

• Insert(Q, x): Insert element x into Q, if it is not already there.

• DecreaseKey(Q, x, y): Replace an element x ∈ Q with a smaller key y. (If y > x, the
operation fails.) The input is a pointer directly to the node in Q containing x.

• Delete(Q, x): Delete the element x ∈ Q. The input is a pointer directly to the node
in Q containing x.

• Meld(Q1, Q2): Return a new priority queue containing all the elements of Q1 and Q2;
this operation destroys Q1 and Q2.

A simple way to implement such a data structure is to use a heap-ordered binary tree, where
each node stores a key, along with pointers to its parent and two children. Meld can be
implemented using the following randomized algorithm:

Meld(Q1, Q2):
if Q1 is empty return Q2

if Q2 is empty return Q1

if key(Q1) > key(Q2)
swap Q1 ↔ Q2

with probability 1/2
left(Q1)←Meld(left(Q1), Q2)

else
right(Q1)←Meld(right(Q1), Q2)

return Q1

(a) Prove that for any heap-ordered binary trees Q1 and Q2 (not just those constructed by
the operations listed above), the expected running time of Meld(Q1, Q2) is O(log n),
where n = |Q1| + |Q2|. [Hint: How long is a random root-to-leaf path in an n-node
binary tree if each left/right choice is made with equal probability?]

(b) Prove that Meld(Q1, Q2) runs in O(log n) time with high probability.

(c) Show that each of the other meldable priority queue operations cab be implemented with
at most one call to Meld and O(1) additional time. (This implies that every operation
takes O(log n) time with high probability.)

2

CS 473G Homework 4 (due October 26, 2005) Fall 2005

3. Let M [1 .. n][1 .. n] be an n× n matrix in which every row and every column is sorted. Such
an array is called totally monotone. No two elements of M are equal.

(a) Describe and analyze an algorithm to solve the following problem in O(n) time: Given
indices i, j, i′, j′ as input, compute the number of elements of M smaller than M [i][j]
and larger than M [i′][j′].

(b) Describe and analyze an algorithm to solve the following problem in O(n) time: Given
indices i, j, i′, j′ as input, return an element of M chosen uniformly at random from the
elements smaller than M [i][j] and larger than M [i′][j′]. Assume the requested range is
always non-empty.

(c) Describe and analyze a randomized algorithm to compute the median element of M in
O(n log n) expected time.

4. Let X[1 .. n] be an array of n distinct real numbers, and let N [1 .. n] be an array of indices
with the following property: If X[i] is the largest element of X, then X[N [i]] is the smallest
element of X; otherwise, X[N [i]] is the smallest element of X that is larger than X[i].

For example:
i 1 2 3 4 5 6 7 8 9

X[i] 83 54 16 31 45 99 78 62 27

N [i] 6 8 9 5 2 3 1 7 4

Describe and analyze a randomized algorithm that determines whether a given number x
appears in the array X in O(

√
n) expected time. Your algorithm may not modify the

arrays X and Next.

5. A majority tree is a complete ternary tree with depth n, where every leaf is labeled either 0
or 1. The value of a leaf is its label; the value of any internal node is the majority of the
values of its three children. Consider the problem of computing the value of the root of a
majority tree, given the sequence of 3n leaf labels as input. For example, if n = 2 and the
leaves are labeled 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, the root has value 0.

A majority tree with depth n = 2.

(a) Prove that any deterministic algorithm that computes the value of the root of a majority
tree must examine every leaf. [Hint: Consider the special case n = 1. Recurse.]

(b) Describe and analyze a randomized algorithm that computes the value of the root in
worst-case expected time O(cn) for some constant c < 3. [Hint: Consider the special
case n = 1. Recurse.]

3

CS 473G Homework 4 (due October 26, 2005) Fall 2005

?6. [Extra credit] In the usual theoretical presentation of treaps, the priorities are random real
numbers chosen uniformly from the interval [0, 1], but in practice, computers only have access
to random bits. This problem asks you to analyze a modification of treaps that takes this
limitation into account.

Suppose the priority of a node v is abstractly represented as an infinite sequence πv[1 ..∞] of
random bits, which is interpreted as the rational number

priority(v) =
∞∑

i=1

πv[i] · 2−i.

However, only a finite number `v of these bits are actually known at any given time. When a
node v is first created, none of the priority bits are known: `v = 0. We generate (or ‘reveal’)
new random bits only when they are necessary to compare priorities. The following algorithm
compares the priorities of any two nodes in O(1) expected time:

LargerPriority(v, w):
for i← 1 to ∞

if i > `v
`v ← i; πv[i]← RandomBit

if i > `w
`w ← i; πw[i]← RandomBit

if πv[i] > πw[i]
return v

else if πv[i] < πw[i]
return w

Suppose we insert n items one at a time into an initially empty treap. Let L =
∑

v `v
denote the total number of random bits generated by calls to LargerPriority during these
insertions.

(a) Prove that E[L] = Θ(n).

(b) Prove that E[`v] = Θ(1) for any node v. [Hint: This is equivalent to part (a). Why?]

(c) Prove that E[`root] = Θ(log n). [Hint: Why doesn’t this contradict part (b)?]

4

CS 473G: Combinatorial Algorithms, Fall 2005

Homework 5

Due Thursday, November 17, 2005, at midnight

(because you really don’t want homework due over Thanksgiving break)

Name:

Net ID: Alias:

Name:

Net ID: Alias:

Name:

Net ID: Alias:

Name:

Net ID: Alias:

Homeworks may be done in teams of up to three people. Each team turns in just one solution;
every member of a team gets the same grade.

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes above.
Attach this sheet (or the equivalent information) to the top of your solution to problem 1.

If you are an I2CS student, print “(I2CS)” next to your name. Teams that include
both on-campus and I2CS students can have up to four members. Any team containing
both on-campus and I2CS students automatically receives 3 points of extra credit.

Problems labeled / are likely to require techniques from next week’s lectures on cuts, flows, and
matchings. See also Chapter 7 in Kleinberg and Tardos, or Chapter 26 in CLRS.

/ 1. Suppose you are asked to construct the minimum spanning tree of a graph G, but you are not
completely sure of the edge weights. Specifically, you have a conjectured weight w̃(e) for every
edge e in the graph, but you also know that up to k of these conjectured weights are wrong.
With the exception of one edge e whose true weight you know exactly, you don’t know which
edges are wrong, or even how they’re wrong; the true weights of those edges could be larger
or smaller than the conjectured weights. Given this unreliable information, it is of course
impossible to reliably construct the true minimum spanning tree of G, but it is still possible
to say something about your special edge.

Describe and analyze an efficient algorithm to determine whether a specific edge e, whose
actual weight is known, is definitely not in the minimum spanning tree of G under the stated
conditions. The input consists of the graphG, the conjectured weight function w̃ : E(G)→ IR,
the positive integer k, and the edge e.

CS 473G Homework 5 (due November 17, 2005) Fall 2005

2. Most classical minimum-spanning-tree algorithms use the notions of ‘safe’ and ‘useless’ edges
described in the lecture notes, but there is an alternate formulation. Let G be a weighted
undirected graph, where the edge weights are distinct. We say that an edge e is dangerous if
it is the longest edge in some cycle in G, and useful if it does not lie in any cycle in G.

(a) Prove that the minimum spanning tree of G contains every useful edge.

(b) Prove that the minimum spanning tree of G does not contain any dangerous edge.

(c) Describe and analyze an efficient implementation of the “anti-Kruskal” MST algorithm:
Examine the edges of G in decreasing order; if an edge is dangerous, remove it from G.
[Hint: It won’t be as fast as the algorithms you saw in class.]

/ 3. The UIUC Computer Science department has decided to build a mini-golf course in the
basement of the Siebel Center! The playing field is a closed polygon bounded by m horizontal
and vertical line segments, meeting at right angles. The course has n starting points and n
holes, in one-to-one correspondence. It is always possible hit the ball along a straight line
directly from each starting point to the corresponding hole, without touching the boundary of
the playing field. (Players are not allowed to bounce golf balls off the walls; too much glass.)
The n starting points and n holes are all at distinct locations.

Sadly, the architect’s computer crashed just as construction was about to begin. Thanks to
the herculean efforts of their sysadmins, they were able to recover the locations of the starting
points and the holes, but all information about which starting points correspond to which
holes was lost!

Describe and analyze an algorithm to compute a one-to-one correspondence between the
starting points and the holes that meets the straight-line requirement, or to report that no
such correspondence exists. The input consists of the x- and y-coordinates of the m corners
of the playing field, the n starting points, and the n holes. Assume you can determine in
constant time whether two line segments intersect, given the x- and y-coordinates of their
endpoints.

A minigolf course with five starting points (?) and five holes (◦), and a legal correspondence between them.

/ 4. Let G = (V,E) be a directed graph where the in-degree of each vertex is equal to its out-
degree. Prove or disprove the following claim: For any two vertices u and v in G, the number
of mutually edge-disjoint paths from u to v is equal to the number of mutually edge-disjoint
paths from v to u.

2

CS 473G Homework 5 (due November 17, 2005) Fall 2005

5. You are given a set of n boxes, each specified by its height, width, and depth. The order of
the dimensions is unimportant; for example, a 1× 2× 3 box is exactly the same as a 3× 1× 2
box of a 2× 1× 3 box. You can nest box A inside box B if and only if A can be rotated so
that it has strictly smaller height, strictly smaller width, and strictly smaller depth than B.

(a) Design and analyze an efficient algorithm to determine the largest sequence of boxes that
can be nested inside one another. [Hint: Model the nesting relationship as a graph.]

/ (b) Describe and analyze an efficient algorithm to nest all n boxes into as few groups as
possible, where each group consists of a nested sequence. You are not allowed to put
two boxes side-by-side inside a third box, even if they are small enough to fit.1 [Hint:
Model the nesting relationship as a different graph.]

6. [Extra credit] Prove that Ford’s generic shortest-path algorithm (described in the lecture
notes) can take exponential time in the worst case when implemented with a stack instead
of a heap (like Dijkstra) or a queue (like Bellman-Ford). Specifically, construct for every
positive integer n a weighted directed n-vertex graph Gn, such that the stack-based shortest-
path algorithm call Relax Ω(2n) times when Gn is the input graph. [Hint: Towers of Hanoi.]

1Without this restriction, the problem is NP-hard, even for one-dimensional “boxes”.

3

CS 473G: Combinatorial Algorithms, Fall 2005

Homework 6

Practice only; nothing to turn in.

1. A small airline, Ivy Air, flies between three cities: Ithaca (a small town in upstate New York),
Newark (an eyesore in beautiful New Jersey), and Boston (a yuppie town in Massachusetts).
They offer several flights but, for this problem, let us focus on the Friday afternoon flight
that departs from Ithaca, stops in Newark, and continues to Boston. There are three types
of passengers:

(a) Those traveling from Ithaca to Newark (god only knows why).

(b) Those traveling from Newark to Boston (a very good idea).

(c) Those traveling from Ithaca to Boston (it depends on who you know).

The aircraft is a small commuter plane that seats 30 passengers. The airline offers three fare
classes:

(a) Y class: full coach.

(b) B class: nonrefundable.

(c) M class: nonrefundable, 3-week advanced purchase.

Ticket prices, which are largely determined by external influences (i.e., competitors), have
been set and advertised as follows:

Ithaca-Newark Newark-Boston Ithaca-Boston

Y 300 160 360
B 220 130 280
M 100 80 140

Based on past experience, demand forecasters at Ivy Air have determined the following upper
bounds on the number of potential customers in each of the 9 possible origin-destination/fare-
class combinations:

Ithaca-Newark Newark-Boston Ithaca-Boston

Y 4 8 3
B 8 13 10
M 22 20 18

The goal is to decide how many tickets from each of the 9 origin/destination/fare-class com-
binations to sell. The constraints are that the place cannot be overbooked on either the two
legs of the flight and that the number of tickets made available cannot exceed the forecasted
maximum demand. The objective is to maximize the revenue.

Formulate this problem as a linear programming problem.

CS 473G Homework 6 Fall 2005

2. (a) Suppose we are given a directed graph G = (V,E), a length function ` : E → IR, and
a source vertex s ∈ V . Write a linear program to compute the shortest-path distance
from s to every other vertex in V . [Hint: Define a variable for each vertex representing
its distance from s. What objective function should you use?]

(b) In the minimum-cost multicommodity-flow problem, we are given a directed graph G =
(V,E), in which each edge u → v has an associated nonnegative capacity c(u → v) ≥ 0
and an associated cost α(u → v). We are given k different commodities, each specified
by a triple Ki = (si, ti, di), where si is the source node of the commodity, ti is the target
node for the commodity i, and di is the demand : the desired flow of commodity i from
si to ti. A flow for commodity i is a non-negative function fi : E → IR≥0 such that
the total flow into any vertex other than si or ti is equal to the total flow out of that
vertex. The aggregate flow F : E → IR is defined as the sum of these individual flows:
F (u → v) =

∑k
i=1 fi(u → v). The aggregate flow F (u → v) on any edge must not

exceed the capacity c(u → v). The goal is to find an aggregate flow whose total cost∑
u→v F (u → v) · α(u → v) is as small as possible. (Costs may be negative!) Express

this problem as a linear program.

3. In class we described the duality transformation only for linear programs in canonical form:

Primal (Π)

max c · x
s.t. Ax≤ b

x≥ 0

⇐⇒
Dual (q)

min y · b
s.t. yA≥ c

y≥ 0

Describe precisely how to dualize the following more general linear programming problem:

maximize
d∑

j=1

cjxj

subject to
d∑

j=1

aijxj ≤ bi for each i = 1 .. p

d∑

j=1

aijxj = bi for each i = p+ 1 .. p+ q

d∑

j=1

aijxj ≥ bi for each i = p+ q + 1 .. n

Your dual problem should have one variable for each primal constraint, and the dual of your
dual program should be precisely the original linear program.

4. (a) Model the maximum-cardinality bipartite matching problem as a linear programming
problem. The input is a bipartite graph G = (U, V ;E), where E ⊆ U ×V ; the output is
the largest matching in G. Your linear program should have one variable for every edge.

(b) Now dualize the linear program from part (a). What do the dual variables represent?
What does the objective function represent? What problem is this!?

2

CS 473G Homework 6 Fall 2005

5. An integer program is a linear program with the additional constraint that the variables must
take only integer values.

(a) Prove that deciding whether an integer program has a feasible solution is NP-complete.

(b) Prove that finding the optimal feasible solution to an integer program is NP-hard.

[Hint: Almost any NP=hard decision problem can be rephrased as an integer program. Pick
your favorite.]

6. Consider the LP formulation of the shortest path problem presented in class:

maximize dt

subject to ds = 0

dv − du ≤ `u→v for every edge u→ v

Characterize the feasible bases for this linear program in terms of the original weighted
graph. What does a simplex pivoting operation represent? What is a locally optimal (i.e.,
dual feasible) basis? What does a dual pivoting operation represent?

7. Consider the LP formulation of the maximum-flow problem presented in class:

maximize
∑

w

fs→w −
∑

u

fu→s

subject to
∑

w

fv→w −
∑

u

fu→v = 0 for every vertex v 6= s, t

fu→v ≤ cu→v for every edge u→ v

fu→v ≥ 0 for every edge u→ v

Is the Ford-Fulkerson augmenting path algorithm an instance of the simplex algorithm applied
to this linear program? Why or why not?

?8. Helly’s theorem says that for any collection of convex bodies in IRn, if every n + 1 of them
intersect, then there is a point lying in the intersection of all of them. Prove Helly’s theorem
for the special case that the convex bodies are halfspaces. [Hint: Show that if a system of
inequalities Ax ≥ b does not have a solution, then we can select n+1 of the inequalities such
that the resulting system does not have a solution. Construct a primal LP from the system
by choosing a 0 cost vector.]

3

CS 473G Midterm 1 Questions (September 27, 2005) Fall 2005

You have 90 minutes to answer four of these questions.

Write your answers in the separate answer booklet.

You may take the question sheet with you when you leave.

1. You and your eight-year-old nephew Elmo decide to play a simple card game. At the beginning
of the game, the cards are dealt face up in a long row. Each card is worth a different number
of points. After all the cards are dealt, you and Elmo take turns removing either the leftmost
or rightmost card from the row, until all the cards are gone. At each turn, you can decide
which of the two cards to take. The winner of the game is the player that has collected the
most points when the game ends.

Having never taken an algorithms class, Elmo follows the obvious greedy strategy—when it’s
his turn, Elmo always takes the card with the higher point value. Your task is to find a
strategy that will beat Elmo whenever possible. (It might seem mean to beat up on a little
kid like this, but Elmo absolutely hates it when grown-ups let him win.)

(a) Prove that you should not also use the greedy strategy. That is, show that there is a
game that you can win, but only if you do not follow the same greedy strategy as Elmo.

(b) Describe and analyze an algorithm to determine, given the initial sequence of cards, the
maximum number of points that you can collect playing against Elmo.

2. Suppose you are given a magical black box that can tell you in constant time whether or not
a given graph has a Hamiltonian cycle. Using this magic black box as a subroutine, describe
and analyze a polynomial-time algorithm to actually compute a Hamiltonian cycle in a given
graph, if one exists.

3. Let X be a set of n intervals on the real line. A subset of intervals Y ⊆ X is called a tiling
path if the intervals in Y cover the intervals in X, that is, any real value that is contained in
some interval in X is also contained in some interval in Y . The size of a tiling cover is just
the number of intervals.

Describe and analyze an algorithm to compute the smallest tiling path of X as quickly as
possible. Assume that your input consists of two arrays XL[1 .. n] and XR[1 .. n], representing
the left and right endpoints of the intervals in X.

A set of intervals. The seven shaded intervals form a tiling path.

1

CS 473G Midterm 1 Questions (September 27, 2005) Fall 2005

4. Prove that the following problem is NP-complete: Given an undirected graph, does it have a
spanning tree in which every node has degree at most 3?

A graph with a spanning tree of maximum degree 3.

5. The Tower of Hanoi puzzle, invented by Edouard Lucas in 1883, consists of three pegs and
n disks of different sizes. Initially, all n disks are on the same peg, stacked in order by size,
with the largest disk on the bottom and the smallest disk on top. In a single move, you can
move the topmost disk on any peg to another peg; however, you are never allowed to place a
larger disk on top of a smaller one. Your goal is to move all n disks to a different peg.

(a) Prove that the Tower of Hanoi puzzle can be solved in exactly 2n − 1 moves. [Hint:
You’ve probably seen this before.]

(b) Now suppose the pegs are arranged in a circle and you are only allowed to move disks
counterclockwise. How many moves do you need to solve this restricted version of the
puzzle? Give a upper bound in the form O(f(n)) for some function f(n). Prove your
upper bound is correct.

A top view of the first eight moves in a counterclockwise Towers of Hanoi solution

2

CS 473G Final Exam Questions (December 13, 2005) Fall 2005

You have 90 minutes to answer four of these questions.

Write your answers in the separate answer booklet.

You may take the question sheet with you when you leave.

Chernoff Bounds: If X is the sum of independent indicator variables and µ = E[X], then the
following inequalities hold for any δ > 0:

Pr[X < (1− δ)µ] <

(
e−δ

(1− δ)1−δ

)µ

Pr[X > (1 + δ)µ] <

(
eδ

(1 + δ)1+δ

)µ

1. Describe and analyze an algorithm that randomly shuffles an array X[1 .. n], so that each of
the n! possible permutations is equally likely, in O(n) time. (Assume that the subroutine
Random(m) returns an integer chosen uniformly at random from the set {1, 2, , . . . ,m} in
O(1) time.)

2. Let G be an undirected graph with weighted edges. A heavy Hamiltonian cycle is a cycle C
that passes through each vertex of G exactly once, such that the total weight of the edges
in C is at least half of the total weight of all edges in G. Prove that deciding whether a graph
has a heavy Hamiltonian cycle is NP-complete.

4

8

2

7

5

3

5

1

12
8

6

5
9

A heavy Hamiltonian cycle. The cycle has total weight 34; the graph has total weight 67.

3. A sequence of numbers 〈a1, a2, a3, . . . an〉 is oscillating if ai < ai+1 for every odd index i and
ai > ai+1 for every even index i. Describe and analyze an efficient algorithm to compute the
longest oscillating subsequence in a sequence of n integers.

4. This problem asks you to how to efficiently modify a maximum flow if one of the edge
capacities changes. Specifically, you are given a directed graph G = (V,E) with capacities
c : E → ZZ+, and a maximum flow F : E → ZZ from some vertex s to some other vertex t
in G. Describe and analyze efficient algorithms for the following operations:

(a) Increment(e) — Increase the capacity of edge e by 1 and update the maximum flow F .

(b) Decrement(e) — Decrease the capacity of edge e by 1 and update the maximum flow F .

Both of your algorithms should be significantly faster than recomputing the maximum flow
from scratch.

1

CS 473G Final Exam Questions (December 13, 2005) Fall 2005

5.

6. Let G = (V,E) be an undirected graph, each of whose vertices is colored either red, green,
or blue. An edge in G is boring if its endpoints have the same color, and interesting if its
endpoints have different colors. The most interesting 3-coloring is the 3-coloring with the
maximum number of interesting edges, or equivalently, with the fewest boring edges.

(a) Prove that it is NP-hard to compute the most interesting 3-coloring of a graph. [Hint:
There is a one-line proof. Use one of the NP-hard problems described in class.]

(b) Let zzz(G) denote the number of boring edges in the most interesting 3-coloring of a
graph G. Prove that it is NP-hard to approximate zzz(G) within a factor of 1010

100
.

[Hint: There is a one-line proof.]

(c) Let wow(G) denote the number of interesting edges in the most interesting 3-coloring
of G. Suppose we assign each vertex in G a random color from the set {red, green,blue}.
Prove that the expected number of interesting edges is at least 2

3wow(G).

7.

2

CS 473G Final Exam Questions (December 13, 2005) Fall 2005

You have 180 minutes to answer six of these questions.

Write your answers in the separate answer booklet.

You may take the question sheet with you when you leave.

1. Describe and analyze an algorithm that randomly shuffles an array X[1 .. n], so that each of
the n! possible permutations is equally likely, in O(n) time. (Assume that the subroutine
Random(m) returns an integer chosen uniformly at random from the set {1, 2, , . . . ,m} in
O(1) time.)

2. Let G be an undirected graph with weighted edges. A heavy Hamiltonian cycle is a cycle C
that passes through each vertex of G exactly once, such that the total weight of the edges
in C is at least half of the total weight of all edges in G. Prove that deciding whether a graph
has a heavy Hamiltonian cycle is NP-complete.

4

8

2

7

5

3

5

1

12
8

6

5
9

A heavy Hamiltonian cycle. The cycle has total weight 34; the graph has total weight 67.

3. Suppose you are given a directed graph G = (V,E) with capacities c : E → ZZ+ and a
maximum flow F : E → ZZ from some vertex s to some other vertex t in G. Describe and
analyze efficient algorithms for the following operations:

(a) Increment(e) — Increase the capacity of edge e by 1 and update the maximum flow F .

(b) Decrement(e) — Decrease the capacity of edge e by 1 and update the maximum flow F .

Both of your algorithms should be significantly faster than recomputing the maximum flow
from scratch.

4. Suppose you are given an undirected graph G and two vertices s and t in G. Two paths
from s to t are vertex-disjoint if the only vertices they have in common are s and t. Describe
and analyze an efficient algorithm to compute the maximum number of vertex-disjoint paths
between s and t in G. [Hint: Reduce this to a more familiar problem on a suitable directed
graph G′.]

1

CS 473G Final Exam Questions (December 13, 2005) Fall 2005

5. A sequence of numbers 〈a1, a2, a3, . . . an〉 is oscillating if ai < ai+1 for every odd index i and
ai > ai+1 for every even index i. For example, the sequence 〈2, 7, 1, 8, 2, 8, 1, 8, 3〉 is oscillating.
Describe and analyze an efficient algorithm to compute the longest oscillating subsequence in
a sequence of n integers.

6. Let G = (V,E) be an undirected graph, each of whose vertices is colored either red, green,
or blue. An edge in G is boring if its endpoints have the same color, and interesting if its
endpoints have different colors. The most interesting 3-coloring is the 3-coloring with the
maximum number of interesting edges, or equivalently, with the fewest boring edges. Com-
puting the most interesting 3-coloring is NP-hard, because the standard 3-coloring problem
we saw in class is a special case.

(a) Let zzz(G) denote the number of boring edges in the most interesting 3-coloring of a
graph G. Prove that it is NP-hard to approximate zzz(G) within a factor of 1010

100
.

(b) Let wow(G) denote the number of interesting edges in the most interesting 3-coloring
of G. Suppose we assign each vertex in G a random color from the set {red, green,blue}.
Prove that the expected number of interesting edges is at least 2

3wow(G).

7. It’s time for the 3rd Quasi-Annual Champaign-Urbana Ice Motorcycle Demolition Derby
Race-O-Rama and Spaghetti Bake-Off! The main event is a competition between two teams
of n motorcycles in a huge square ice-covered arena. All of the motorcycles have spiked
tires so that they can ride on the ice. Each motorcycle drags a long metal chain behind it.
Whenever a motorcycle runs over a chain, the chain gets caught in the tire spikes, and the
motorcycle crashes. Two motorcycles can also crash by running directly into each other. All
the motorcycle start simultaneously. Each motorcycle travels in a straight line at a constant
speed until it either crashes or reaches the opposite wall—no turning, no braking, no speeding
up, no slowing down. The Vicious Abscissas start at the south wall of the arena and ride
directly north (vertically). Hell’s Ordinates start at the west wall of the arena and ride directly
east (horizontally). If any motorcycle completely crosses the arena, that rider’s entire team
wins the competition.

Describe and analyze an efficient algorithm to decide which team will win, given the starting
position and speed of each motorcycle.

The Vicious Abscissas

He
ll'

s O
rd

in
at

es

2

CS 473U: Undergraduate Algorithms, Fall 2006
Homework 0

Due Friday, September 1, 2006 at noon in 3229 Siebel Center

Name:
Net ID: Alias:

I understand the Homework Instructions and FAQ.

• Neatly print your full name, your NetID, and an alias of your choice in the boxes above, and
submit this page with your solutions. We will list homework and exam grades on the course
web site by alias. For privacy reasons, your alias should not resemble your name, your NetID,
your university ID number, or (God forbid) your Social Security number. Please use the same
alias for every homework and exam.

Federal law forbids us from publishing your grades, even anonymously, without your explicit
permission. By providing an alias, you grant us permission to list your grades on the
course web site; if you do not provide an alias, your grades will not be listed.

• Please carefully read the Homework Instructions and FAQ on the course web page, and then
check the box above. This page describes what we expect in your homework solutions—start
each numbered problem on a new sheet of paper, write your name and NetID on every page,
don’t turn in source code, analyze and prove everything, use good English and good logic, and
so on—as well as policies on grading standards, regrading, and plagiarism. See especially
the policies regarding the magic phrases “I don’t know” and “and so on”. If you have
any questions, post them to the course newsgroup or ask in lecture.

• This homework tests your familiarity with prerequisite material—basic data structures, big-
Oh notation, recurrences, discrete probability, and most importantly, induction—to help you
identify gaps in your knowledge. You are responsible for filling those gaps on your own.
Each numbered problem is worth 10 points; not all subproblems have equal weight.

1 2 3 4 5 6∗ Total
Score

Grader

CS 473U Homework 0 (due September 1, 2006) Fall 2006

Please put your answers to problems 1 and 2 on the same page.

1. Sort the functions listed below from asymptotically smallest to asymptotically largest, indi-
cating ties if there are any. Do not turn in proofs, but you should probably do them anyway,
just for practice.

To simplify your answers, write f(n)� g(n) to mean f(n) = o(g(n)), and write f(n) ≡ g(n)
to mean f(n) = Θ(g(n)). For example, the functions n2, n,

(
n
2

)
, n3 could be sorted either as

n� n2 ≡
(
n
2

)
� n3 or as n�

(
n
2

)
≡ n2 � n3.

lg n lnn
√
n n n lg n n2 2n n1/n

n1+1/ lgn lg1000 n 2
√
lgn (

√
2)lgn lg

√
2 n n

√
2 (1 + 1

n)
n n1/1000

Hn H√
n 2Hn H2n Fn Fn/2 lgFn Flgn

In case you’ve forgotten:

• lg n = log2 n 6= lnn = loge n

• lg3 n = (lg n)3 6= lg lg lg n.

• The harmonic numbers: Hn =
∑n

i=1 1/i ≈ lnn+ 0.577215 . . .

• The Fibonacci numbers: F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for all n ≥ 2

2. Solve the following recurrences. State tight asymptotic bounds for each function in the form
Θ(f(n)) for some recognizable function f(n). Proofs are not required; just give us the list of
answers. Don’t turn in proofs, but you should do them anyway, just for practice. Assume
reasonable but nontrivial base cases. If your solution requires specific base cases, state
them. Extra credit will be awarded for more exact solutions.

(a) A(n) = 2A(n/4) +
√
n

(b) B(n) = 3B(n/3) + n/ lg n

(c) C(n) =
2C(n− 1)

C(n− 2)
[Hint: This is easy!]

(d) D(n) = D(n− 1) + 1/n

(e) E(n) = E(n/2) +D(n)

(f) F (n) = 4F

(⌈
n− 8

2

⌉
+

⌊
3n

logπ n

⌋)
+ 6

(
n+ 5

2

)
− 42n lg7 n+

√
13n− 6 +

lg lg n+ 1

lg n lg lg lg n

(g) G(n) = 2G(n− 1)−G(n− 2) + n

(h) H(n) = 2H(n/2)− 2H(n/4) + 2n

(i) I(n) = I(n/2) + I(n/4) + I(n/6) + I(n/12) + n

F(j) J(n) =
√
n · J(2√n) + n

[Hint: First solve the secondary recurrence j(n) = 1 + j(2
√
n).]

1

CS 473U Homework 0 (due September 1, 2006) Fall 2006

3. The nth Fibonacci binary tree Fn is defined recursively as follows:

• F1 is a single root node with no children.

• For all n ≥ 2, Fn is obtained from Fn−1 by adding a right child to every leaf and adding
a left child to every node that has only one child.

The first six Fibonacci binary trees. In each tree Fn, the subtree of gray nodes is Fn−1.

(a) Prove that the number of leaves in Fn is precisely the nth Fibonacci number: F0 = 0,
F1 = 1, and Fn = Fn−1 + Fn−2 for all n ≥ 2.

(b) How many nodes does Fn have? For full credit, give an exact, closed-form answer in
terms of Fibonacci numbers, and prove your answer is correct.

(c) Prove that the left subtree of Fn is a copy of Fn−2.

4. Describe and analyze a data structure that stores set of n records, each with a numerical key
and a numerical priority, such that the following operation can be performed quickly:

RANGETOP(a, z) : return the highest-priority record whose key is between a and z.

For example, if the (key, priority) pairs are

(3, 1), (4, 9), (9, 2), (6, 3), (5, 8), (7, 5), (1, 4), (0, 7),

then RANGETOP(2, 8) would return the record with key 4 and priority 9 (the second record in
the list).

You may assume that no two records have equal keys or equal priorities, and that no record
has a key equal to a or z. Analyze both the size of your data structure and the running time
of your RANGETOP algorithm. For full credit, your data structure must be as small as possible
and your RANGETOP algorithm must be as fast as possible.

[Hint: How would you compute the number of keys between a and z? How would you solve
the problem if you knew that a is always −∞?]

2

CS 473U Homework 0 (due September 1, 2006) Fall 2006

5. Penn and Teller agree to play the following game. Penn shuffles a standard deck1 of playing
cards so that every permutation is equally likely. Then Teller draws cards from the deck, one
at a time without replacement, until he draws the three of clubs (3♣), at which point the
remaining undrawn cards instantly burst into flames.

The first time Teller draws a card from the deck, he gives it to Penn. From then on, until
the game ends, whenever Teller draws a card whose value is smaller than the last card he
gave to Penn, he gives the new card to Penn.2 To make the rules unambiguous, they agree
beforehand that A = 1, J = 11, Q = 12, and K = 13.

(a) What is the expected number of cards that Teller draws?

(b) What is the expected maximum value among the cards Teller gives to Penn?

(c) What is the expected minimum value among the cards Teller gives to Penn?

(d) What is the expected number of cards that Teller gives to Penn?

Full credit will be given only for exact answers (with correct proofs, of course).

?6. [Extra credit]3

Lazy binary is a variant of standard binary notation for representing natural numbers where
we allow each “bit” to take on one of three values: 0, 1, or 2. Lazy binary notation is defined
inductively as follows.

• The lazy binary representation of zero is 0.

• Given the lazy binary representation of any non-negative integer n, we can construct the
lazy binary representation of n+ 1 as follows:

(a) increment the rightmost digit;
(b) if any digit is equal to 2, replace the rightmost 2 with 0 and increment the digit

immediately to its left.

Here are the first several natural numbers in lazy binary notation:

0, 1, 10, 11, 20, 101, 110, 111, 120, 201, 210, 1011, 1020, 1101, 1110, 1111, 1120,
1201, 1210, 2011, 2020, 2101, 2110, 10111, 10120, 10201, 10210, 11011, 11020, 11101,
11110, 11111, 11120, 11201, 11210, 12011, 12020, 12101, 12110, 20111, 20120, 20201,
20210, 21011, 21020, 21101, 21110, 101111, 101120, 101201, 101210, 102011, 102020,
102101, 102110, . . .

(a) Prove that in any lazy binary number, between any two 2s there is at least one 0, and
between two 0s there is at least one 2.

(b) Prove that for any natural number N , the sum of the digits of the lazy binary represen-
tation of N is exactly blg(N + 1)c.

1In a standard deck of 52 cards, each card has a suit in the set {♠,♥,♣,♦} and a value in the set
{A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K}, and every possible suit-value pair appears in the deck exactly once. Actually, to
make the game more interesting, Penn and Teller normally use razor-sharp ninja throwing cards.

2Specifically, he hurls them from the opposite side of the stage directly into the back of Penn’s right hand.
3The “I don’t know” rule does not apply to extra credit problems. There is no such thing as “partial extra credit”.

3

CS 473U: Undergraduate Algorithms, Fall 2006
Homework 1

Due Tuesday, September 12, 2006 in 3229 Siebel Center

Starting with this homework, groups of up to three students can submit or present a
single joint solution. If your group is submitting a written solution, please remember to
print the names, NetIDs, and aliases of every group member on every page. Please
remember to submit separate, individually stapled solutions to each of the problems.

1. Recall from lecture that a subsequence of a sequence A consists of a (not necessarily contigu-
ous) collection of elements of A, arranged in the same order as they appear in A. If B is a
subsequence of A, then A is a supersequence of B.

(a) Describe and analyze a simple recursive algorithm to compute, given two sequences A
and B, the length of the longest common subsequence of A and B. For example, given
the strings ALGORITHM and ALTRUISTIC, your algorithm would return 5, the length of
the longest common subsequence ALRIT.

(b) Describe and analyze a simple recursive algorithm to compute, given two sequences A
and B, the length of a shortest common supersequence of A and B. For example, given
the strings ALGORITHM and ALTRUISTIC, your algorithm would return 14, the length of
the shortest common supersequence ALGTORUISTHIMC.

(c) Let |A| denote the length of sequence A. For any two sequences A and B, let lcs(A,B)
denote the length of the longest common subsequence of A and B, and let scs(A,B)
denote the length of the shortest common supersequence of A and B.
Prove that |A|+ |B| = lcs(A,B)+ scs(A,B) for all sequences A and B. [Hint: There
is a simple non-inductive proof.]

In parts (a) and (b), we are not looking for the most efficient algorithms, but for algorithms
with simple and correct recursive structure.

2. You are a contestant on a game show, and it is your turn to compete in the following game.
You are presented with an m × n grid of boxes, each containing a unique number. It costs
$100 to open a box. Your goal is to find a box whose number is larger than its neighbors in
the grid (above, below, left, and right). If you spend less money than your opponents, you
win a week-long trip for two to Las Vegas and a year’s supply of Rice-A-RoniTM, to which you
are hopelessly addicted.

(a) Suppose m = 1. Describe an algorithm that finds a number that is bigger than any of its
neighbors. How many boxes does your algorithm open in the worst case?

(b) Suppose m = n. Describe an algorithm that finds a number that is bigger than any of its
neighbors. How many boxes does your algorithm open in the worst case?

?(c) [Extra credit]1 Prove that your solution to part (b) is asymptotically optimal.

1The “I don’t know” rule does not apply to extra credit problems. There is no such thing as “partial extra credit”.

CS 473U Homework 1 (due September 12, 2006) Fall 2006

3. A kd-tree is a rooted binary tree with three types of nodes: horizontal, vertical, and leaf. Each
vertical node has a left child and a right child; each horizontal node has a high child and a low
child. The non-leaf node types alternate: non-leaf children of vertical nodes are horizontal
and vice versa. Each non-leaf node v stores a real number pv called its pivot value. Each node
v has an associated region R(v), defined recursively as follows:

• R(root) is the entire plane.

• If v is is a horizontal node, the horizontal line y = pv partitions R(v) into R(high(v))
and R(low(v)) in the obvious way.

• If v is is a vertical node, the vertical line x = pv partitions R(v) into R(left(v)) and
R(right(v)) in the obvious way.

Thus, each region R(v) is an axis-aligned rectangle, possibly with one or more sides at infinity.
If v is a leaf, we call R(v) a leaf box.

The first four levels of a typical kd-tree.

Suppose T is a perfectly balanced kd-tree with n leaves (and thus with depth exactly lg n).

(a) Consider the horizontal line y = t, where t 6= pv for all nodes v in T . Exactly how many
leaf boxes of T does this line intersect? [Hint: The parity of the root node matters.]
Prove your answer is correct. A correct Θ(·) bound is worth significant partial credit.

(b) Describe and analyze an efficient algorithm to compute, given T and an arbitrary hori-
zontal line `, the number of leaf boxes of T that lie entirely above `.

2

CS 473U: Undergraduate Algorithms, Fall 2006
Homework 2

Due Tuesday, September 19, 2006 in 3229 Siebel Center
Remember to turn in in separate, individually stapled solutions to each of the problems.

1. You are given an m×n matrix M in which each entry is a 0 or 1. A solid block is a rectangular
subset of M in which each entry is 1. Give a correct efficent algorithm to find a solid block in
M with maximum area.

1 1 0 1 1
0 1 1 1 0
1 1 1 1 1
1 1 0 1 1

An algorithm that runs in Θ(nc) time will earn 19− 3c points.

2. You are a bus driver with a soda fountain machine in the back and a bus full of very hyper
students, who are drinking more soda as they ride along the highway. Your goal is to drop the
students off as quickly as possible. More specifically, every minute that a student is on your
bus, he drinks another ounce of soda. Your goal is to drop the students off quickly, so that in
total they drink as little soda as possible.

You know how many students will get off of the bus at each exit. Your bus begins partway
along the highway (probably not at either end), and moves at a constant rate. You must drive
the bus along the highway- however you may drive forward to one exit then backward to
an exit in the other direction, switching as often as you like (you can stop the bus, drop off
students, and turn around instantaneously).

Give an efficient algorithm to drop the students off so that they drink as little soda as possible.
The input to the algorithm should be: the bus route (a list of the exits, together with the travel
time between successive exits), the number of students you will drop off at each exit, and the
current location of your bus (you may assume it is at an exit).

3. Suppose we want to display a paragraph of text on a computer screen. The text consists of
n words, where the ith word is pi pixels wide. We want to break the paragraph into several
lines, each exactly P pixels long. Depending on which words we put on each line, we will
need to insert different amounts of white space between the words. The paragraph should be
fully justified, meaning that the first word on each line starts at its leftmost pixel, and except
for the last line, the last character on each line ends at its rightmost pixel. There must be at
least one pixel of whitespace between any two words on the same line.

Define the slop of a paragraph layout as the sum over all lines, except the last, of the cube
of the number of extra white-space pixels in each line (not counting the one pixel required
between every adjacent pair of words). Specifically, if a line contains words i through j, then
the amount of extra white space on that line is P − j + i −∑j

k=i Pk. Describe a dynamic
programming algorithm to print the paragraph with minimum slop.

CS 473U: Undergraduate Algorithms, Fall 2006
Homework 3

Due Wednesday, October 4, 2006 in 3229 Siebel Center

Remember to turn in separate, individually stapled solutions to each of the problems.

1. Consider a perfect tree of height h, where every non-leaf node has 3 children. (Therefore,
each of the 3h leaves is at distance h from the root.) Every leaf has a boolean value associated
with it - either 0 or 1. Every internal node gets the boolean value assigned to the majority
of its children. Given the values assigned to the leaves, we want to find an algorithm that
computes the value (0 or 1) of the root.

It is not hard to find a (deterministic) algorithm that looks at every leaf and correctly deter-
mines the value of the root, but this takes O(3h) time. Describe and analyze a randomized
algorithm that, on average, looks at asymptotically fewer leaves. That is, the expected num-
ber of leaves your algorithm examines should be o(3h).

2. We define a meldable heap to be a binary tree of elements, each of which has a priority, such
that the priority of any node is less than the priority of its parent. (Note that the heap does
not have to be balanced, and that the element with greatest priority is the root.) We also
define the priority of a heap to be the priority of its root.

The meld operation takes as input two (meldable) heaps and returns a single meldable heap
H that contains all the elements of both input heaps. We define meld as follows:

• Let H1 be the input heap with greater priority, and H2 the input heap with lower priority.
(That is, the priority of root(H1) is greater than the priority of root(H2).) Let HL be the
left subtree of root(H1) and HR be the right subtree of root(H1).

• We set root(H) = root(H1).

• We now flip a coin that comes up either “Left” or “Right” with equal probability.

– If it comes up “Left”, we set the left subtree of root(H) to be HL, and the right
subtree of root(H) to be meld(HR,H2) (defined recursively).

– If the coin comes up “Right”, we set the right subtree of root(H) to be HR, and the
left subtree of root(H) to be meld(HL,H2).

• As a base case, melding any heap H1 with an empty heap gives H1.

(a) Analyze the expected running time of meld(Ha,Hb) if Ha is a (meldable) heap with n
elements, and Hb is a (meldable) heap with m elements.

(b) Describe how to perform each of the following operations using only melds, and give
the running time of each.

• DeleteMax(H), which deletes the element with greatest priority.
• Insert(H,x), which inserts the element x into the heap H.
• Delete(H,x), which - given a pointer to element x in heap H - returns the heap with

x deleted.

CS 473U Homework 3 (due October 4, 2006) Fall 2006

3. Randomized Selection. Given an (unsorted) array of n distinct elements and an integer k,
SELECTION is the problem of finding the kth smallest element in the array. One easy solution
is to sort the array in increasing order, and then look up the kth entry, but this takes Θ(n log n)
time. The randomized algorithm below attempts to do better, at least on average.

QuickSelect(Array A, n, k)
pivot← Random(1, n)
S ← {x | x ∈ A, x < A[pivot]}
s← |S|
L← {x | x ∈ A, x > A[pivot]}
if (k = s+ 1)

return A[pivot]
else if (k ≤ s)

return QuickSelect(S, s, k)
else

return QuickSelect(L, n− (s+ 1), k − (s+ 1))

Here we assume that Random(a, b) returns an integer chosen uniformly at random from a to b
(inclusive of a and b). The pivot position is randomly chosen; S is the set of elements smaller
than the pivot element, and L the set of elements larger than the pivot. The sets S and L are
found by comparing every other element of A to the pivot. We partition the elements into
these two ‘halves’, and recurse on the appropriate half.

(a) Write a recurrence relation for the expected running time of QuickSelect.

(b) Given any two elements x, y ∈ A, what is the probability that x and y will be compared?

(c) Either from part (a) or part (b), find the expected running time of QuickSelect.

4. [Extra Credit]: In the previous problem, we found a Θ(n) algorithm for selecting the kth
smallest element, but the constant hidden in the Θ(·) notation is somewhat large. It is easy
to find the smallest element using at most n comparisons; we would like to be able to extend
this to larger k. Can you find a randomized algorithm that uses n+Θ(k log k log n)1 expected
comparisons? (Note that there is no constant multiplying the n.)

Hint: While scanning through a random permutation of n elements, how many times does
the smallest element seen so far change? (See HBS 0.) How many times does the kth smallest
element so far change?

1There is an algorithm that uses n+Θ(k log(n/k) comparisons, but this is even harder.

2

CS 473U: Undergraduate Algorithms, Fall 2006
Homework 4

Due Tuesday, October 10, 2006 in 3229 Siebel Center

Remember to submit separate, individually stapled solutions to each of the problems.

1. Chicago has many tall buildings, but only some of them have a clear view of Lake Michigan.
Suppose we are given an array A[1..n] that stores the height of n buildings on a city block,
indexed from west to east. Building i has a good view of Lake Michigan if every building to
the east of i is shorter than i. We present an algorithm that computes which buildings have
a good view of Lake Michigan. Use the taxation method of amortized analysis to bound the
amortized time spent in each iteration of the for loop. What is the total runtime?

GOODVIEW(A[1..n]):
Initialize a stack S
for i = 1 to n

while (S not empty and A[i] ≥ A[S.top])
POP(S)

PUSH(S, i)
return S

2. Design and analyze a simple data structure that maintains a list of integers and supports the
following operations.

(a) CREATE(): creates and returns a new list L

(b) PUSH(L, x): appends x to the end of L

(c) POP(L): deletes the last entry of L and returns it

(d) LOOKUP(L, k): returns the kth entry of L

Your solution may use these primitive data structures: arrays, balanced binary search trees,
heaps, queues, single or doubly linked lists, and stacks. If your algorithm uses anything
fancier, you must give an explicit implementation. Your data structure should support all
operations in amortized constant time. In addition, your data structure should support
LOOKUP() in worst-case O(1) time. At all times, your data structure should use space which
is linear in the number of objects it stores.

3. Consider a computer game in which players must navigate through a field of landmines,
which are represented as points in the plane. The computer creates new landmines which
the players must avoid. A player may ask the computer how many landmines are contained
in any simple polygonal region; it is your job to design an algorithm which answers these
questions efficiently.

You have access to an efficient static data structure which supports the following operations.

CS 473U Homework 4 (due October 10, 2006) Fall 2006

• CREATES({p1, p2, . . . , pn}): creates a new data structure S containing the points {p1, . . . , pn}.
It has a worst-case running time of T (n). Assume that T (n)/n ≥ T (n − 1)/(n − 1), so
that the average processing time of elements does not decrease as n grows.

• DUMPS(S): destroys S and returns the set of points that S stored. It has a worst-case
running time of O(n), where n is the number of points in S.

• QUERYS(S,R): returns the number of points in S that are contained in the region R. It
has a worst-case running time of Q(n), where n is the number of points stored in S.

Unfortunately, the data structure does not support point insertion, which is required in your
application. Using the given static data structure, design and analyze a dynamic data struc-
ture that supports the following operations.

(a) CREATED(): creates a new data structure D containing no points. It should have a
worst-case constant running time.

(b) INSERTD(D, p): inserts p into D. It should run in amortized O(log n) · T (n)/n time.

(c) QUERYD(D,R): returns the number of points in D that are contained in the region R. It
should have a worst-case running time of O(log n) ·Q(n).

2

CS 473U: Undergraduate Algorithms, Fall 2006
Homework 5

Due Tuesday, October 24, 2006 in 3229 Siebel Center
Remember to turn in in separate, individually stapled solutions to each of the problems.

1. Makefiles:
In order to facilitate recompiling programs from multiple source files when only a small
number of files have been updated, there is a UNIX utility called ‘make’ that only recompiles
those files that were changed after the most recent compilation, and any intermediate files in
the compilation that depend on those that were changed. A Makefile is typically composed of
a list of source files that must be compiled. Each of these source files is dependent on some
of the other files that must be compiled. Thus a source file must be recompiled if a file on
which it depends is changed.

Assuming you have a list of which files have been recently changed, as well as a list for
each source file of the files on which it depends, design and analyze an efficient algorithm to
recompile only the necessary files. DO NOT worry about the details of parsing a Makefile.

2. Consider a graph G, with n vertices. Show that if any two of the following properties hold
for G, then the third property must also hold.

• G is connected.

• G is acyclic.

• G has n− 1 edges.

3. The weight of a spanning tree is the sum of the weights on the edges of the tree. Given a
graph, G, describe an efficient algorithm (the most efficient one you can) to find the k lightest
(with least weight) spanning trees of G.

Analyze the running time of your algorithm. Be sure to prove your algorithm is correct.

CS 473U: Undergraduate Algorithms, Fall 2006
Homework 6

Due Wednesday, November 8, 2006 in 3229 Siebel Center

Remember to turn in separate, individually stapled solutions to each of the problems.

1. Dijkstra’s algorithm can be used to determine shortest paths on graphs with some negative
edge weights (as long as there are no negative cycles), but the worst-case running time is
much worse than the O(E+V log V) it takes when the edge weights are all positive. Construct
an infinite family of graphs - with negative edge weights - for which the asymptotic running
time of Dijkstra’s algorithm is Ω(2|V |).

2. It’s a cold and rainy night, and you have to get home from Siebel Center. Your car has broken
down, and it’s too windy to walk, which means you have to take a bus. To make matters
worse, there is no bus that goes directly from Siebel Center to your apartment, so you have
to change buses some number of times on your way home. Since it’s cold outside, you want
to spend as little time as possible waiting in bus shelters.

From a computer in Siebel Center, you can access an online copy of the MTD bus schedule,
which lists bus routes and the arrival time of every bus at each stop on its route. Describe an
algorithm which, given the schedule, finds a way for you to get home that minimizes the time
you spend at bus shelters (the amount of time you spend on the bus doesn’t matter). Since
Siebel Center is warm and the nearest bus stop is right outside, you can assume that you wait
inside Siebel until the first bus you want to take arrives outside. Analyze the efficiency of
your algorithm and prove that it is correct.

3. The Floyd-Warshall all-pairs shortest path algorithm computes, for each u, v ∈ V , the shortest
path from u to v. However, if the graph has negative cycles, the algorithm fails. Describe a
modified version of the algorithm (with the same asymptotic time complexity) that correctly
returns shortest-path distances, even if the graph contains negative cycles. That is, if there is
a path from u to some negative cycle, and a path from that cycle to v, the algorithm should
output dist(u, v) = −∞. For any other pair u, v, the algorithm should output the length of
the shortest directed path from u to v.

CS 473U: Undergraduate Algorithms, Fall 2006
Homework 6

Due at 4 p.m. on Friday, November 17, 2006 in 3229 Siebel Center

Remember to turn in separate, individually stapled solutions to each of the problems.

1. Given an undirected graph G(V,E), with three vertices u, v, w ∈ V , you want to know
whether there exists a path from u to w via v. (That is, the path from u to w must use v
as an intermediate vertex.) Describe an efficient algorithm to solve this problem.

2. Ad-hoc Networks, made up of cheap, low-powered wireless devices, are often used on battle-
fields, in regions that have recently suffered from natural disasters, and in other situtations
where people might want to monitor conditions in hard-to-reach areas. The idea is that a
large collection of the wireless devices could be dropped into the area from an airplane (for
instance), and then they could be configured into an efficiently functioning network.

Since the devices are cheap and low-powered, they frequently fail, and we would like our
networks to be reliable. If a device detects that it is likely to fail, it should transmit the
information it has to some other device (called a backup) within range of it. The range is
limited; we assume that there is a distance d such that two devices can communicate if and
only if they are within distance d of each other. To improve reliability, we don’t want a device
to transmit information to a neighbor that has already failed, and so we require each device v
to have at least k backup devices that it could potentially contact, all of which must be within
d meters of it. We call this the backup set of v. Also, we do not want any device to be in the
backup set of too many other devices; if it were, and it failed, a large fraction of our network
would be affected.

The input to our problem is a collection of n devices, and for each pair u, v of devices, the
distance between u and v. We are also given the distance d that determines the range of a
device, and parameters b and k. Describe an algorithm that determines if, for each device, we
can find a backup set of size k, while also requiring that no device appears in the backup set
of more than b other devices.

CS 473U Homework 7 (due November 17, 2006) Fall 2006

3. UPDATED: Given a piece of text T and a pattern P (the ‘search string’), an algorithm for the
string-matching problem either finds the first occurrence of P in T , or reports that there is
none. Modify the Knuth-Morris-Pratt (KMP) algorithm so that it solves the string-matching
problem, even if the pattern contains the wildcards ‘?’ and ‘*’. Here, ’?’ represents any single
character of the text, and ‘*’ represents any substring of the text (including the empty sub-
string). For example, the pattern “A?B*?A” matches the text “ABACBCABBCCACBA” starting
in position 3 (in three different ways), and position 7 (in two ways). For this input, your
algorithm would need to return ‘3’.

UPDATE: You may assume that the pattern you are trying to match containst at most 3 blocks
of question marks; the usage of ‘*’ wildcards is stll unrestricted. Here, a block refers to a
string of consecutive ‘?’s in the pattern. For example, AAB??ACA???????BB contains 2 blocks
of question marks; A?B?C?A?C contains 4 blocks of question marks.

4. In the two-dimensional pattern-matching problem, you are given an m × n matrix M and a
p × q pattern P . You wish to find all positions (i, j) in M such that the the submatrix of M
between rows i and i+ p− 1 and between columns j and j + q− 1 is identical to P . (That is,
the p × q sub-matrix of M below and to the right of position (i, j) should be identical to P .)
Describe and analyze an efficient algorithm to solve this problem.1

1Note that the normal string-matching problem is the special case of the 2-dimensional problem where m = p = 1.

2

CS 473U: Undergraduate Algorithms, Fall 2006
Homework 8

Due Wednesday, December 6, 2006 in 3229 Siebel Center

Remember to submit separate, individually stapled solutions to each of the problems.

1. Given an array A[1..n] of n ≥ 2 distinct integers, we wish to find the second largest element
using as few comparisons as possible.

(a) Give an algorithm which finds the second largest element and uses at most n+dlg ne−2
comparisons in the worst case.

?(b) Prove that every algorithm which finds the second largest element uses at least n +
dlg ne − 2 comparisons in the worst case.

2. Let R be a set of rectangles in the plane. For each point p in the plane, we say that the
rectangle depth of p is the number of rectangles in R that contain p.

(a) (Step 1: Algorithm Design) Design and analyze a polynomial-time algorithm which,
given R, computes the maximum rectangle depth.

(b) (Step 2: ???) Describe and analyze a polynomial-time reduction from the maximum
rectangle depth problem to the maximum clique problem.

(c) (Step 3: Profit!) In 2000, the Clay Mathematics Institute described the Millennium
Problems: seven challenging open problems which are central to ongoing mathematical
research. The Clay Institute established seven prizes, each worth one million dollars, to
be awarded to anyone who solves a Millennium problem. One of these problems is the
P = NP question. In (a), we developed a polynomial-time algorithm for the maximum
rectangle depth problem. In (b), we found a reduction from this problem to an NP-
complete problem. We know from class that if we find a polynomial-time algorithm for
any NP-complete problem, then we have shown P = NP. Why hasn’t Jeff used (a) and
(b) to show P = NP and become a millionaire?

3. Let G be a complete graph with integer edge weights. If C is a cycle in G, we say that the cost
of C is the sum of the weights of edges in C. Given G, the traveling salesman problem (TSP)
asks us to compute a Hamiltonian cycle of minimum cost. Given G, the traveling salesman
cost problem (TSCP) asks us to compute the cost of a minimum cost Hamiltonian cycle. Given
G and an integer k, the traveling salesman decision problem (TSDP) asks us to decide if there
is a Hamiltonian cycle in G of cost at most k.

(a) Describe and analyze a polynomial-time reduction from TSP to TSCP.

(b) Describe and analyze a polynomial-time reduction from TSCP to TSDP.

(c) Describe and analyze a polynomial-time reduction from TSDP to TSP.

CS 473U Homework 8 Fall 2006

(d) What can you conclude about the relative computational difficulty of TSP, TSCP, and
TSDP?

4. Let G be a graph. A set S of vertices of G is a dominating set if every vertex in G is either in
S or adjacent to a vertex in S. Show that, given G and an integer k, deciding if G contains a
dominating set of size at most k is NP-complete.

2

CS473ug Head Banging Session #1 8/29/06 - 8/31/06

1. Probability

(a) n people have checked their hats with a hat clerk. The clerk is somewhat absent-minded and
returns the hats uniformly at random (with no regard for whether each hat is returned to its
owner). On average, how many people will get back their own hats?

(b) Let S be a uniformly random permutation of {1, 2, . . . , n− 1, n}. As we move from the left to the
right of the permutation, let X denote the smallest number seen so far. On average, how many
different values will X take?

2. A tournament is a directed graph where each pair of distinct vertices u, v has either the edge uv or
the edge vu (but not both). A Hamiltonian path is a (directed) path that visits each vertex of the
(di)graph. Prove that every tournament has a Hamiltonian path.

3. Describe and analyze a data structure that stores a set of n records, each with a numerical key, such
that the following operation can be performed quickly:

Foo(a): return the sum of the records with keys at least as large as a.

For example, if the keys are:

3 4 9 6 5 8 7 1 0

then Foo(2) would return 42, since 3, 4, 5, 6, 7, 8, 9 are all larger than 2 and 3+4+5+6+7+8+9 = 42.

You may assume that no two records have equal keys, and that no record has a key equal to a. Analyze
both the size of your data structure and the running time of your Foo algorithm. Your data structure
must be as small as possible and your Foo algorithm must be as fast as possible.

1

CS473ug Head Banging Session #2 9/05/06 - 9/07/06

1. The Acme Company is planning a company party. In planning the party, each employee is assigned a
fun value (a positive real number). The goal of the party planners is to maximize the total fun value
(sum of the individual fun values) of the employees invited to the party. However, the planners are not
allowed to invite both an employee and his direct boss. Given a tree containing the boss/underling
structure of Acme, find the invitation list with the highest allowable fun value.

2. An inversion in an array A is a pair i, j such that i < j and A[i] > A[j]. (In an n-element array, the
number of inversions is between 0 and

(
n
2

)
.)

Find an efficient algorithm to count the number of inversions in an n-element array.

3. A tromino is a geometric shape made from three squares joined along complete edges. There are only
two possible trominoes: the three component squares may be joined in a line or an L-shape.

(a) Show that it is possible to cover all but one square of a 64 x 64 checkerboard using L-shape
trominoes. (In your covering, each tromino should cover three squares and no square should be
covered more than once.)

(b) Show that you can leave any single square uncovered.

(c) Can you cover all but one square of a 64 x 64 checkerboard using line trominoes? If so, which
squares can you leave uncovered?

1

CS473ug Head Banging Session #2 9/12/06 - 9/14/06

1. Moving on a Checkerboard

Suppose that you are given an n×n checkerboard and a checker. You must move the checker from the
bottom edge of the board to the top edge of the board according to the following rule. At each step
you may move the checker to one of three squares:

1) the square immediately above

2) the square that is one up and one to the left (but only if the checker is not already in the leftmost
column)

3) the square that is one up and one to the right (but only if the checker is not already in the
rightmost column)

Each time you move from square x to square y, you receive p(x, y) dollars. You are given a list of the
values p(x, y) for each pair (x, y) for which a move from x to y is legal. Do not assume that p(x, y) is
positive.

Give an algorithm that figures out the set of moves that will move the checker from somewhere along
the bottom edge to somewhere along the top edge while gathering as many dollars as possible. You
algorithm is free to pick any square along the bottom edge as a starting point and any square along the
top edge as a destination in order to maximize the number of dollars gathered along the way. What is
the running time of your algorithm?

2. Maximizing Profit

You are given lists of values h1, h2, . . . , hk and l1, l2, . . . , lk. For each i you can choose ji = hi, ji = li,
or ji = 0; the only catch is that if ji = hi then ji−1 must be 0 (except for i = 1). Your goal is to

maximize
∑k

i=1 ji.

Give an efficient algorithm that returns the maximum possible value of
∑k

i=1 ji.

3. Maximum alternating subsequence

An alternating sequence is a sequence a1, a2, . . . such that no three consecutive terms of the sequence
satisfy ai > ai+1 > ai+2 or ai < ai+1 < ai+2.

Given a sequence, efficiently find the longest alternating subsequence it contains. What is the running
time of your algorithm?

1

CS473ug Head Banging Session #3 9/19/06 - 9/21/06

1. Championship Showdown

What excitement! The Champaign Spinners and the Urbana Dreamweavers have advanced to meet
each other in the World Series of Basketweaving! The World Champions will be decided by a best
of 2n − 1 series of head-to-head weaving matches, and the first to win n matches will take home the
coveted Golden Basket (for example, a best-of-7 series requires four match wins, but we will keep the
generalized case). We know that for any given match there is a constant probability p that Champaign
will win, and a subsequent probability q = 1− p that Urbana will win.

Let P (i, j) be the probability that Champaign will win the series given that they still need i more
victories, whereas Urbana needs j more victories for the championship. P (0, j) = 1, 1 ≤ j ≤ n,
because Champaign needs no more victories to win. P (i, 0) = 0, 1 ≤ i ≤ n, as Champaign cannot
possibly win if Urbana already has. P (0, 0) is meaningless. Champaign wins any particular match
with probability p and loses with probability q, so

P (i, j) = p · P (i− 1, j) + q · P (i, j − 1)

for any i ≥ 1 and j ≥ 1.

Create and analyze an O(n2)-time dynamic programming algorithm that takes the parameters n, p,
and q and returns the probability that Champaign will win the series (that is, calculate P (n, n)).

2. Making Change

Suppose you are a simple shopkeeper living in a country with n different types of coins, with values
1 = c[1] < c[2] < · · · < c[n]. (In the U.S., for example, n = 6 and the values are 1, 5, 10, 25, 50, and
100 cents.) Your beloved benevolent dictator, El Generalissimo, has decreed that whenever you give a
customer change, you must use the smallest possible number of coins, so as not to wear out the image
of El Generalissimo lovingly engraved on each coin by servants of the Royal Treasury.

Describe and analyze a dynamic programming algorithm to determine, given a target amount A and
a sorted array c[1..n] of coin values, the smallest number of coins needed to make A cents in change.
You can assume that c[1] = 1, so that it is possible to make change for any amount A.

3. Knapsack

You are a thief, who is trying to choose the best collection of treasure (some subset of the n treasures,
numbered 1 through n) to steal. The weight of item i is wi ∈ IN and the profit is pi ∈ IR. Let C ∈ IN
be the maximum weight that your knapsack can hold. Your goal is to choose a subset of elements
S ⊆ {1, 2, . . . , n} that maximizes your total profit P (S) =

∑
i∈S pi, subject to the constraint that the

sum of the weights W (S) =
∑

i∈S wi is not more than C.

Give an algorithm that runs in time O(Cn).

1

CS473ug Head Banging Session #4 9/27/06 - 9/28/06

1. Randomized Edge Cuts

We will randomly partition the vertex set of a graph G into two sets S and T . The algorithm is to flip
a coin for each vertex and with probability 1/2, put it in S; otherwise put it in T .

(a) Show that the expected number of edges with one endpoint in S and the other endpoint in T is
exactly half the edges in G.

(b) Now say the edges have weights. What can you say about the sum of the weights of the edges
with one endpoint in S and the other endpoint in T?

2. Skip Lists

A skip list is built in layers. The bottom layer is an ordinary sorted linked list. Each higher layer acts
as an “express lane” for the lists below, where an element in layer i appears in layer i + 1 with some
fixed probability p.

1

1-----4---6

1---3-4---6-----9

1-2-3-4-5-6-7-8-9-10

(a) What is the probability a node reaches height h.

(b) What is the probability any node is above c log n (for some fixed value of c)?
Compute the value explicitly when p = 1/2 and c = 4.

(c) To search for an entry x, scan the top layer until you find the last entry y that is less than or
equal to x. If y < x, drop down one layer and in this new layer (beginning at y) find the last
entry that is less than or equal to x. Repeat this process (dropping down a layer, then finding the
last entry less than or equal to x) until you either find x or reach the bottom layer and confirm
that x is not in the skip list. What is the expected search time?

(d) Describe an efficient method for insertion. What is the expected insertion time?

3. Clock Solitaire

In a standard deck of 52 cards, put 4 face-down in each of the 12 ‘hour’ positions around a clock, and
4 face-down in a pile in the center. Turn up a card from the center, and look at the number on it.
If it’s number x, place the card face-up next to the face-down pile for x, and turn up the next card
in the face-down pile for x (that is, the face-down pile corresponding to hour x). You win if, for each
Ace ≤ x ≤ Queen, all four cards of value x are turned face-up before all four Kings (the center cards)
are turned face-up.

What is the probability that you win a game of Clock Solitaire?

1

CS473ug Head Banging Session #5 10/03/06 - 10/05/06

1. Simulating Queues with Stacks

A queue is a first-in-first-out data structure. It supports two operations push and pop. Push adds a
new item to the back of the queue, while pop removes the first item from the front of the queue. A
stack is a last-in-first-out data structure. It also supports push and pop. As with a queue, push adds
a new item to the back of the queue. However, pop removes the last item from the back of the queue
(the one most recently added).

Show how you can simulate a queue by using two stacks. Any sequence of pushes and pops should run
in amortized constant time.

2. Multistacks

A multistack consists of an infinite series of stacks S0, S1, S2, . . . , where the ith stack Si can hold up
to 3i elements. Whenever a user attempts to push an element onto any full stack Si, we first move
all the elements in Si to stack Si+1 to make room. But if Si+1 is already full, we first move all its
members to Si+2, and so on. To clarify, a user can only push elements onto S0. All other pushes and
pops happen in order to make space to push onto S0. Moving a single element from one stack to the
next takes O(1) time.

Figure 1. Making room for one new element in a multistack.

(a) In the worst case, how long does it take to push one more element onto a multistack containing
n elements?

(b) Prove that the amortized cost of a push operation is O(log n), where n is the maximum number
of elements in the multistack.

3. Powerhungry function costs

A sequence of n operations is performed on a data structure. The ith operation costs i if i is an exact
power of 2, and 1 otherwise. Determine the amortized cost of the operation.

1

CS473ug Head Banging Session #6 10/10/06 - 10/12/06

1. Representation of Integers

(a) Prove that any positive integer can be written as the sum of distinct nonconsecutive Fibonacci
numbers–if Fn appears in the sum, then neither Fn+1 nor Fn−1 will. For example: 42 = F9 +F6,
25 = F8 + F4 + F2, 17 = F7 + F4 + F2.

(b) Prove that any integer (positive, negative, or zero) can be written in the form
∑

i±3i, where the
exponents i are distinct non-negative integers. For example 42 = 34−33−32−31, 25 = 33−31+30,
17 = 33 − 32 − 30.

2. Minimal Dominating Set

Suppose you are given a rooted tree T (not necessarily binary). You want to label each node in T
with an integer 0 or 1, such that every node either has the label 1 or is adjacent to a node with the
label 1 (or both). The cost of a labeling is the number of nodes with label 1. Describe and analyze an
algorithm to compute the minimum cost of any labeling of the given tree T .

3. Names in Boxes

The names of 100 prisoners are placed in 100 wooden boxes, one name to a box, and the boxes are lined
up on a table in a room. One by one, the prisoners are led into the room; each may look in at most
50 boxes, but must leave the room exactly as he found it and is permitted no further communication
with the others.

The prisoners have a chance to plot their strategy in advance, and they are going to need it, because
unless every single prisoner finds his own name all will subsequently be executed. Find a strategy for
them which has probability of success exceeding 30%. You may assume that the names are distributed
in the boxes uniformly at random.

(a) Calculate the probability of success if each prisoner picks 50 boxes uniformly at random.
?(b) Consider the following strategy.

The prisoners number themselves 1 to 100. Prisoner i begins by looking in box i. There he finds
the name of prisoner j. If j 6= i, he continues by looking in box j. As long as prisoner i has not
found his name, he continues by looking in the box corresponding to the last name he found.

Describe the set of permutations of names in boxes for which this strategy will succeed.
?(c) Count the number of permutations for which the strategy above succeeds. Use this sum to

calculate the probability of success. You may find it useful to do this calculation for general n,
then set n = 100 at the end.

(d) We assumed that the names were distributed in the boxes uniformly at random. Explain how the
prisoners could augment their strategy to make this assumption unnecessary.

1

CS473ug Head Banging Session #7 10/17/06 - 10/19/06

1. Dynamic MSTs

Suppose that you already have a minimum spanning tree (MST) in a graph. Now one of the edge
weights changes. Give an efficient algorithm to find an MST in the new graph.

2. Minimum Bottleneck Trees

In a graph G, for any pair of vertices u, v, let bottleneck(u, v) be the maximum over all paths pi from
u to v of the minimum-weight edge along pi. Construct a spanning tree T of G such that for each pair
of vertices, their bottleneck in G is the same as their bottleneck in T .

One way to think about it is to imagine the vertices of the graph as islands, and the edges as bridges.
Each bridge has a maximum weight it can support. If a truck is carrying stuff from u to v, how much
can the truck carry? We don’t care what route the truck takes; the point is that the smallest-weight
edge on the route will determine the load.

3. Eulerian Tours

An Eulerian tour is a “walk along edges of a graph” (in which successive edges must have a common
endpoint) that uses each edge exactly once and ends at the vertex where it starts. A graph is called
Eulerian if it has an Eulerian tour.

Prove that a connected graph is Eulerian iff each vertex has even degree.

1

CS473ug Head Banging Session #8 10/24/06 - 10/26/06

1. Alien Abduction

Mulder and Scully have computed, for every road in the United States, the exact probability that
someone driving on that road won’t be abducted by aliens. Agent Mulder needs to drive from Langley,
Virginia to Area 51, Nevada. What route should he take so that he has the least chance of being
abducted?

More formally, you are given a directed graph G = (V,E), where every edge e has an independent
safety probability p(e). The safety of a path is the product of the safety probabilities of its edges.
Design and analyze an algorithm to determine the safest path from a given start vertex s to a given
target vertex t.

2. The Only SSSP Algorithm

In the lecture notes, Jeff mentions that all SSSP algorithms are special cases of the following generic
SSSP algorithm. Each vertex v in the graph stores two values, which describe a tentative shortest path
from s to v.

• dist(v) is the length of the tentative shortest s ; v path.

• pred(v) is the predecessor of v in the shortest s ; v path.

We call an edge tense if dist(u) + w(u→ v) < dist(v). Our generic algorithm repeatedly finds a tense
edge in the graph and relaxes it:

Relax(u→ v):
dist(v)← dist(u) + w(u→ v)
pred(v)← u

If there are no tense edges, our algorithm is finished, and we have our desired shortest path tree. The
correctness of the relaxation algorithm follows directly from three simple claims. The first of these is
below. Prove it.

• When the algorithm halts, if dist(v) 6=∞, then dist(v) is the total weight of the predecessor chain
ending at v:

s→ · · · → (pred(pred(v))→ pred(v)→ v.

3. Can’t find a Cut-edge

A cut-edge is an edge which when deleted disconnects the graph. Prove or disprove the following.
Every 3-regular graph has no cut-edge. (A common approach is induction.)

1

CS473ug Head Banging Session #9 11/1/06 - 11/2/06

1. Max-Flow with vertex capacities

In a standard s − t Maximum-Flow Problem, we assume edges have capacities, and there is no limit
on how much flow is allowed to pass through a node. In this problem, we consider the variant of
Maximum-Flow and Minimum-Cut problems with node capacities.

More specifically, each node, ni, has a capacity ci. The edges have unlimited capacity. Show how you
can model this problem as a standard Max-flow problem (where the weights are on the edges).

2. Emergency evacuation

Due to large-scale flooding in a region, paramedics have identified a set of n injured people distributed
across the region who need to be reushed to hospitals. There are k hospitals in the region, and each of
the n people needs to be brought to a hospital that is within a half-hour’s driving time of their current
location.

At the same time, we don’t want to overload any hospital by sending too many patients its way. We’d
like to distribute the people so that each hospital receives at most dn/ke people.
Show how to model this problem as a Max-flow problem.

3. Tracking a Hacker

A computer network (with each edge weight 1) is designed to carry traffic from a source s to a
destination t. Recently, a computer hacker destroyed some of the edges in the graph. Normally, the
maximum s− t flow in G is k. Unfortunately, there is currently no path from s to t. Fortunately, the
sysadmins know that the hacker destroyed at most k edges of the graph.

The sysadmins are trying to diagnose which of the nodes of the graph are no longer reachable. They
would like to avoid testing each node. They are using a monitoring tool with the following behavior.
If you use the command ping(v), for a given node v, it will tell you whether there is currently a path
from s to v (so ping(t) will return False but ping(s) will return True).

Give an algorithm that accomplishes this task using only O(k log n) pings. (You may assume that any
algorithm you wish to run on the original network (before the hacker destroyed edges) runs for free,
since you have a model of that network on your computer.)

1

CS473ug Head Banging Session #10 11/07/06 - 11/09/06

1. Updating a maximum flow

Suppose you are given a directed graph G = (V,E), with a positive integer capacity ce on each edge
e, a designated source s ∈ V , and a designated sink t ∈ V . You are also given a maximum s − t flow
in G, defined by a flow value fe on each edge e. The flow {fe} is acyclic: There is no cycle in G on
which all edges carry positive flow.

Now suppose we pick a specific edge e∗ ∈ E and reduce its capacity by 1 unit. Show how to find a
maximum flow in the resulting capacitated graph in time O(m+ n), where m is the number of edges
in G and n is the number of nodes.

2. Cooking Schedule

You live in a cooperative apartment with n other people. The co-op needs to schedule cooks for the
next n days, so that each person cooks one day and each day there is one cook. In addition, each
member of the co-op has a list of days they are available to cook (and is unavailable to cook on the
other days).

Because of your superior CS473 skills, the co-op selects you to come up with a schedule for cooking,
so that everyone cooks on a day they are available.

(a) Describe a bipartite graph G so that G has a perfect matching if and only if there is a feasible
schedule for the co-op.

(b) A friend of yours tried to help you out by coming up with a cooking schedule. Unfortunately,
when you look at the schedule he created, you notice a big problem. n − 2 of the people are
scheduled for different nights on which they are available: no problem there. But the remaining
two people are assigned to cook on the same night (and no one is assigned to the last night).

You want to fix your friend’s mistake, but without having to recompute everything from scratch.
Show that it’s possible, using his “almost correct” schedule to decide in O(n2) time whether there
exists a feasible schedule.

3. Disjoint paths in a digraph

Let G = (V,E) be a directed graph, and suppose that for each node v, the number of edges into v is
equal to the number of edges out of v. That is, for all v,

|{(u, v) : (u, v) ∈ E}| = |{(v, w) : (v, w) ∈ E}|.

Let x, y be two nodes of G, and suppose that there exist k mutually edge-disjoint paths from x to y.
Under these conditions, does it follow that there exist k mutually edge-disjoint paths from y to x. Give
a proof or a counterexample with explanation.

1

CS473ug Head Banging Session #11 11/14/06 - 11/16/06

1. String matching: an example

(a) Build a finite automata to search for the string “bababoon”.

(b) Use the automata from part (a) to build the prefix function for Knuth-Morris-Pratt.

(c) Use the automata or the prefix function to search for “bababoon” in the string “babybaboon-
buysbananasforotherbabybababoons”.

2. Cooking Schedule Strikes Back

You live in a cooperative apartment with n other people. The co-op needs to schedule cooks for the
next 5n days, so that each person cooks five days and each day there is one cook. In addition, each
member of the co-op has a list of days they are available to cook (and is unavailable to cook on the
other days).

Because of your success at headbanging last week, the co-op again asks you to compose a cooking
schedule. Unfortunately, you realize that no such schedule is possible Give a schedule for the cooking
so that no one has to cook on more than 2 days that they claim to be unavailable.

3. String matching on Trees

You are given a rooted tree T (not necessarily binary), in which each node has a character. You are
also given a pattern P = p1p2 · · · pl. Search for the string as a subtree. In other words, search for a
subtree in which pi is on a child of the node containing pi−1 for each 2 ≤ i ≤ l.

1

CS473ug Head Banging Session #12 11/28/06 - 11/30/06

1. Self-reductions

In each case below assume that you are given a black box which can answer the decision version of the
indicated problem. Use a polynomial number of calls to the black box to construct the desired set.

(a) Independent set: Given a graph G and an integer k, does G have a subset of k vertices that are
pairwise nonadjacent?

(b) Subset sum: Given a multiset (elements can appear more than once) X = {x1, x2, . . . , xk} of
positive integers, and a positive integer S does there exist a subset of X with sum exactly S?

2. Lower Bounds

Give adversary arguments to prove the indicated lower bounds for the following problems:

(a) Searching in a sorted array takes at least 1 + blg2 nc queries.
(b) Let M be an n× n array of real values that is increasing in both rows and columns. Prove that

searching for a value requires at least n queries.

3. k-coloring

Show that we can solve the problem of constructing a k-coloring of a graph by using a polynomial
number of calls to a black box that determines whether a graph has such a k-coloring. (Hint: Try
reducing via an intermediate problem that asks whether a partial coloring of a graph can be extended
to a proper k-coloring.)

1

CS473ug Head Banging Session #13 12/05/06 - 12/07/06

1. NP-hardness Proofs: Restriction
Prove that each of the following problems is NP-hard. In each part, find a special case of the given
problem that is equivalent to a known NP-hard problem.

(a) Longest Path
Given a graph G and a positive integer k, does G contain a path with k or more edges?

(b) Partition into Hamiltonian Subgraphs
Given a graph G and a positive integer k, can the vertices of G be partitioned into at most k
disjoint sets such that the graph induced by each set has a Hamiltonian cycle?

(c) Set Packing
Given a collection of finite sets C and a positive integer k, does C contain k disjoint sets?

(d) Largest Common Subgraph
Given two graphs G1 and G2 and a positive integer k, does there exist a graph G3 such that G3

is a subgraph of both G1 and G2 and G3 has at least k edges?

2. Domino Line
You are given an unusual set of dominoes; each domino has a number on each end, but the numbers
may be arbitarily large and some numbers appear on many dominoes, while other numbers only appear
on a few dominoes. Your goal is to form a line using all the dominoes so that adjacent dominoes have
the same number on their adjacent halves. Either give an efficient algorithm to solve the problem or
show that it is NP-hard.

3. Set Splitting
Given a finite set S and a collection of subsets C is there a partition of S into two sets S1 and S2 such
that no subset in C is contained entirely in S1 or S2? Show that the problem is NP-hard. (Hint: use
NAE-3SAT, which is similar to 3SAT except that a satisfying assingment does not allow all 3 variables
in a clause to be true.)

1

CS 473U Midterm 1 Questions (September 26, 2006) Fall 2006

You have 120 minutes to answer four of these five questions.

Write your answers in the separate answer booklet.

1. Multiple Choice.

Each of the questions on this page has one of the following five answers:

A: Θ(1) B: Θ(log n) C: Θ(n) D: Θ(n log n) E: Θ(n2)

Choose the correct answer for each question. Each correct answer is worth +1 point; each
incorrect answer is worth −1

2 point; each “I don’t know” is worth +1
4 point. Your score will

be rounded to the nearest non-negative integer. You do not need to justify your answers; just
write the correct letter in the box.

(a) What is
5

n
+

n

5
?

(b) What is
n∑

i=1

n

i
?

(c) What is
n∑

i=1

i

n
?

(d) How many bits are required to represent the nth Fibonacci number in binary?
(e) What is the solution to the recurrence T (n) = 2T (n/4) + Θ(n)?
(f) What is the solution to the recurrence T (n) = 16T (n/4) + Θ(n)?
(g) What is the solution to the recurrence T (n) = T (n− 1) + 1/n2?
(h) What is the worst-case time to search for an item in a binary search tree?
(i) What is the worst-case running time of quicksort?
(j) What is the running time of the fastest possible algorithm to solve Sudoku puzzles?

A Sudoku puzzle consists of a 9× 9 grid of squares, partitioned into nine 3× 3 sub-grids;
some of the squares contain digits between 1 and 9. The goal of the puzzle is to enter
digits into the blank squares, so that each digit between 1 and 9 appears exactly once in
each row, each column, and each 3 × 3 sub-grid. The initial conditions guarantee that
the solution is unique.

4

9
5
1

2
7

5
3 7

2

9

6 4
8

8
6

4
3

1

5

A Sudoku puzzle. Don’t try to solve this during the exam!

1

CS 473U Midterm 1 Questions (September 26, 2006) Fall 2006

2. Oh, no! You have been appointed as the gift czar for Giggle, Inc.’s annual mandatory holiday
party! The president of the company, who is certifiably insane, has declared that every Giggle
employee must receive one of three gifts: (1) an all-expenses-paid six-week vacation any-
where in the world, (2) an all-the-pancakes-you-can-eat breakfast for two at Jumping Jack
Flash’s Flapjack Stack Shack, or (3) a burning paper bag full of dog poop. Corporate regu-
lations prohibit any employee from receiving the same gift as his/her direct supervisor. Any
employee who receives a better gift than his/her direct supervisor will almost certainly be
fired in a fit of jealousy. How do you decide what gifts everyone gets if you want to minimize
the number of people that get fired?

More formally, suppose you are given a rooted tree T , representing the company hierarchy.
You want to label each node in T with an integer 1, 2, or 3, such that every node has a different
label from its parent.. The cost of an labeling is the number of nodes that have smaller labels
than their parents. Describe and analyze an algorithm to compute the minimum cost of
any labeling of the given tree T . (Your algorithm does not have to compute the actual best
labeling—just its cost.)

1

23 32

3 3221

31

22

1 1

3

2 1

3

1

3

A tree labeling with cost 9. Bold nodes have smaller labels than their parents.
This is not the optimal labeling for this tree.

3. Suppose you are given an array A[1 .. n] of n distinct integers, sorted in increasing order.
Describe and analyze an algorithm to determine whether there is an index i such that A[i] = i,
in o(n) time. [Hint: Yes, that’s little-oh of n. What can you say about the sequence A[i]− i?]

4. Describe and analyze a polynomial-time algorithm to compute the length of the longest com-
mon subsequence of two strings A[1 ..m] and B[1 .. n]. For example, given the strings ‘DYNAMIC’
and ‘PROGRAMMING’, your algorithm would return the number 3, because the longest common
subsequence of those two strings is ‘AMI’. You must give a complete, self-contained solution;
don’t just refer to HW1.

2

CS 473U Midterm 1 Questions (September 26, 2006) Fall 2006

5. Recall that the Tower of Hanoi puzzle consists of three pegs and n disks of different sizes.
Initially, all the disks are on one peg, stacked in order by size, with the largest disk on the
bottom and the smallest disk on top. In a single move, you can transfer the highest disk on
any peg to a different peg, except that you may never place a larger disk on top of a smaller
one. The goal is to move all the disks onto one other peg.

Now suppose the pegs are arranged in a row, and you are forbidden to transfer a disk directly
between the left and right pegs in a single move; every move must involve the middle peg.
How many moves suffice to transfer all n disks from the left peg to the right peg under this
restriction? Prove your answer is correct.

For full credit, give an exact upper bound. A correct upper bound using O(·) notation (with a
proof of correctness) is worth 7 points.

1

2

3

4
5

6

7
8

9

The first nine moves in a restricted Towers of Hanoi solution.

3

CS 473U Midterm 2 Questions (October 31, 2006) Fall 2006

1. On an overnight camping trip in Sunnydale National Park, you are woken from a restless
sleep by a scream. As you crawl out of your tent to investigate, a terrified park ranger runs
out of the woods, covered in blood and clutching a crumpled piece of paper to his chest. As he
reaches your tent, he gasps, “Get out. . . while. . . you. . . ”, thrusts the paper into your hands,
and falls to the ground. Checking his pulse, you discover that the ranger is stone dead.

You look down at the paper and recognize a map of the park, drawn as an undirected graph,
where vertices represent landmarks in the park, and edges represent trails between those
landmarks. (Trails start and end at landmarks and do not cross.) You recognize one of the
vertices as your current location; several vertices on the boundary of the map are labeled
EXIT.

On closer examination, you notice that someone (perhaps the poor dead park ranger) has
written a real number between 0 and 1 next to each vertex and each edge. A scrawled
note on the back of the map indicates that a number next to an edge is the probability of
encountering a vampire along the corresponding trail, and a number next to a vertex is the
probability of encountering a vampire at the corresponding landmark. (Vampires can’t stand
each other’s company, so you’ll never see more than one vampire on the same trail or at the
same landmark.) The note warns you that stepping off the marked trails will result in a slow
and painful death.

You glance down at the corpse at your feet. Yes, his death certainly looked painful. Wait, was
that a twitch? Are his teeth getting longer? After driving a tent stake through the undead
ranger’s heart, you wisely decide to leave the park immediately.

Describe and analyze an efficient algorithm to find a path from your current location to an
arbitrary EXIT node, such that the total expected number of vampires encountered along the
path is as small as possible. Be sure to account for both the vertex probabilities and the edge
probabilities!

2. Consider the following solution for the union-find problem, called union-by-weight. Each set
leader x stores the number of elements of its set in the field weight(x). Whenever we UNION

two sets, the leader of the smaller set becomes a new child of the leader of the larger set
(breaking ties arbitrarily).

MAKESET(x):
parent(x)← x
weight(x)← 1

FIND(x):
while x 6= parent(x)

x← parent(x)
return x

UNION(x, y)
x← FIND(x)
y ← FIND(y)
if weight(x) > weight(y)

parent(y)← x
weight(x)← weight(x) + weight(y)

else
parent(x)← y
weight(x)← weight(x) + weight(y)

Prove that if we use union-by-weight, the worst-case running time of FIND is O(log n).

1

CS 473U Midterm 2 Questions (October 31, 2006) Fall 2006

3. Prove or disprove1 each of the following statements.

(a) Let G be an arbitrary undirected graph with arbitrary distinct weights on the edges. The
minimum spanning tree of G includes the lightest edge in every cycle in G.

(b) Let G be an arbitrary undirected graph with arbitrary distinct weights on the edges. The
minimum spanning tree of G excludes the heaviest edge in every cycle in G.

4. In Homework 2, you were asked to analyze the following algorithm to find the kth smallest
element from an unsorted array. (The algorithm is presented here in iterative form, rather
than the recursive form you saw in the homework, but it’s exactly the same algorithm.)

QUICKSELECT(A[1 .. n], k):
i← 1; j ← n
while i ≤ j

r ← PARTITION(A[i .. j],RANDOM(i, j))
if r = k

return A[r]
else if r > k

j ← r − 1
else

i← r + 1

The algorithm relies on two subroutines. RANDOM(i, j) returns an integer chosen uniformly
at random from the range [i .. j]. PARTITION(A[i .. j], p) partitions the subarray A[i .. j] using
the pivot value A[p] and returns the new index of the pivot value in the partitioned array.

What is the exact expected number of iterations of the main loop when k = 1? Prove your
answer is correct. A correct Θ(·) bound (with proof) is worth 7 points. You may assume that
the input array A[] contains n distinct integers.

5. Find the following spanning trees for the weighted graph shown below.

(a) A breadth-first spanning tree rooted at s.

(b) A depth-first spanning tree rooted at s.

(c) A shortest-path tree rooted at s.

(d) A minimum spanning tree.

s 4

8

10

3

9

5

-1

7

2

6
1

You do not need to justify your answers; just clearly indicate the edges of each spanning tree.
Yes, one of the edges has negative weight.

1But not both! If you give us both a proof and a disproof for the same statement, you will get no credit, even if one of
your arguments is correct.

2

CS 473U Final Exam Questions (December 15, 2006) Fall 2006

1. A double-Hamiltonian circuit in an undirected graph G is a closed walk that visits every vertex
in G exactly twice, possibly by traversing some edges more than once. Prove that it is NP-hard
to determine whether a given undirected graph contains a double-Hamiltonian circuit.

2. Suppose you are running a web site that is visited by the same set of people every day. Each
visitor claims membership in one or more demographic groups; for example, a visitor might
describe himself as male, 31-40 years old, a resident of Illinois, an academic, a blogger, a Joss
Whedon fan1, and a Sports Racer.2 Your site is supported by advertisers. Each advertiser has
told you which demographic groups should see its ads and how many of its ads you must
show each day. Altogether, there are n visitors, k demographic groups, and m advertisers.

Describe an efficient algorithm to determine, given all the data described in the previous
paragraph, whether you can show each visitor exactly one ad per day, so that every advertiser
has its desired number of ads displayed, and every ad is seen by someone in an appropriate
demographic group.

3. Describe and analyze a data structure to support the following operations on an array X[1 .. n]
as quickly as possible. Initially, X[i] = 0 for all i.

• Given an index i such that X[i] = 0, set X[i] to 1.

• Given an index i, return X[i].

• Given an index i, return the smallest index j ≥ i such that X[j] = 0, or report that no
such index exists.

For full credit, the first two operations should run in worst-case constant time, and the amor-
tized cost of the third operation should be as small as possible. [Hint: Use a modified union-
find data structure.]

4. The next time you are at a party, one of the guests will suggest everyone play a round of Three-
Way Mumbledypeg, a game of skill and dexterity that requires three teams and a knife. The
official Rules of Three-Way Mumbledypeg (fixed during the Holy Roman Three-Way Mum-
bledypeg Council in 1625) require that (1) each team must have at least one person, (2) any
two people on the same team must know each other, and (3) everyone watching the game
must be on one of the three teams. Of course, it will be a really fun party; nobody will want
to leave. There will be several pairs of people at the party who don’t know each other. The
host of the party, having heard thrilling tales of your prowess in all things algorithmic, will
hand you a list of which pairs of partygoers know each other and ask you to choose the teams,
while he sharpens the knife.

Either describe and analyze a polynomial time algorithm to determine whether the party-
goers can be split into three legal Three-Way Mumbledypeg teams, or prove that the problem
is NP-hard.

1Har har har! Mine is an evil laugh! Now die!
2It’s Ride the Fire Eagle Danger Day!

1

CS 473U Final Exam Questions (December 15, 2006) Fall 2006

5. Suppose you are given a stack of n pancakes of different sizes. You want to sort the pancakes
so that smaller pancakes are on top of larger pancakes. The only operation you can perform
is a flip—insert a spatula under the top k pancakes, for some integer k between 1 and n, and
flip them all over.

Flipping the top three pancakes.

(a) Describe an efficient algorithm to sort an arbitrary stack of n pancakes. Exactly how
many flips does your algorithm perform in the worst case? (For full credit, your al-
gorithm should perform as few flips as possible; an optimal Θ() bound is worth three
points.)

(b) Now suppose one side of each pancake is burned. Exactly how many flips do you need
to sort the pancakes and have the burned side of every pancake on the bottom? (For full
credit, your algorithm should perform as few flips as possible; an optimal Θ() bound is
worth three points.)

6. Describe and analyze an efficient algorithm to find the length of the longest substring that
appears both forward and backward in an input string T [1 .. n]. The forward and backward
substrings must not overlap. Here are several examples:

• Given the input string ALGORITHM, your algorithm should return 0.

• Given the input string RECURSION, your algorithm should return 1, for the substring R.

• Given the input string REDIVIDE, your algorithm should return 3, for the substring EDI.
(The forward and backward substrings must not overlap!)

• Given the input string DYNAMICPROGRAMMINGMANYTIMES, your algorithm should
return 4, for the substring YNAM.

For full credit, your algorithm should run in O(n2) time.

7. A double-Eulerian circuit in an undirected graph G is a closed walk that traverses every edge
in G exactly twice. Describe and analyze a polynomial-time algorithm to determine whether
a given undirected graph contains a double-Eulerian circuit.

2

CS 473G: Graduate Algorithms, Spring 2007
Homework 0

Due in class at 11:00am, Tuesday, January 30, 2007

Name:
Net ID: Alias:

I understand the Course Policies.

• Neatly print your full name, your NetID, and an alias of your choice in the boxes above, and
staple this page to your solution to problem 1. We will list homework and exam grades on
the course web site by alias. By providing an alias, you agree to let us list your grades;
if you do not provide an alias, your grades will not be listed. For privacy reasons, your
alias should not resemble your name, your NetID, your university ID number, or (God forbid!)
your Social Security number. Please use the same alias for every homework and exam.

• Read the Course Policies on the course web site, and then check the box above. Among other
things, this page describes what we expect in your homework solutions, as well as policies on
grading standards, regrading, extra credit, and plagiarism. In particular:

– Submit each numbered problem separately, on its own piece(s) of paper. If you need
more than one page for a problem, staple just those pages together, but keep different
problems separate. Do not staple your entire homework together.

– You may use any source at your disposal—paper, electronic, or human—but you must
write your answers in your own words, and you must cite every source that you use.

– Algorithms or proofs containing phrases like “and so on” or “repeat this for all n”, instead
of an explicit loop, recursion, or induction, are worth zero points.

– Answering “I don’t know” to any homework or exam problem is worth 25% partial credit.

If you have any questions, please ask during lecture or office hours, or post your question to
the course newsgroup.

• This homework tests your familiarity with prerequisite material—big-Oh notation, elemen-
tary algorithms and data structures, recurrences, discrete probability, graphs, and most im-
portantly, induction—to help you identify gaps in your knowledge. You are responsible for
filling those gaps on your own. The early chapters of Kleinberg and Tardos (or any algo-
rithms textbook) should be sufficient review, but you may also want consult your favorite
discrete mathematics and data structures textbooks.

• Every homework will have five problems, each worth 10 points. Stars indicate more challeng-
ing problems. Many homeworks will also include an extra-credit problem.

CS 473G Homework 0 (due January 30, 2007) Spring 2007

?1. Draughts/checkers is a game played on anm×m grid of squares, alternately colored light and
dark. (The game is usually played on an 8×8 or 10×10 board, but the rules easily generalize
to any board size.) Each dark square is occupied by at most one game piece (usually called
a checker in the U.S.), which is either black or white; light squares are always empty. One
player (“White”) moves the white pieces; the other (“Black”) moves the black pieces.

Consider the following simple version of the game, essentially American checkers or
British draughts, but where every piece is a king.1 Pieces can be moved in any of the four
diagonal directions, either one or two steps at a time. On each turn, a player either moves one
of her pieces one step diagonally into an empty square, or makes a series of jumps with one
of her checkers. In a single jump, a piece moves to an empty square two steps away in any
diagonal direction, but only if the intermediate square is occupied by a piece of the opposite
color; this enemy piece is captured and immediately removed from the board. Multiple jumps
are allowed in a single turn as long as they are made by the same piece. A player wins if her
opponent has no pieces left on the board.

Describe an algorithm2 that correctly determines whether White can capture every black
piece, thereby winning the game, in a single turn. The input consists of the width of the
board (m), a list of positions of white pieces, and a list of positions of black pieces. For full
credit, your algorithm should run in O(n) time, where n is the total number of pieces, but
any algorithm that runs in time polynomial in n and m is worth significant partial credit.

1

5

6

4

8

7

9

2

3

10

11

White wins in one turn.

White cannot win in one turn from either of these positions.

[Hint: The greedy strategy—make arbitrary jumps until you get stuck—does not always
find a winning sequence of jumps even when one exists.]

1Most variants of draughts have ‘flying kings’, which behave very differently than what’s described here.
2Since you’ve read the Course Policies, you know what this phrase means.

1

CS 473G Homework 0 (due January 30, 2007) Spring 2007

2. (a) Prove that any positive integer can be written as the sum of distinct powers of 2. [Hint:
“Write the number in binary” is not a proof; it just restates the problem.] For example:

16 + 1 = 17 = 24 + 20

16 + 4 + 2 + 1 = 23 = 24 + 22 + 21 + 20

32 + 8 + 1 = 42 = 25 + 23 + 21

(b) Prove that any integer (positive, negative, or zero) can be written as the sum of distinct
powers of −2. For example:

−32 + 16− 2 + 1 = −17 = (−2)5 + (−2)4 + (−2)1 + (−2)0

64− 32− 8− 2 + 1 = 23 = (−2)6 + (−2)5 + (−2)3 + (−2)1 + (−2)0

64− 32 + 16− 8 + 4− 2 = 42 = (−2)6 + (−2)5 + (−2)4 + (−2)3 + (−2)2 + (−2)1

3. Whenever groups of pigeons gather, they instinctively establish a pecking order. For any pair of
pigeons, one pigeon always pecks the other, driving it away from food or potential mates. The
same pair of pigeons always chooses the same pecking order, even after years of separation,
no matter what other pigeons are around. Surprisingly, the overall pecking order can contain
cycles—for example, pigeon A pecks pigeon B, which pecks pigeon C, which pecks pigeon A.

Prove that any finite set of pigeons can be arranged in a row from left to right so that
every pigeon pecks the pigeon immediately to its left.

4. On their long journey from Denmark to England, Rosencrantz and Guildenstern amuse them-
selves by playing the following game with a fair coin. First Rosencrantz flips the coin over
and over until it comes up tails. Then Guildenstern flips the coin over and over until he gets
as many heads in a row as Rosencrantz got on his turn. Here are three typical games:

Rosencrantz: H H T
Guildenstern: H T H H

Rosencrantz: T
Guildenstern: (no flips)

Rosencrantz: H H H T
Guildenstern: T H H T H H T H T T H H H

(a) What is the expected number of flips in one of Rosencrantz’s turns?

(b) Suppose Rosencrantz flips k heads in a row on his turn. What is the expected number of
flips in Guildenstern’s next turn?

(c) What is the expected total number of flips (by both Rosencrantz and Guildenstern) in a
single game?

2

CS 473G Homework 0 (due January 30, 2007) Spring 2007

Prove that your answers are correct. If you have to appeal to “intuition” or “common sense”,
your answer is almost certainly wrong! You must give exact answers for full credit, but a
correct asymptotic bound for part (b) is worth significant credit.

5. (a) [5 pts] Solve the following recurrences. State tight asymptotic bounds for each func-
tion in the form Θ(f(n)) for some recognizable function f(n). Assume reasonable but
nontrivial base cases. If your solution requires a particular base case, say so.

A(n) = 3A(n/9) +
√
n

B(n) = 4B(n− 1)− 4B(n− 2)

C(n) =
π C(n− 1)√
2C(n− 2)

[Hint: This is easy!]

D(n) = max
n/4<k<3n/4

(
D(k) +D(n− k) + n

)

E(n) = 2E(n/2) + 4E(n/3) + 2E(n/6) + n2

Do not turn in proofs—just a list of five functions—but you should do them anyway,
just for practice. [Hint: On the course web page, you can find a handout describing
several techniques for solving recurrences.]

(b) [5 pts] Sort the functions in the box from asymptotically smallest to asymptotically
largest, indicating ties if there are any. Do not turn in proofs—just a sorted list of 16
functions—but you should do them anyway, just for practice.

To simplify your answer, write f(n) � g(n) to indicate that f(n) = o(g(n)), and
write f(n) ≡ g(n) to mean f(n) = Θ(g(n)). For example, the functions n2, n,

(
n
2

)
, n3

could be sorted either as n� n2 ≡
(
n
2

)
� n3 or as n�

(
n
2

)
≡ n2 � n3.

n lg n
√
n 3n

√
lg n lg

√
n 3

√
n

√
3n

3lgn lg(3n) 3lg
√
n 3

√
lgn

√
3lgn lg(3

√
n) lg

√
3n

√
lg(3n)

Recall that lg n = log2 n.

3

CS 473G: Graduate Algorithms, Spring 2007
Homework 1

Due February 6, 2007

Remember to submit separate, individually stapled solutions to each of the problems.

1. Jeff tries to make his students happy. At the beginning of class, he passes out a questionnaire
to students which lists a number of possible course policies in areas where he is flexible.
Every student is asked to respond to each possible course policy with one of “strongly favor”,
“mostly neutral”, or “strongly oppose”. Each student may respond with “strongly favor” or
“strongly oppose” to at most five questions. Because Jeff’s students are very understanding,
each student is happy if he or she prevails in just one of his or her strong policy preferences.
Either describe a polynomial time algorithm for setting course policy to maximize the number
of happy students or show that the problem is NP-hard.

2. Consider a variant 3SAT′ of 3SAT which asks, given a formula φ in conjunctive normal form in
which each clause contains at most 3 literals and each variable appears in at most 3 clauses,
is φ satisfiable? Prove that 3SAT′ is NP-complete.

3. For each problem below, either describe a polynomial-time algorithm to solve the problem or
prove that the problem is NP-complete.

(a) A double-Eulerian circuit in an undirected graph G is a closed walk that traverses every
edge in G exactly twice. Given a graph G, does G have a double-Eulerian circuit?

(b) A double-Hamiltonian circuit in an undirected graph G is a closed walk that visits every
vertex in G exactly twice. Given a graph G, does G have a double-Hamiltonian circuit?

4. Suppose you have access to a magic black box; if you give it a graph G as input, the black
box will tell you, in constant time, if there is a proper 3-coloring of G. Describe a polynomial
time algorithm which, given a graph G that is 3-colorable, uses the black box to compute a
3-coloring of G.

5. Let C5 be the graph which is a cycle on five vertices. A (5, 2)-coloring of a graphG is a function
f : V (G) → {1, 2, 3, 4, 5} such that every pair {u, v} of adjacent vertices in G is mapped to a
pair {f(u), f(v)} of vertices in C5 which are at distance two from each other.

1

3 22

4

5

4

A (5, 2)-coloring of a graph.

Using a reduction from 5COLOR, prove that the problem of deciding whether a given graph G
has a (5, 2)-coloring is NP-complete.

CS 473G Homework 2 (due January 30, 2007) Spring 2007

CS 473G: Graduate Algorithms, Spring 2007
Homework 2

Due Tuesday, February 20, 2007

Remember to submit separate, individually stapled solutions to each problem.

As a general rule, a complete full-credit solution to any homework problem should fit
into two typeset pages (or five hand-written pages). If your solution is significantly
longer than this, you may be including too much detail.

1. Consider a restricted variant of the Tower of Hanoi puzzle, where the three needles are ar-
ranged in a triangle, and you are required to move each disk counterclockwise. Describe an
algorithm to move a stack of n disks from one needle to another. Exactly how many moves
does your algorithm perform? To receive full credit, your algorithm must perform the mini-
mum possible number of moves. [Hint: Your answer will depend on whether you are moving
the stack clockwise or counterclockwise.]

10 32 4

65 87

A top view of the first eight moves in a counterclockwise Towers of Hanoi solution

?2. You find yourself working for The Negation Company (“We Contradict Everything. . . Not!”),
the world’s largest producer of multi-bit Boolean inverters. Thanks to a recent mining discov-
ery, the market prices for amphigen and opoterium, the key elements used in AND and OR

gates, have plummeted to almost nothing. Unfortunately, the market price of inverton, the
essential element required to build NOT gates, has recently risen sharply as natural supplies
are almost exhausted. Your boss is counting on you to radically redesign the company’s only
product in response to these radically new market prices.

Design a Boolean circuit that inverts n = 2k − 1 bits, using only k NOT gates but any
number of AND and OR gates. The input to your circuit consists of n bits x1, x2, . . . , xn,
and the output consists of n bits y1, y2, . . . , yn, where each output bit yi is the inverse of the
corresponding input bit xi. [Hint: Solve the case k = 2 first.]

1

CS 473G Homework 2 (due January 30, 2007) Spring 2007

3. (a) Let X[1 ..m] and Y [1 .. n] be two arbitrary arrays. A common supersequence of X and Y is
another sequence that contains both X and Y as subsequences. Give a simple recursive
definition for the function scs(X,Y), which gives the length of the shortest common
supersequence of X and Y .

(b) Call a sequence X[1 .. n] oscillating if X[i] < X[i+ 1] for all even i, and X[i] > X[i+ 1]
for all odd i. Give a simple recursive definition for the function los(X), which gives the
length of the longest oscillating subsequence of an arbitrary array X of integers.

(c) Call a sequence X[1 .. n] of integers accelerating if 2 ·X[i] < X[i− 1] +X[i+ 1] for all i.
Give a simple recursive definition for the function lxs(X), which gives the length of the
longest accelerating subsequence of an arbitrary array X of integers.

Each recursive definition should translate directly into a recursive algorithm, but you do not
need to analyze these algorithms. We are looking for correctness and simplicity, not algorithmic
efficiency. Not yet, anyway.

4. Describe an algorithm to solve 3SAT in time O(φn poly(n)), where φ = (1+
√
5)/2 ≈ 1.618034.

[Hint: Prove that in each recursive call, either you have just eliminated a pure literal, or the
formula has a clause with at most two literals. What recurrence leads to this running time?]

5. (a) Describe an algorithm that determines whether a given set of n integers contains two
distinct elements that sum to zero, in O(n log n) time.

(b) Describe an algorithm that determines whether a given set of n integers contains three
distinct elements that sum to zero, in O(n2) time.

(c) Now suppose the input set X contains n integers between −10000n and 10000n. De-
scribe an algorithm that determines whether X contains three distinct elements that
sum to zero, in O(n log n) time.

For example, if the input set is {−10,−9,−7,−3, 1, 3, 5, 11}, your algorithm for part (a) should
return TRUE, because (−3) + 3 = 0, and your algorithms for parts (b) and (c) should return
FALSE, even though (−10) + 5 + 5 = 0.

2

CS 473G Homework 3 (due March 9, 2007) Spring 2007

CS 473G: Graduate Algorithms, Spring 2007
Homework 3

Due Friday, March 9, 2007

Remember to submit separate, individually stapled solutions to each problem.

As a general rule, a complete, full-credit solution to any homework problem should fit
into two typeset pages (or five hand-written pages). If your solution is significantly
longer than this, you may be including too much detail.

1. (a) Let X[1 ..m] and Y [1 .. n] be two arbitrary arrays. A common supersequence of X and Y
is another sequence that contains both X and Y as subsequences. Describe and analyze
an efficient algorithm to compute the function scs(X,Y), which gives the length of the
shortest common supersequence of X and Y .

(b) Call a sequence X[1 .. n] oscillating if X[i] < X[i+1] for all even i, and X[i] > X[i+1] for
all odd i. Describe and analyze an efficient algorithm to compute the function los(X),
which gives the length of the longest oscillating subsequence of an arbitrary array X of
integers.

(c) Call a sequence X[1 .. n] of integers accelerating if 2 ·X[i] < X[i− 1] +X[i+ 1] for all i.
Describe and analyze an efficient algorithm to compute the function lxs(X), which gives
the length of the longest accelerating subsequence of an arbitrary array X of integers.

[Hint: Use the recurrences you found in Homework 2. You do not need to prove again that
these recurrences are correct.]

2. Describe and analyze an algorithm to solve the traveling salesman problem in O(2n poly(n))
time. Given an undirected n-vertex graph G with weighted edges, your algorithm should
return the weight of the lightest Hamiltonian cycle in G (or ∞ if G has no Hamiltonian
cycles).

3. Let G be an arbitrary undirected graph. A set of cycles {c1, . . . , ck} in G is redundant if it
is non-empty and every edge in G appears in an even number of ci’s. A set of cycles is
independent if it contains no redundant subsets. (In particular, the empty set is independent.)
A maximal independent set of cycles is called a cycle basis for G.

(a) Let C be any cycle basis for G. Prove that for any cycle γ in G that is not an element
of C, there is a subset A ⊆ C such that A∪{γ} is redundant. In other words, prove that
γ is the ‘exclusive or’ of some subset of basis cycles.

Solution: The claim follows directly from the definitions. A cycle basis is a maximal
independent set, so if C is a cycle basis, then for any cycle γ 6∈ C, the larger set C ∪ {γ}
cannot be an independent set, so it must contain a redundant subset. On the other hand,
if C is a basis, then C is independent, so C contains no redundant subsets. Thus, C∪{γ}
must have a redundant subset B that contains γ. Let A = B \ {γ}. �

1

CS 473G Homework 3 (due March 9, 2007) Spring 2007

(b) Prove that the set of independent cycle sets form a matroid.

(c) Now suppose each edge of G has a weight. Define the weight of a cycle to be the total
weight of its edges, and the weight of a set of cycles to be the total weight of all cycles in
the set. (Thus, each edge is counted once for every cycle in which it appears.) Describe
and analyze an efficient algorithm to compute the minimum-weight cycle basis of G.

4. Let T be a rooted binary tree with n vertices, and let k ≤ n be a positive integer. We would
like to mark k vertices in T so that every vertex has a nearby marked ancestor. More formally,
we define the clustering cost of a clustering of any subset K of vertices as

cost(K) = max
v

cost(v,K),

where the maximum is taken over all vertices v in the tree, and

cost(v,K) =





0 if v ∈ K

∞ if v is the root of T and v 6∈ K

1 + cost(parent(v)) otherwise

11

2

31

2 2

2 2

1

1

2

331 1

22

33

1

11

22

2

3

1

2 2

1

2 2

2 2

3 3

A subset of 5 vertices with clustering cost 3

Describe and analyze a dynamic-programming algorithm to compute the minimum clus-
tering cost of any subset of k vertices in T . For full credit, your algorithm should run in
O(n2k2) time.

5. Let X be a set of n intervals on the real line. A subset of intervals Y ⊆ X is called a tiling
path if the intervals in Y cover the intervals in X, that is, any real value that is contained in
some interval in X is also contained in some interval in Y . The size of a tiling cover is just
the number of intervals.

Describe and analyze an algorithm to compute the smallest tiling path of X as quickly as
possible. Assume that your input consists of two arrays XL[1 .. n] and XR[1 .. n], representing
the left and right endpoints of the intervals in X. If you use a greedy algorithm, you must
prove that it is correct.

2

CS 473G Homework 3 (due March 9, 2007) Spring 2007

A set of intervals. The seven shaded intervals form a tiling path.

3

CS 473G: Graduate Algorithms, Spring 2007
Homework 4

Due March 29, 2007

Please remember to submit separate, individually stapled solutions to each problem.

1. Given a graph G with edge weights and an integer k, suppose we wish to partition the the
vertices of G into k subsets S1, S2, . . . , Sk so that the sum of the weights of the edges that
cross the partition (i.e., have endpoints in different subsets) is as large as possible.

(a) Describe an efficient (1− 1/k)-approximation algorithm for this problem.

(b) Now suppose we wish to minimize the sum of the weights of edges that do not cross the
partition. What approximation ratio does your algorithm from part (a) achieve for the
new problem? Justify your answer.

2. In class, we saw a (3/2)-approximation algorithm for the metric traveling salesman problem.
Here, we consider computing minimum cost Hamiltonian paths. Our input consists of a
graph G whose edges have weights that satisfy the triangle inequality. Depending upon the
problem, we are also given zero, one, or two endpoints.

(a) If our input includes zero endpoints, describe a (3/2)-approximation to the problem of
computing a minimum cost Hamiltonian path.

(b) If our input includes one endpoint u, describe a (3/2)-approximation to the problem of
computing a minimum cost Hamiltonian path that starts at u.

(c) If our input includes two endpoints u and v, describe a (5/3)-approximation to the prob-
lem of computing a minimum cost Hamiltonian path that starts at u and ends at v.

3. Consider the greedy algorithm for metric TSP: start at an arbitrary vertex u, and at each step,
travel to the closest unvisited vertex.

(a) Show that the greedy algorithm for metric TSP is an O(log n)-approximation, where n is
the number of vertices. [Hint: Argue that the kth least expensive edge in the tour output
by the greedy algorithm has weight at most OPT/(n− k+1); try k = 1 and k = 2 first.]

?(b) [Extra Credit] Show that the greedy algorithm for metric TSP is no better than an
O(log n)-approximation.

4. In class, we saw that the greedy algorithm gives an O(log n)-approximation for vertex cover.
Show that our analysis of the greedy algorithm is asymptotically tight by describing, for any
positive integer n, an n-vertex graph for which the greedy algorithm produces a vertex cover
of size Ω(log n) ·OPT.

CS 473G Homework 4 (due March 29, 2007) Spring 2007

5. Recall the minimum makespan scheduling problem: Given an array T [1 .. n] of processing
times for n jobs, we wish to schedule the jobs on m machines to minimize the time at which
the last job terminates. In class, we proved that the greedy scheduling algorithm has an
approximation ratio of at most 2.

(a) Prove that for any set of jobs, the makespan of the greedy assignment is at most (2−1/m)
times the makespan of the optimal assignment.

(b) Describe a set of jobs such that the makespan of the greedy assignment is exactly (2 −
1/m) times the makespan of the optimal assignment.

(c) Describe an efficient algorithm to solve the minimum makespan scheduling problem
exactly if every processing time T [i] is a power of two.

2

CS 473G: Graduate Algorithms, Spring 2007
Homework 5

Due Thursday, April 17, 2007

Please remember to submit separate, individually stapled solutions to each problem.

Unless a problem specifically states otherwise, you can assume the function RANDOM(k),
which returns an integer chosen independently and uniformly at random from the set
{1, 2, . . . , k}, in O(1) time. For example, to perform a fair coin flip, you would call
RANDOM(2).

1. Suppose we want to write an efficient function RANDOMPERMUTATION(n) that returns a per-
mutation of the integers 〈1, . . . , n〉 chosen uniformly at random.

(a) What is the expected running time of the following RANDOMPERMUTATION algorithm?

RANDOMPERMUTATION(n):
for i← 1 to n

π[i]← EMPTY

for i← 1 to n
j ← RANDOM(n)
while (π[j] 6= EMPTY)

j ← RANDOM(n)
π[j]← i

return π

(b) Consider the following partial implementation of RANDOMPERMUTATION.

RANDOMPERMUTATION(n):
for i← 1 to n

A[i]← RANDOM(n)
π ← SOMEFUNCTION(A)
return π

Prove that if the subroutine SOMEFUNCTION is deterministic, then this algorithm cannot
be correct. [Hint: There is a one-line proof.]

(c) Describe and analyze an RANDOMPERMUTATION algorithm whose expected worst-case
running time is O(n).

?(d) [Extra Credit] Describe and analyze an RANDOMPERMUTATION algorithm that uses only
fair coin flips; that is, your algorithm can’t call RANDOM(k) with k > 2. Your algorithm
should run in O(n log n) time with high probability.

CS 473G Homework 5 (due April 17, 2007) Spring 2007

2. A meldable priority queue stores a set of keys from some totally-ordered universe (such as the
integers) and supports the following operations:

• MAKEQUEUE: Return a new priority queue containing the empty set.

• FINDMIN(Q): Return the smallest element of Q (if any).

• DELETEMIN(Q): Remove the smallest element in Q (if any).

• INSERT(Q, x): Insert element x into Q, if it is not already there.

• DECREASEKEY(Q, x, y): Replace an element x ∈ Q with a smaller element y. (If y > x,
the operation fails.) The input is a pointer directly to the node in Q that contains x.

• DELETE(Q, x): Delete the element x ∈ Q. The input is a pointer directly to the node in Q
that contains x.

• MELD(Q1, Q2): Return a new priority queue containing all the elements of Q1 and Q2;
this operation destroys Q1 and Q2.

A simple way to implement such a data structure is to use a heap-ordered binary tree, where
each node stores a key, along with pointers to its parent and two children. MELD can be
implemented using the following randomized algorithm:

MELD(Q1, Q2):
if Q1 is empty, return Q2

if Q2 is empty, return Q1

if key(Q1) > key(Q2)
swap Q1 ↔ Q2

with probability 1/2
left(Q1)← MELD(left(Q1), Q2)

else
right(Q1)← MELD(right(Q1), Q2)

return Q1

(a) Prove that for any heap-ordered binary trees Q1 and Q2 (not just those constructed by
the operations listed above), the expected running time of MELD(Q1, Q2) is O(log n),
where n = |Q1| + |Q2|. [Hint: How long is a random root-to-leaf path in an n-node
binary tree if each left/right choice is made with equal probability?]

(b) Prove that MELD(Q1, Q2) runs in O(log n) time with high probability.

(c) Show that each of the other meldable priority queue operations can be implemented
with at most one call to MELD and O(1) additional time. (This implies that every opera-
tion takes O(log n) time with high probability.)

3. Prove that GUESSMINCUT returns the second smallest cut in its input graph with probability
Ω(1/n2). (The second smallest cut could be significantly larger than the minimum cut.)

2

CS 473G Homework 5 (due April 17, 2007) Spring 2007

4. A heater is a sort of dual treap, in which the priorities of the nodes are given by the user,
but their search keys are random (specifically, independently and uniformly distributed in the
unit interval [0, 1]).

(a) Prove that for any r, the node with the rth smallest priority has expected depth O(log r).

(b) Prove that an n-node heater has depth O(log n) with high probability.

(c) Describe algorithms to perform the operations INSERT and DELETEMIN in a heater. What
are the expected worst-case running times of your algorithms?

You may assume all priorities and keys are distinct. [Hint: Cite the relevant parts (but only
the relevant parts!) of the treap analysis instead of repeating them.]

5. Let n be an arbitrary positive integer. Describe a set T of binary search trees with the following
properties:

• Every tree in T has n nodes, which store the search keys 1, 2, 3, . . . , n.

• For any integer k, if we choose a tree uniformly at random from T , the expected depth
of node k in that tree is O(log n).

• Every tree in T has depth Ω(
√
n).

(This is why we had to prove via Chernoff bounds that the maximum depth of an n-node
treap is O(log n) with high probability.)

F6. [Extra Credit] Recall that Fk denotes the kth Fibonacci number: F0 = 0, F1 = 1, and
Fk = Fk−1 + Fk−2 for all k ≥ 2. Suppose we are building a hash table of size m = Fk using
the hash function

h(x) = (Fk−1 · x) mod Fk

Prove that if the consecutive integers 0, 1, 2, . . . , Fk − 1 are inserted in order into an initially
empty table, each integer is hashed into one of the largest contiguous empty intervals in the
table. Among other things, this implies that there are no collisions.

For example, when m = 13, the hash table is filled as follows.

0

0 1

0 2 1

0 2 1 3

0 2 4 1 3

0 5 2 4 1 3

0 5 2 4 1 6 3

0 5 2 7 4 1 6 3

0 5 2 7 4 1 6 3 8

0 5 2 7 4 9 1 6 3 8

0 5 10 2 7 4 9 1 6 3 8

0 5 10 2 7 4 9 1 6 11 3 8

0 5 10 2 7 12 4 9 1 6 11 3 8

3

CS 473G Midterm 1 Questions (February 22, 2007) Spring 2007

You have 90 minutes to answer four of these questions.
Write your answers in the separate answer booklet.
You may take the question sheet with you when you leave.

1. Recall that a binary tree is complete if every internal node has two children and every leaf has
the same depth. An internal subtree of a binary tree is a connected subgraph, consisting of a
node and some (possibly all or none) of its descendants.

Describe and analyze an algorithm that computes the depth of the largest complete internal
subtree of a given n-node binary tree. For full credit, your algorithm should run in O(n) time.

The largest complete internal subtree in this binary tree has depth 3.

2. Consider the following solitaire game. The puzzle consists of an n×m grid of squares, where
each square may be empty, occupied by a red stone, or occupied by a blue stone. The goal
of the puzzle is to remove some of the given stones so that the remaining stones satisfy two
conditions: (1) every row contains at least one stone, and (2) no column contains stones of
both colors. For some initial configurations of stones, reaching this goal is impossible.

A solvable puzzle and one of its many solutions. An unsolvable puzzle.

Prove that it is NP-hard to determine, given an initial configuration of red and blue stones,
whether the puzzle can be solved.

3. Suppose you are given two sorted arrays A[1 .. n] and B[1 .. n] and an integer k. Describe and
analyze an algorithm to find the kth largest element in the union of A and B in O(log n) time.
For example, given the input

A[1 .. 8] = [0, 1, 6, 9, 12, 13, 18, 21], B[1 .. 8] = [2, 4, 5, 8, 14, 17, 19, 20], k = 10,

your algorithm should return 13. You can assume that the arrays contain no duplicates. [Hint:
What can you learn from comparing one element of A to one element of B?]

1

CS 473G Midterm 1 Questions (February 22, 2007) Spring 2007

4. Every year, as part of its annual meeting, the Antarctican Snail Lovers of Upper Glacierville
hold a Round Table Mating Race. Several high-quality breeding snails are placed at the edge
of a round table. The snails are numbered in order around the table from 1 to n. During the
race, each snail wanders around the table, leaving a trail of slime behind it. The snails have
been specially trained never to fall off the edge of the table or to cross a slime trail, even
their own. If two snails meet, they are declared a breeding pair, removed from the table, and
whisked away to a romantic hole in the ground to make little baby snails. Note that some
snails may never find a mate, even if the race goes on forever.

1

2

3

4

5

6

7

8

1
7

8

6

5
2

3
4

The end of a typical Antarctican SLUG race. Snails 6 and 8 never find mates.
The organizers must pay M [3, 4] +M [2, 5] +M [1, 7].

For every pair of snails, the Antarctican SLUG race organizers have posted a monetary reward,
to be paid to the owners if that pair of snails meets during the Mating Race. Specifically, there
is a two-dimensional array M [1 .. n, 1 .. n] posted on the wall behind the Round Table, where
M [i, j] = M [j, i] is the reward to be paid if snails i and j meet.

Describe and analyze an algorithm to compute the maximum total reward that the organizers
could be forced to pay, given the array M as input.

5. SUBSETSUM and PARTITION are two closely-related NP-hard problems.

• SUBSETSUM: Given a set X of positive integers and an integer t, determine whether
there is a subset of X whose elements sum to t.

• PARTITION: Given a set X of positive integers, determine whether X can be partitioned
into two subsets whose elements sum to the same value.

(a) Describe a polynomial-time reduction from SUBSETSUM to PARTITION.

(b) Describe a polynomial-time reduction from PARTITION to SUBSETSUM.

Don’t forget to prove that your reductions are correct.

2

CS 473G Midterm 2 Questions (April 3, 2007) Spring 2007

You have 120 minutes to answer four of these questions.
Write your answers in the separate answer booklet.
You may take the question sheet with you when you leave.

1. Consider the following algorithm for finding the smallest element in an unsorted array:

RANDOMMIN(A[1 .. n]):
min←∞
for i← 1 to n in random order

if A[i] < min
min← A[i] (?)

return min

(a) [1 pt] In the worst case, how many times does RANDOMMIN execute line (?)?

(b) [3 pts] What is the probability that line (?) is executed during the last iteration of the
for loop?

(c) [6 pts] What is the exact expected number of executions of line (?)? (A correct Θ()
bound is worth 4 points.)

2. Describe and analyze an efficient algorithm to find the size of the smallest vertex cover of a
given tree. That is, given a tree T , your algorithm should find the size of the smallest subset C
of the vertices, such that every edge in T has at least one endpoint in C.

The following hint may be helpful. Suppose C is a vertex cover that contains a leaf `. If we
remove ` from the cover and insert its parent, we get another vertex cover of the same size
as C. Thus, there is a minimum vertex cover that includes none of the leaves of T (except
when the tree has only one or two vertices).

A tree whose smallest vertex cover has size 8.

1

CS 473G Midterm 2 Questions (April 3, 2007) Spring 2007

3. A dominating set for a graph G is a subset D of the vertices, such that every vertex in G is
either in D or has a neighbor in D. The MINDOMINATINGSET problem asks for the size of the
smallest dominating set for a given graph.

Recall the MINSETCOVER problem from lecture. The input consists of a ground set X and
a collection of subsets S1, S2, . . . , Sk ⊆ X. The problem is to find the minimum number of
subsets Si that completely cover X. This problem is NP-hard, because it is a generalization of
the vertex cover problem.

(a) [7 pts] Describe a polynomial-time reduction from MINDOMINATINGSET to MINSET-
COVER.

(b) [3 pts] Describe a polynomial-time O(log n)-approximation algorithm for MINDOMINATINGSET.
[Hint: There is a two-line solution.]

4. Let X be a set of n intervals on the real line. A proper coloring of X assigns a color to
each interval, so that any two overlapping intervals are assigned different colors. Describe
and analyze an efficient algorithm to compute the minimum number of colors needed to
properly color X. Assume that your input consists of two arrays L[1 .. n] and R[1 .. n], where
L[i] and R[i] are the left and right endpoints of the ith interval. As usual, if you use a greedy
algorithm, you must prove that it is correct.

1
2

5
1

24

4

5

3
4

1
3

5

3 3 2

A proper coloring of a set of intervals using five colors.

5. The linear arrangement problem asks, given an n-vertex directed graph as input, for an order-
ing v1, v2, . . . , vn of the vertices that maximizes the number of forward edges: directed edges
vi → vj such that i < j. Describe and analyze an efficient 2-approximation algorithm for this
problem.

5

6

1 2

4

3

A directed graph with six vertices with nine forward edges (black) and six backward edges (white)

2

CS 473G Final Exam Questions (May 5, 2007) Spring 2007

You have 180 minutes to answer six of these questions.
Write your answers in the separate answer booklet.

1. The d-dimensional hypercube is the graph defined as follows. There are 2d vertices, each
labeled with a different string of d bits. Two vertices are joined by an edge if and only if their
labels differ in exactly one bit.

00 10

11

0

1 01

000

100

010

110

001

101

011

111

The 1-dimensional, 2-dimensional, and 3-dimensional hypercubes.

(a) [8 pts] Recall that a Hamiltonian cycle is a closed walk that visits each vertex in a graph
exactly once. Prove that for all d ≥ 2, the d-dimensional hypercube has a Hamiltonian
cycle.

(b) [2 pts] Recall that an Eulerian circuit is a closed walk that traverses each edge in a graph
exactly once. Which hypercubes have an Eulerian circuit? [Hint: This is very easy.]

2. The University of Southern North Dakota at Hoople has hired you to write an algorithm to
schedule their final exams. Each semester, USNDH offers n different classes. There are r
different rooms on campus and t different time slots in which exams can be offered. You are
given two arrays E[1 .. n] and S[1 .. r], where E[i] is the number of students enrolled in the ith
class, and S[j] is the number of seats in the jth room. At most one final exam can be held in
each room during each time slot. Class i can hold its final exam in room j only if E[i] < S[j].

Describe and analyze an efficient algorithm to assign a room and a time slot to each class (or
report correctly that no such assignment is possible).

3. What is the exact expected number of leaves in an n-node treap? (The answer is obviously at
most n, so no partial credit for writing “O(n)”.) [Hint: What is the probably that the node
with the kth largest key is a leaf?]

4. A tonian path in a graph G is a simple path in G that visits more than half of the vertices
of G. (Intuitively, a tonian path is “most of a Hamiltonian path”.) Prove that it is NP-hard to
determine whether or not a given graph contains a tonian path.

A tonian path.

1

CS 473G Final Exam Questions (May 5, 2007) Spring 2007

5. A palindrome is a string that reads the same forwards and backwards, like x, pop, noon,
redivider, or amanaplanacatahamayakayamahatacanalpanama. Any string can be broken into
sequence of palindromes. For example, the string bubbaseesabanana (‘Bubba sees a banana.’)
can be broken into palindromes in several different ways; for example,

bub+ baseesab+ anana

b+ u+ bb+ a+ sees+ aba+ nan+ a

b+ u+ bb+ a+ sees+ a+ b+ anana

b+ u+ b+ b+ a+ s+ e+ e+ s+ a+ b+ a+ n+ a+ n+ a

Describe and analyze an efficient algorithm to find the smallest number of palindromes that
make up a given input string. For example, given the input string bubbaseesabanana, your
algorithm would return the integer 3.

6. Consider the following modification of the 2-approximation algorithm for minimum vertex
cover that we saw in class. The only real change is that we compute a set of edges instead of
a set of vertices.

APPROXMINMAXMATCHING(G):
M ← ∅
while G has at least one edge

(u, v)← any edge in G
G← G \ {u, v}
M ←M ∪ {(u, v)}

return M

(a) [2 pts] Prove that the output graph M is a matching—no pair of edges in M share a
common vertex.

(b) [2 pts] Prove that M is a maximal matching—M is not a proper subgraph of another
matching in G.

(c) [6 pts] Prove that M contains at most twice as many edges as the smallest maximal
matching in G.

The smallest maximal matching in a graph.

7. Recall that in the standard maximum-flow problem, the flow through an edge is limited by
the capacity of that edge, but there is no limit on how much flow can pass through a ver-
tex. Suppose each vertex v in our input graph has a capacity c(v) that limits the total flow
through v, in addition to the usual edge capacities. Describe and analyze an efficient algo-
rithm to compute the maximum (s, t)-flow with these additional constraints. [Hint: Reduce
to the standard max-flow problem.]

2

CS 573: Graduate Algorithms, Fall 2008
Homework 0

Due in class at 12:30pm, Wednesday, September 3, 2008

Name:
Net ID: Alias:

I understand the course policies.

• Each student must submit their own solutions for this homework. For all future homeworks,
groups of up to three students may submit a single, common solution.

• Neatly print your full name, your NetID, and an alias of your choice in the boxes above, and staple
this page to the front of your homework solutions. We will list homework and exam grades on the
course web site by alias.

Federal privacy law and university policy forbid us from publishing your grades, even anonymously,
without your explicit written permission. By providing an alias, you grant us permission to list
your grades on the course web site. If you do not provide an alias, your grades will not be
listed. For privacy reasons, your alias should not resemble your name, your NetID, your university
ID number, or (God forbid) your Social Security number.

• Please carefully read the course policies linked from the course web site. If you have any questions,
please ask during lecture or office hours, or post your question to the course newsgroup. Once you
understand the policies, please check the box at the top of this page. In particular:

– You may use any source at your disposal—paper, electronic, or human—but you must write
your solutions in your own words, and you must cite every source that you use.

– Unless explicitly stated otherwise, every homework problem requires a proof.

– Answering “I don’t know” to any homework or exam problem is worth 25% partial credit.

– Algorithms or proofs containing phrases like “and so on” or “repeat this for all n”, instead of
an explicit loop, recursion, or induction, will receive 0 points.

• This homework tests your familiarity with prerequisite material—big-Oh notation, elementary
algorithms and data structures, recurrences, discrete probability, graphs, and most importantly,
induction—to help you identify gaps in your background knowledge. You are responsible for
filling those gaps. The early chapters of any algorithms textbook should be sufficient review, but
you may also want consult your favorite discrete mathematics and data structures textbooks. If
you need help, please ask in office hours and/or on the course newsgroup.

CS 573 Homework 0 (due September 3, 2008) Fall 2008

1. (a) [5 pts] Solve the following recurrences. State tight asymptotic bounds for each function in
the form Θ(f (n)) for some recognizable function f (n). Assume reasonable but nontrivial
base cases. If your solution requires a particular base case, say so.

A(n) = 4A(n/8) +
p

n

B(n) = B(n/3) + 2B(n/4) + B(n/6) + n

C(n) = 6C(n− 1)− 9C(n− 2)

D(n) = max
n/3<k<2n/3

�
D(k) + D(n− k) + n

�

E(n) =
�

E(
p

n)
�2 · n

(b) [5 pts] Sort the functions in the box from asymptotically smallest to asymptotically largest,
indicating ties if there are any. Do not turn in proofs—just a sorted list of 16 functions—but
you should do them anyway, just for practice. We use the notation lg n= log2 n.

n lg n
p

n 3n

p
lg n lg

p
n 3

p
n p

3n

3lg n lg(3n) 3lg
p

n 3
p

lg n

p
3lg n lg(3

p
n) lg

p
3n

p
lg(3n)

2. Describe and analyze a data structure that stores set of n records, each with a numerical key and a
numerical priority, such that the following operation can be performed quickly:

• RANGETOP(a, z) : return the highest-priority record whose key is between a and z.

For example, if the (key, priority) pairs are

(3,1), (4,9), (9, 2), (6, 3), (5, 8), (7, 5), (1,10), (0, 7),

then RANGETOP(2, 8) would return the record with key 4 and priority 9 (the second in the list).

Analyze both the size of your data structure and the running time of your RANGETOP algorithm.
For full credit, your space and time bounds must both be as small as possible. You may assume
that no two records have equal keys or equal priorities, and that no record has a or z as its key.
[Hint: How would you compute the number of keys between a and z? How would you solve the
problem if you knew that a is always −∞?]

1

CS 573 Homework 0 (due September 3, 2008) Fall 2008

3. A Hamiltonian path in G is a path that visits every vertex of G exactly once. In this problem, you
are asked to prove that two classes of graphs always contain a Hamiltonian path.

(a) [5 pts] A tournament is a directed graph with exactly one edge between each pair of vertices.
(Think of the nodes in a round-robin tournament, where edges represent games, and each
edge points from the loser to the winner.) Prove that every tournament contains a directed
Hamiltonian path.

(b) [5 pts] Let d be an arbitrary non-negative integer. The d-dimensional hypercube is the graph
defined as follows. There are 2d vertices, each labeled with a different string of d bits. Two
vertices are joined by an edge if and only if their labels differ in exactly one bit. Prove that
the d-dimensional hypercube contains a Hamiltonian path.

000

100

010

110

001

101

011

111

Hamiltonian paths in a 6-node tournament and a 3-dimensional hypercube.

4. Penn and Teller agree to play the following game. Penn shuffles a standard deck1 of playing
cards so that every permutation is equally likely. Then Teller draws cards from the deck, one at a
time without replacement, until he draws the three of clubs (3♣), at which point the remaining
undrawn cards instantly burst into flames.

The first time Teller draws a card from the deck, he gives it to Penn. From then on, until the
game ends, whenever Teller draws a card whose value is smaller than the last card he gave to
Penn, he gives the new card to Penn.2 To make the rules unambiguous, they agree beforehand
that A= 1, J = 11, Q = 12, and K = 13.

(a) What is the expected number of cards that Teller draws?

(b) What is the expected maximum value among the cards Teller gives to Penn?

(c) What is the expected minimum value among the cards Teller gives to Penn?

(d) What is the expected number of cards that Teller gives to Penn?

Full credit will be given only for exact answers (with correct proofs, of course). [Hint: Let 13 = n.]

1In a standard deck of playing cards, each card has a value in the set {A, 2, 3,4,5,6,7,8,9,10, J ,Q, K} and a suit in the
set {♠,♥,♣,♦}; each of the 52 possible suit-value pairs appears in the deck exactly once. Actually, to make the game more
interesting, Penn and Teller normally use razor-sharp ninja throwing cards.

2Specifically, he hurls them from the opposite side of the stage directly into the back of Penn’s right hand. Ouch!

2

CS 573 Homework 0 (due September 3, 2008) Fall 2008

5. (a) The Fibonacci numbers Fn are defined by the recurrence Fn = Fn−1 + Fn−2, with base cases
F0 = 0 and F1 = 1. Here are the first several Fibonacci numbers:

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

0 1 1 2 3 5 8 13 21 34 55

Prove that any non-negative integer can be written as the sum of distinct, non-consecutive
Fibonacci numbers. That is, if the Fibonacci number Fi appears in the sum, it appears exactly
once, and its neighbors Fi−1 and Fi+1 do not appear at all. For example:

17= F7+ F4+ F2, 42= F9+ F6, 54= F9+ F7+ F5+ F3+ F1.

(b) The Fibonacci sequence can be extended backward to negative indices by rearranging the
defining recurrence: Fn = Fn+2 − Fn+1. Here are the first several negative-index Fibonacci
numbers:

F−10 F−9 F−8 F−7 F−6 F−5 F−4 F−3 F−2 F−1

−55 34 −21 13 −8 5 −3 2 −1 1

Prove that F−n =−Fn if and only if n is even.

(c) Prove that any integer—positive, negative, or zero—can be written as the sum of distinct,
non-consecutive Fibonacci numbers with negative indices. For example:

17= F−7+ F−5+ F−2, −42= F−10+ F−7, 54= F−9+ F−7+ F−5+ F−3+ F−1.

[Hint: Zero is both non-negative and even. Don’t use weak induction!]

3

CS 573: Graduate Algorithms, Fall 2008
Homework 1

Due at 11:59:59pm, Wednesday, September 17, 2008

For this and all future homeworks, groups of up to three students may submit a single,
common solution. Please neatly print (or typeset) the full name, NetID, and alias (if any) of
every group member on the first page of your submission.

1. Two graphs are said to be isomorphic if one can be transformed into the other just by relabeling the
vertices. For example, the graphs shown below are isomorphic; the left graph can be transformed
into the right graph by the relabeling (1,2, 3,4, 5,6, 7) 7→ (c, g, b, e, a, f , d).

1 2

3 4 5

6 7

c

g

b

e

f

a

d

Two isomorphic graphs.

Consider the following related decision problems:

• GRAPHISOMORPHISM: Given two graphs G and H, determine whether G and H are isomorphic.

• EVENGRAPHISOMORPHISM: Given two graphs G and H, such that every vertex in G and H has
even degree, determine whether G and H are isomorphic.

• SUBGRAPHISOMORPHISM: Given two graphs G and H, determine whether G is isomorphic to a
subgraph of H.

(a) Describe a polynomial-time reduction from EVENGRAPHISOMORPHISM to GRAPHISOMORPHISM.

(b) Describe a polynomial-time reduction from GRAPHISOMORPHISM to EVENGRAPHISOMORPHISM.

(c) Describe a polynomial-time reduction from GRAPHISOMORPHISM to SUBGRAPHISOMORPHISM.

(d) Prove that SUBGRAPHISOMORPHISM is NP-complete.

(e) What can you conclude about the NP-hardness of GRAPHISOMORPHISM? Justify your answer.

[Hint: These are all easy!]

2. (a) A tonian path in a graph G is a path that goes through at least half of the vertices of G. Show
that determining whether a graph has a tonian path is NP-complete.

(b) A tonian cycle in a graph G is a cycle that goes through at least half of the vertices of G. Show
that determining whether a graph has a tonian cycle is NP-complete. [Hint: Use part (a).]

3. The following variant of 3SAT is called either EXACT3SAT or 1IN3SAT, depending on who you ask.

Given a boolean formula in conjunctive normal form with 3 literals per clause, is there
an assignment that makes exactly one literal in each clause TRUE?

Prove that this problem is NP-complete.

CS 573 Homework 2 (due September 17, 2008) Fall 2008

4. Suppose you are given a magic black box that can solve the MAXCLIQUE problem in polynomial
time. That is, given an arbitrary graph G as input, the magic black box computes the number of
vertices in the largest complete subgraph of G. Describe and analyze a polynomial-time algorithm
that computes, given an arbitrary graph G, a complete subgraph of G of maximum size, using this
magic black box as a subroutine.

5. A boolean formula in exclusive-or conjunctive normal form (XCNF) is a conjunction (AND) of
several clauses, each of which is the exclusive-or of several literals. The XCNF-SAT problem asks
whether a given XCNF boolean formula is satisfiable. Either describe a polynomial-time algorithm
for XCNF-SAT or prove that it is NP-complete.

?6. [Extra credit] Describe and analyze an algorithm to solve 3SAT in O(φn poly(n)) time, where
φ = (1 +

p
5)/2 ≈ 1.618034. [Hint: Prove that in each recursive call, either you have just

eliminated a pure literal, or the formula has a clause with at most two literals. What recurrence
leads to this running time?]

0In class, I asserted that Gaussian elimination was probably discovered by Gauss, in violation of Stigler’s Law of Eponymy.
In fact, a method very similar to Gaussian elimination appears in the Chinese treatise Nine Chapters on the Mathematical
Art, believed to have been finalized before 100AD, although some material may predate emperor Qin Shi Huang’s infamous
‘burning of the books and burial of the scholars’ in 213BC. The great Chinese mathematician Liu Hui, in his 3rd-century
commentary on Nine Chapters, compares two variants of the method and counts the number of arithmetic operations used by
each, with the explicit goal of find the more efficient method. This is arguably the earliest recorded analysis of any algorithm.

1

CS 573: Graduate Algorithms, Fall 2008
Homework 2

Due at 11:59:59pm, Wednesday, October 1, 2008

• For this and all future homeworks, groups of up to three students may submit a single, common
solution. Please neatly print (or typeset) the full name, NetID, and alias (if any) of every group
member on the first page of your submission.

• We will use the following point breakdown to grade dynamic programming algorithms: 60% for a
correct recurrence (including base cases), 20% for correct running time analysis of the memoized
recurrence, 10% for correctly transforming the memoized recursion into an iterative algorithm.

• A greedy algorithm must be accompanied by a proof of correctness in order to receive any credit.

1. (a) Let X [1 .. m] and Y [1 .. n] be two arbitrary arrays of numbers. A common supersequence
of X and Y is another sequence that contains both X and Y as subsequences. Describe and
analyze an efficient algorithm to compute the function scs(X , Y), which gives the length of
the shortest common supersequence of X and Y .

(b) Call a sequence X [1 .. n] of numbers oscillating if X [i] < X [i + 1] for all even i, and
X [i] > X [i + 1] for all odd i. Describe and analyze an efficient algorithm to compute the
function los(X), which gives the length of the longest oscillating subsequence of an arbitrary
array X of integers.

(c) Call a sequence X [1 .. n] of numbers accelerating if 2 · X [i]< X [i− 1]+ X [i+ 1] for all i.
Describe and analyze an efficient algorithm to compute the function lxs(X), which gives the
length of the longest accelerating subsequence of an arbitrary array X of integers.

2. A palindrome is a string that reads the same forwards and backwards, like x, pop, noon, redivider,
or amanaplanacatahamayakayamahatacanalpanama. Any string can be broken into sequence of
palindromes. For example, the string bubbaseesabanana (‘Bubba sees a banana.’) can be broken
into palindromes in several different ways; for example:

bub + baseesab + anana

b + u + bb + a + sees + aba + nan + a

b + u + bb + a + sees + a + b + anana

b + u + b + b + a + s + e + e + s + a + b + a + n + a + n + a

Describe and analyze an efficient algorithm to find the smallest number of palindromes that make
up a given input string. For example, given the input string bubbaseesabanana, your algorithm
would return the integer 3.

3. Describe and analyze an algorithm to solve the traveling salesman problem in O(2n poly(n)) time.
Given an undirected n-vertex graph G with weighted edges, your algorithm should return the
weight of the lightest Hamiltonian cycle in G, or∞ if G has no Hamiltonian cycles. [Hint: The
obvious recursive algorithm takes O(n!) time.]

CS 573 Homework 2 (due October 1, 2008) Fall 2008

4. Ribonucleic acid (RNA) molecules are long chains of millions of nucleotides or bases of four
different types: adenine (A), cytosine (C), guanine (G), and uracil (U). The sequence of an RNA
molecule is a string b[1 .. n], where each character b[i] ∈ {A, C , G, U} corresponds to a base. In
addition to the chemical bonds between adjacent bases in the sequence, hydrogen bonds can form
between certain pairs of bases. The set of bonded base pairs is called the secondary structure of the
RNA molecule.

We say that two base pairs (i, j) and (i′, j′) with i < j and i′ < j′ overlap if i < i′ < j < j′ or
i′ < i < j′ < j. In practice, most base pairs are non-overlapping. Overlapping base pairs create
so-called pseudoknots in the secondary structure, which are essential for some RNA functions, but
are more difficult to predict.

Suppose we want to predict the best possible secondary structure for a given RNA sequence.
We will adopt a drastically simplified model of secondary structure:

• Each base can be paired with at most one other base.
• Only A-U pairs and C-G pairs can bond.
• Pairs of the form (i, i+ 1) and (i, i+ 2) cannot bond.
• Overlapping base pairs cannot bond.

The last restriction allows us to visualize RNA secondary structure as a sort of fat tree.

A U G A G U A
U

A
A
G
U
U

A
A
U G G U

U
A

A
A
C
U

A
A A U G U

ACAUU

C U
U
C

C
ACC

C
AUG

C
UACUCAU

CG

A

U
G

C

A

U

G

C
U

U

U
UC

G
A

Example RNA secondary structure with 21 base pairs, indicated by heavy red lines.
Gaps are indicated by dotted curves. This structure has score 22 + 22 + 82 + 12 + 72 + 42 + 72 = 187

(a) Describe and analyze an algorithm that computes the maximum possible number of base
pairs in a secondary structure for a given RNA sequence.

(b) A gap in a secondary structure is a maximal substring of unpaired bases. Large gaps lead to
chemical instabilities, so secondary structures with smaller gaps are more likely. To account
for this preference, let’s define the score of a secondary structure to be the sum of the squares
of the gap lengths.1 Describe and analyze an algorithm that computes the minimum possible
score of a secondary structure for a given RNA sequence.

1This score function has absolutely no connection to reality; I just made it up. Real RNA structure prediction requires much
more complicated scoring functions.

2

CS 573 Homework 2 (due October 1, 2008) Fall 2008

5. A subtree of a (rooted, ordered) binary tree T consists of a node and all its descendants. Design
and analyze an efficient algorithm to compute the largest common subtree of two given binary
trees T1 and T2; this is the largest subtree of T1 that is isomorphic to a subtree in T2. The contents
of the nodes are irrelevant; we are only interested in matching the underlying combinatorial
structure.

Two binary trees, with their largest common subtree emphasized

?6. [Extra credit] Let D[1 .. n] be an array of digits, each an integer between 0 and 9. A digital
subsequence of D is an sequence of positive integers composed in the usual way from disjoint
substrings of D. For example, 3, 4, 5, 6, 23, 38, 62, 64, 83, 279 is an increasing digital subsequence
of the first several digits of π:

3 , 1, 4 , 1, 5 , 9, 6 , 2,3 , 4, 3, 8 , 4, 6, 2 , 6, 4 , 3,3, 8, 3 , 2, 7,9

The length of a digital subsequence is the number of integers it contains, not the number of digits;
the previous example has length 10.

Describe and analyze an efficient algorithm to compute the longest increasing digital subse-
quence of D. [Hint: Be careful about your computational assumptions. How long does it take to
compare two k-digit numbers?]

3

CS 573: Graduate Algorithms, Fall 2008
Homework 3

Due at 11:59:59pm, Wednesday, October 22, 2008

• Groups of up to three students may submit a single, common solution. Please neatly print (or
typeset) the full name, NetID, and the HW0 alias (if any) of every group member on the first page
of your submission.

1. Consider an n× n grid, some of whose cells are marked. A monotone path through the grid starts
at the top-left cell, moves only right or down at each step, and ends at the bottom-right cell. We
want to compute the minimum number of monotone paths that cover all marked cells. The input
to our problem is an array M[1 .. n, 1 .. n] of booleans, where M[i, j] = TRUE if and only if cell
(i, j) is marked.

One of your friends suggests the following greedy strategy:

• Find (somehow) one “good” path π that covers the maximum number of marked cells.

• Unmark the cells covered by π.

• If any cells are still marked, recursively cover them.

Does this greedy strategy always compute an optimal solution? If yes, give a proof. If no, give a
counterexample.

Greedily covering the marked cells in a grid with four monotone paths.

2. Let X be a set of n intervals on the real line. A subset of intervals Y ⊆ X is called a tiling path if
the intervals in Y cover the intervals in X , that is, any real value that is contained in some interval
in X is also contained in some interval in Y . The size of a tiling path is just the number of intervals.

Describe and analyze an algorithm to compute the smallest tiling path of X as quickly as
possible. Assume that your input consists of two arrays X L[1 .. n] and XR[1 .. n], representing the
left and right endpoints of the intervals in X . If you use a greedy algorithm, you must prove that it
is correct.

A set of intervals. The seven shaded intervals form a tiling path.

CS 573 Homework 3 (due October 22, 2008) Fall 2008

3. Given a graph G with edge weights and an integer k, suppose we wish to partition the vertices of
G into k subsets S1, S2, . . . , Sk so that the sum of the weights of the edges that cross the partition
(i.e., that have endpoints in different subsets) is as large as possible.

(a) Describe an efficient (1− 1/k)-approximation algorithm for this problem. [Hint: Solve the
special case k = 2 first.]

(b) Now suppose we wish to minimize the sum of the weights of edges that do not cross the
partition. What approximation ratio does your algorithm from part (a) achieve for this new
problem? Justify your answer.

4. Consider the following heuristic for constructing a vertex cover of a connected graph G: Return
the set of all non-leaf nodes of any depth-first spanning tree. (Recall that a depth-first spanning
tree is a rooted tree; the root is not considered a leaf, even if it has only one neighbor in the tree.)

(a) Prove that this heuristic returns a vertex cover of G.

(b) Prove that this heuristic returns a 2-approximation to the minimum vertex cover of G.

(c) Prove that for any ε > 0, there is a graph for which this heuristic returns a vertex cover of
size at least (2− ε) ·OPT .

5. Consider the following greedy approximation algorithm to find a vertex cover in a graph:

GREEDYVERTEXCOVER(G):
C ←∅
while G has at least one edge

v← vertex in G with maximum degree
G← G \ v
C ← C ∪ v

return C

In class we proved that the approximation ratio of this algorithm is O(log n); your task is to prove
a matching lower bound. Specifically, for any positive integer n, describe an n-vertex graph G
such that GREEDYVERTEXCOVER(G) returns a vertex cover that is Ω(log n) times larger than optimal.
[Hint: Hn = Ω(log n).]

?6. [Extra credit] Consider the greedy algorithm for metric TSP: Start at an arbitrary vertex u, and at
each step, travel to the closest unvisited vertex.

(a) Prove that this greedy algorithm is an O(log n)-approximation algorithm, where n is the
number of vertices. [Hint: Show that the kth least expensive edge in the tour output by the
greedy algorithm has weight at most OPT/(n− k+ 1); try k = 1 and k = 2 first.]

?(b) Prove that the greedy algorithm for metric TSP is no better than an O(log n)-approximation.
That is, describe an infinite family of weighted graphs that satisfy the triangle inequality,
such that the greedy algorithm returns a cycle whose length is Ω(log n) times the optimal
TSP tour.

2

CS 573: Graduate Algorithms, Fall 2008
Homework 4

Due at 11:59:59pm, Wednesday, October 31, 2008

• Groups of up to three students may submit a single, common solution. Please neatly print (or
typeset) the full name, NetID, and the HW0 alias (if any) of every group member on the first page
of your submission.

• Unless a problem explicitly states otherwise, you can assume the existence of a function RANDOM(k),
which returns an integer uniformly distributed in the range {1,2, . . . , k} in O(1) time; the argu-
ment k must be a positive integer. For example, RANDOM(2) simulates a fair coin flip, and
RANDOM(1) always returns 1.

1. Death knocks on your door one cold blustery morning and challenges you to a game. Death knows
that you are an algorithms student, so instead of the traditional game of chess, Death presents you
with a complete binary tree with 4n leaves, each colored either black or white. There is a token at
the root of the tree. To play the game, you and Death will take turns moving the token from its
current node to one of its children. The game will end after 2n moves, when the token lands on a
leaf. If the final leaf is black, you die; if it’s white, you will live forever. You move first, so Death
gets the last turn.

∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧

∨ ∨ ∨

∨

You can decide whether it’s worth playing or not as follows. Imagine that the nodes at even
levels (where it’s your turn) are OR gates, the nodes at odd levels (where it’s Death’s turn) are
AND gates. Each gate gets its input from its children and passes its output to its parent. White and
black leaves stand represent TRUE and FALSE inputs, respectively. If the output at the top of the
tree is TRUE, then you can win and live forever! If the output at the top of the tree is FALSE, you
should challenge Death to a game of Twister instead.

(a) Describe and analyze a deterministic algorithm to determine whether or not you can win.
[Hint: This is easy!]

(b) Unfortunately, Death won’t let you even look at every node in the tree. Describe and analyze
a randomized algorithm that determines whether you can win in O(3n) expected time. [Hint:
Consider the case n= 1.]

(c) [Extra credit] Describe and analyze a randomized algorithm that determines whether you
can win in O(cn) expected time, for some constant c < 3. [Hint: You may not need to change
your algorithm at all.]

CS 573 Homework 4 (due October 31, 2008) Fall 2008

2. Consider the following randomized algorithm for choosing the largest bolt. Draw a bolt uniformly
at random from the set of n bolts, and draw a nut uniformly at random from the set of n nuts.
If the bolt is smaller than the nut, discard the bolt, draw a new bolt uniformly at random from
the unchosen bolts, and repeat. Otherwise, discard the nut, draw a new nut uniformly at random
from the unchosen nuts, and repeat. Stop either when every nut has been discarded, or every bolt
except the one in your hand has been discarded.

What is the exact expected number of nut-bolt tests performed by this algorithm? Prove your
answer is correct. [Hint: What is the expected number of unchosen nuts and bolts when the
algorithm terminates?]

3. (a) Prove that the expected number of proper descendants of any node in a treap is exactly equal
to the expected depth of that node.

(b) Why doesn’t the Chernoff-bound argument for depth imply that, with high probability, every
node in a treap has O(log n) descendants? The conclusion is obviously bogus—every n-node
treap has one node with exactly n descendants!—but what is the flaw in the argument?

(c) What is the expected number of leaves in an n-node treap? [Hint: What is the probability
that in an n-node treap, the node with kth smallest search key is a leaf?]

4. The following randomized algorithm, sometimes called “one-armed quicksort”, selects the rth
smallest element in an unsorted array A[1 .. n]. For example, to find the smallest element,
you would call RANDOMSELECT(A, 1); to find the median element, you would call RANDOM-
SELECT(A, bn/2c). The subroutine PARTITION(A[1 .. n], p) splits the array into three parts by compar-
ing the pivot element A[p] to every other element of the array, using n− 1 comparisons altogether,
and returns the new index of the pivot element.

RANDOMSELECT(A[1 .. n], r) :
k← PARTITION(A[1 .. n], RANDOM(n))

if r < k
return RANDOMSELECT(A[1 .. k− 1], r)

else if r > k
return RANDOMSELECT(A[k+ 1 .. n], r − k)

else
return A[k]

(a) State a recurrence for the expected running time of RANDOMSELECT, as a function of n and r.

(b) What is the exact probability that RANDOMSELECT compares the ith smallest and jth smallest
elements in the input array? The correct answer is a simple function of i, j, and r. [Hint:
Check your answer by trying a few small examples.]

(c) Show that for any n and r, the expected running time of RANDOMSELECT is Θ(n). You can use
either the recurrence from part (a) or the probabilities from part (b).

?(d) [Extra Credit] Find the exact expected number of comparisons executed by RANDOMSELECT,
as a function of n and r.

2

CS 573 Homework 4 (due October 31, 2008) Fall 2008

5. A meldable priority queue stores a set of keys from some totally-ordered universe (such as the
integers) and supports the following operations:

• MAKEQUEUE: Return a new priority queue containing the empty set.

• FINDMIN(Q): Return the smallest element of Q (if any).

• DELETEMIN(Q): Remove the smallest element in Q (if any).

• INSERT(Q, x): Insert element x into Q, if it is not already there.

• DECREASEKEY(Q, x , y): Replace an element x ∈ Q with a smaller key y. (If y > x , the
operation fails.) The input is a pointer directly to the node in Q containing x .

• DELETE(Q, x): Delete the element x ∈ Q. The input is a pointer directly to the node in Q
containing x .

• MELD(Q1,Q2): Return a new priority queue containing all the elements of Q1 and Q2; this
operation destroys Q1 and Q2.

A simple way to implement such a data structure is to use a heap-ordered binary tree, where
each node stores a key, along with pointers to its parent and two children. MELD can be imple-
mented using the following randomized algorithm:

MELD(Q1,Q2):
if Q1 is empty return Q2
if Q2 is empty return Q1

if key(Q1)> key(Q2)
swap Q1↔Q2

with probability 1/2
left(Q1)←MELD(left(Q1),Q2)

else
right(Q1)←MELD(right(Q1),Q2)

return Q1

(a) Prove that for any heap-ordered binary trees Q1 and Q2 (not just those constructed by the
operations listed above), the expected running time of MELD(Q1,Q2) is O(log n), where n is
the total number of nodes in both trees. [Hint: How long is a random root-to-leaf path in an
n-node binary tree if each left/right choice is made with equal probability?]

(b) Prove that MELD(Q1,Q2) runs in O(log n) time with high probability. [Hint: You don’t need
Chernoff bounds, but you might use the identity

�ck
k

�≤ (ce)k.]

(c) Show that each of the other meldable priority queue operations can be implemented with at
most one call to MELD and O(1) additional time. (This implies that every operation takes
O(log n) time with high probability.)

3

CS 573 Homework 4 (due October 31, 2008) Fall 2008

?6. [Extra credit] In the usual theoretical presentation of treaps, the priorities are random real
numbers chosen uniformly from the interval [0, 1], but in practice, computers only have access to
random bits. This problem asks you to analyze a modification of treaps that takes this limitation
into account.

Suppose the priority of a node v is abstractly represented as an infinite sequence πv[1 ..∞] of
random bits, which is interpreted as the rational number

priority(v) =
∞∑

i=1

πv[i] · 2−i .

However, only a finite number `v of these bits are actually known at any given time. When a
node v is first created, none of the priority bits are known: `v = 0. We generate (or ‘reveal’)
new random bits only when they are necessary to compare priorities. The following algorithm
compares the priorities of any two nodes in O(1) expected time:

LARGERPRIORITY(v, w):
for i← 1 to∞

if i > `v
`v ← i; πv[i]← RANDOMBIT

if i > `w
`w ← i; πw[i]← RANDOMBIT

if πv[i]> πw[i]
return v

else if πv[i]< πw[i]
return w

Suppose we insert n items one at a time into an initially empty treap. Let L =
∑

v `v denote
the total number of random bits generated by calls to LARGERPRIORITY during these insertions.

(a) Prove that E[L] = Θ(n).

(b) Prove that E[`v] = Θ(1) for any node v. [Hint: This is equivalent to part (a). Why?]

(c) Prove that E[`root] = Θ(log n). [Hint: Why doesn’t this contradict part (b)?]

4

CS 573: Graduate Algorithms, Fall 2008
Homework 5

Due at 11:59:59pm, Wednesday, November 19, 2008

• Groups of up to three students may submit a single, common solution. Please neatly print (or
typeset) the full name, NetID, and the HW0 alias (if any) of every group member on the first page
of your submission.

1. Recall the following problem from Homework 3: You are given an n× n grid, some of whose cells
are marked; the grid is represented by an array M[1 .. n, 1 .. n] of booleans, where M[i, j] = TRUE

if and only if cell (i, j) is marked. A monotone path through the grid starts at the top-left cell,
moves only right or down at each step, and ends at the bottom-right cell.

Describe and analyze an efficient algorithm to compute the smallest set of monotone paths
that covers every marked cell.

Greedily covering the marked cells in a grid with four monotone paths.

2. Suppose we are given a directed graph G = (V, E), two vertices s an t, and a capacity function
c : V → IR+. A flow f is feasible if the total flow into every vertex v is at most c(v):

∑
u

f (u�v)≤ c(v) for every vertex v.

Describe and analyze an efficient algorithm to compute a feasible flow of maximum value.

3. Suppose we are given an array A[1 .. m][1 .. n] of non-negative real numbers. We want to round A
to an integer matrix, by replacing each entry x in A with either bxc or dxe, without changing the
sum of entries in any row or column of A. For example:




1.2 3.4 2.4
3.9 4.0 2.1
7.9 1.6 0.5


 7−→



1 4 2
4 4 2
8 1 1




Describe an efficient algorithm that either rounds A in this fashion, or reports correctly that no
such rounding is possible.

CS 573 Homework 5 (due November 19, 2008) Fall 2008

4. Ad-hoc networks are made up of cheap, low-powered wireless devices. In principle1, these networks
can be used on battlefields, in regions that have recently suffered from natural disasters, and
in other situations where people might want to monitor conditions in hard-to-reach areas. The
idea is that a large collection of cheap, simple devices could be dropped into the area from an
airplane (for instance), and then they would somehow automatically configure themselves into an
efficiently functioning wireless network.

The devices can communication only within a limited range. We assume all the devices are
identical; there is a distance D such that two devices can communicate if and only if the distance
between them is at most D.

We would like our ad-hoc network to be reliable, but because the devices are cheap and
low-powered, they frequently fail. If a device detects that it is likely to fail, it should transmit
the information it has to some other backup device within its communication range. To improve
reliability, we require each device x to have k potential backup devices, all within distance D
of x; we call these k devices the backup set of x . Also, we do not want any device to be in the
backup set of too many other devices; otherwise, a single failure might affect a large fraction of
the network.

So suppose we are given the communication radius D, parameters b and k, and an array
d[1 .. n, 1 .. n] of distances, where d[i, j] is the distance between device i and device j. Describe
an algorithm that either computes a backup set of size k for each of the n devices, such that that
no device appears in more than b backup sets, or reports (correctly) that no good collection of
backup sets exists.

5. Let G = (V, E) be a directed graph where for each vertex v, the in-degree and out-degree of v are
equal. Let u and v be two vertices G, and suppose G contains k edge-disjoint paths from u to v.
Under these conditions, must G also contain k edge-disjoint paths from v to u? Give a proof or a
counterexample with explanation.

?6. [Extra credit] A rooted tree is a directed acyclic graph, in which every vertex has exactly one
incoming edge, except for the root, which has no incoming edges. Equivalently, a rooted tree
consists of a root vertex, which has edges pointing to the roots of zero or more smaller rooted
trees. Describe a polynomial-time algorithm to compute, given two rooted trees A and B, the
largest common rooted subtree of A and B.

[Hint: Let LCS(u, v) denote the largest common subtree whose root in A is u and whose
root in B is v. Your algorithm should compute LCS(u, v) for all vertices u and v using dynamic
programming. This would be easy if every vertex had O(1) children, and still straightforward if the
children of each node were ordered from left to right and the common subtree had to respect that
ordering. But for unordered trees with large degree, you need another trick to combine recursive
subproblems efficiently. Don’t waste your time trying to reduce the polynomial running time.]

1but not really in practice

2

CS 573: Graduate Algorithms, Fall 2008
Homework 6

Practice only

• This homework is only for practice; do not submit solutions. At least one (sub)problem (or
something very similar) will appear on the final exam.

1. An integer program is a linear program with the additional constraint that the variables must take
only integer values.

(a) Prove that deciding whether an integer program has a feasible solution is NP-complete.

(b) Prove that finding the optimal solution to an integer program is NP-hard.

[Hint: Almost any NP-hard decision problem can be formulated as an integer program. Pick your
favorite.]

2. Describe precisely how to dualize a linear program written in general form:

maximize
d∑

j=1

c j x j

subject to
d∑

j=1

ai j x j ≤ bi for each i = 1 .. p

d∑
j=1

ai j x j = bi for each i = p+ 1 .. p+ q

d∑
j=1

ai j x j ≥ bi for each i = p+ q+ 1 .. n

Keep the number of dual variables as small as possible. The dual of the dual of any linear
program should be syntactically identical to the original linear program.

3. Suppose you have a subroutine that can solve linear programs in polynomial time, but only if they
are both feasible and bounded. Describe an algorithm that solves arbitrary linear programs in
polynomial time, using this subroutine as a black box. Your algorithm should return an optimal
solution if one exists; if no optimum exists, your algorithm should report that the input instance
is UNBOUNDED or INFEASIBLE, whichever is appropriate. [Hint: Add one constraint to guarantee
boundedness; add one variable to guarantee feasibility.]

CS 573 Homework 6 (practice only) Fall 2008

4. Suppose you are given a set P of n points in some high-dimensional space IRd , each labeled either
black or white. A linear classifier is a d-dimensional vector c with the following properties:

• If p is a black point, then p · c > 0.

• If p is a while point, then p · c < 0.

Describe an efficient algorithm to find a linear classifier for the given data points, or correctly
report that none exists. [Hint: This is almost trivial, but not quite.]

Lots more linear programming problems can be found at http://www.ee.ucla.edu/ee236a/homework/
problems.pdf. Enjoy!

2

CS 573 Midterm 1 Questions (October 6, 2008) Fall 2008

You have 120 minutes to answer all five questions.
Write your answers in the separate answer booklet.

Please turn in your question sheet and your cheat sheet with your answers.

1. You and your eight-year-old nephew Elmo decide to play a simple card game. At the beginning of
the game, several cards are dealt face up in a long row. Then you and Elmo take turns removing
either the leftmost or rightmost card from the row, until all the cards are gone. Each card is worth
a different number of points. The player that collects the most points wins the game.

Like most eight-year-olds who haven’t studied algorithms, Elmo follows the obvious greedy
strategy every time he plays: Elmo always takes the card with the higher point value. Your task
is to find a strategy that will beat Elmo whenever possible. (It might seem mean to beat up on a
little kid like this, but Elmo absolutely hates it when grown-ups let him win.)

(a) Describe an initial sequence of cards that allows you to win against Elmo, no matter who
moves first, but only if you do not follow Elmo’s greedy strategy.

(b) Describe and analyze an algorithm to determine, given the initial sequence of cards, the
maximum number of points that you can collect playing against Elmo.

Here is a sample game, where both you and Elmo are using the greedy strategy. Elmo wins 8–7.
You cannot win this particular game, no matter what strategy you use.

Initial cards 2 4 5 1 3
Elmo takes the 3 2 4 5 1

�
3

You take the 2
�
2 4 5 1

Elmo takes the 4
�
4 5 1

You take the 5
�
5 1

Elmo takes the 1
�
1

2. Prove that the following problem is NP-hard: Given an undirected graph G, find the longest path
in G whose length is a multiple of 5.

This graph has a path of length 10, but no path of length 15.

1

CS 573 Midterm 1 Questions (October 6, 2008) Fall 2008

3. Suppose you are given an array A[1 .. n] of integers. Describe and analyze an algorithm that finds
the largest sum of of elements in a contiguous subarray A[i .. j].

For example, if the array A contains the numbers [−6,12,−7,0,14,−7,5], your algorithm
should return the number 19:

−6 12 −7 0 14 −7 5︸ ︷︷ ︸
19

4. A shuffle of two strings X and Y is formed by interspersing the characters into a new string, keeping
the characters of X and Y in the same order. For example, ‘bananaananas’ is a shuffle of ‘banana’
and ‘ananas’ in several different ways:

bananaananas bananaananas bananaananas

The strings ‘prodgyrnamammiincg’ and ‘dyprongarmammicing’ are both shuffles of ‘dynamic’ and
‘programming’:

prodgyrnamammiincg dyprongarmammicing

Given three strings A[1 .. m], B[1 .. n], and C[1 .. m+ n], describe and analyze an algorithm to
determine whether C is a shuffle of A and B.

5. Suppose you are given two sorted arrays A[1 .. m] and B[1 .. n] and an integer k. Describe an
algorithm to find the kth smallest element in the union of A and B in Θ(log(m+ n)) time. For
example, given the input

A[1 .. 8] = [0, 1,6, 9,12, 13,18, 20] B[1 .. 5] = [2, 5, 8, 17, 19] k = 6

your algorithm should return 8. You can assume that the arrays contain no duplicates. An
algorithm that works only in the special case n= m= k is worth 7 points.

[Hint: What can you learn from comparing one element of A to one element of B?]

2

CS 573 Midterm 2 Questions (November 5, 2008) Fall 2008

You have 120 minutes to answer all five questions.
Write your answers in the separate answer booklet.

Please turn in your question sheet and your cheat sheet with your answers.

1. Consider the following modification of the ‘dumb’ 2-approximation algorithm for minimum vertex
cover that we saw in class. The only change is that we output a set of edges instead of a set of
vertices.

APPROXMINMAXMATCHING(G):
M ←∅
while G has at least one edge

let (u, v) be any edge in G
remove u and v (and their incident edges) from G
add (u, v) to M

return M

(a) Prove that this algorithm computes a matching—no two edges in M share a common vertex.

(b) Prove that M is a maximal matching—M is not a proper subgraph of another matching in G.

(c) Prove that M contains at most twice as many edges as the smallest maximal matching in G.

The smallest maximal matching in a graph. A cycle and a star.

2. Consider the following heuristic for computing a small vertex cover of a graph.

• Assign a random priority to each vertex, chosen independently and uniformly from the real
interval [0, 1] (just like treaps).

• Mark every vertex that does not have larger priority than all of its neighbors.

For any graph G, let OPT(G) denote the size of the smallest vertex cover of G, and let M(G)
denote the number of nodes marked by this algorithm.

(a) Prove that the set of vertices marked by this heuristic is always a vertex cover.

(b) Suppose the input graph G is a cycle, that is, a connected graph where every vertex has
degree 2. What is the expected value of M(G)/OPT (G)? Prove your answer is correct.

(c) Suppose the input graph G is a star, that is, a tree with one central vertex of degree n− 1.
What is the expected value of M(G)/OPT (G)? Prove your answer is correct.

1

CS 573 Midterm 2 Questions (November 5, 2008) Fall 2008

3. Suppose we want to write an efficient function SHUFFLE(A[1 .. n]) that randomly permutes the
array A, so that each of the n! permutations is equally likely.

(a) Prove that the following SHUFFLE algorithm is not correct. [Hint: There is a two-line proof.]

SHUFFLE(A[1 .. n]):
for i = 1 to n

swap A[i]↔ A[RANDOM(n)]

(b) Describe and analyze a correct SHUFFLE algorithm whose expected running time is O(n).
Your algorithm may call the function RANDOM(k), which returns an integer uniformly dis-
tributed in the range {1, 2, . . . , k} in O(1) time. For example, RANDOM(2) simulates a fair coin
flip, and RANDOM(1) always returns 1.

4. Let Φ be a legal input for 3SAT—a boolean formula in conjunctive normal form, with exactly three
literals in each clause. Recall that an assignment of boolean values to the variables in Φ satisfies
a clause if at least one of its literals is TRUE. The maximum satisfiability problem, sometimes
called MAX3SAT, asks for the maximum number of clauses that can be simultaneously satisfied
by a single assignment. Solving MAXSAT exactly is clearly also NP-hard; this problem asks about
approximation algorithms.

(a) Let MaxSat(Φ) denote the maximum number of clauses that can be simultaneously satisfied
by one variable assignment. Suppose we randomly assign each variable in Φ to be TRUE or
FALSE, each with equal probability. Prove that the expected number of satisfied clauses is at
least 7

8
MaxSat(Φ).

(b) Let MinUnsat(Φ) denote the minimum number of clauses that can be simultaneously unsatis-
fied by a single assignment. Prove that it is NP-hard to approximate MinUnsat(Φ) within a
factor of 1010100

.

5. Consider the following randomized algorithm for generating biased random bits. The subroutine
FAIRCOIN returns either 0 or 1 with equal probability; the random bits returned by FAIRCOIN are
mutually independent.

ONEINTHREE:
if FAIRCOIN = 0

return 0
else

return 1−ONEINTHREE

(a) Prove that ONEINTHREE returns 1 with probability 1/3.

(b) What is the exact expected number of times that this algorithm calls FAIRCOIN? Prove your
answer is correct.

(c) Now suppose you are given a subroutine ONEINTHREE that generates a random bit that is
equal to 1 with probability 1/3. Describe a FAIRCOIN algorithm that returns either 0 or 1 with
equal probability, using ONEINTHREE as a subroutine. Your only source of randomness is
ONEINTHREE; in particular, you may not use the RANDOM function from problem 3.

(d) What is the exact expected number of times that your FAIRCOIN algorithm calls ONEINTHREE?
Prove your answer is correct.

2

CS 573 Final Exam Questions (December 17, 2008) Fall 2008

You have 180 minutes to answer all seven questions.
Write your answers in the separate answer booklet.

You can keep everything except your answer booklet when you leave.

1. An integer program is a linear program with the additional constraint that the variables must
take only integer values. Prove that deciding whether an integer program has a feasible solution
is NP-complete. [Hint: Almost any NP-hard decision problem can be formulated as an integer
program. Pick your favorite.]

2. Recall that a priority search tree is a binary tree in which every node has both a search key and
a priority, arranged so that the tree is simultaneously a binary search tree for the keys and a
min-heap for the priorities. A heater is a priority search tree in which the priorities are given by
the user, and the search keys are distributed uniformly and independently at random in the real
interval [0, 1]. Intuitively, a heater is the ‘opposite’ of a treap.

The following problems consider an n-node heater T whose node priorities are the integers
from 1 to n. We identify nodes in T by their priorities; thus, ‘node 5’ means the node in T with
priority 5. The min-heap property implies that node 1 is the root of T . Finally, let i and j be
integers with 1≤ i < j ≤ n.

(a) Prove that in a random permutation of the (i+ 1)-element set {1, 2, . . . , i, j}, elements i and
j are adjacent with probability 2/(i+ 1).

(b) Prove that node i is an ancestor of node j with probability 2/(i+ 1). [Hint: Use part (a)!]

(c) What is the probability that node i is a descendant of node j? [Hint: Don’t use part (a)!]

(d) What is the exact expected depth of node j?

3. The UIUC Faculty Senate has decided to convene a committee to determine whether Chief Illiniwek
should become the official mascot symbol of the University of Illinois Global Campus. Exactly
one faculty member must be chosen from each academic department to serve on this committee.
Some faculty members have appointments in multiple departments, but each committee member
will represent only one department. For example, if Prof. Blagojevich is affiliated with both the
Department of Corruption and the Department of Stupidity, and he is chosen as the Stupidity rep-
resentative, then someone else must represent Corruption. Finally, University policy requires that
any committee on virtual mascots symbols must contain the same number of assistant professors,
associate professors, and full professors. Fortunately, the number of departments is a multiple of 3.

Describe an efficient algorithm to select the membership of the Global Illiniwek Committee.
Your input is a list of all UIUC faculty members, their ranks (assistant, associate, or full), and their
departmental affiliation(s). There are n faculty members and 3k departments.

4. Let α(G) denote the number of vertices in the largest independent set in a graph G. Prove that
the following problem is NP-hard: Given a graph G, return any integer between α(G)− 31337
and α(G) + 31337.

1

CS 573 Final Exam Questions (December 17, 2008) Fall 2008

5. Let G = (V, E) be a directed graph with capacities c : E → IR+, a source vertex s, and a target
vertex t. Suppose someone hands you a function f : E→ IR. Describe and analyze a fast algorithm
to determine whether f is a maximum (s, t)-flow in G.

6. For some strange reason, you decide to ride your bicycle 3688 miles from Urbana to Wasilla,
Alaska, to join in the annual Wasilla Mining Festival and Helicopter Wolf Hunt. The festival starts
exactly 32 days from now, so you need to bike an average of 109 miles each day. Because you are
a poor starving student, you can only afford to sleep at campgrounds, which are unfortunately not
spaced exactly 109 miles apart. So some days you will have to ride more than average, and other
days less, but you would like to keep the variation as small as possible. You settle on a formal
scoring system to help decide where to sleep; if you ride x miles in one day, your score for that
day is (109− x)2. What is the minimum possible total score for all 32 days?

More generally, suppose you have D days to travel DP miles, there are n campgrounds along
your route, and your score for traveling x miles in one day is (x − P)2. You are given a sorted
array dist[1 .. n] of real numbers, where dist[i] is the distance from your starting location to the
ith campground; it may help to also set dist[0] = 0 and dist[n+ 1] = DP. Describe and analyze a
fast algorithm to compute the minimum possible score for your trip. The running time of your
algorithm should depend on the integers D and n, but not on the real number P.

7. Describe and analyze efficient algorithms for the following problems.

(a) Given a set of n integers, does it contain elements a and b such that a+ b = 0?

(b) Given a set of n integers, does it contain elements a, b, and c such that a+ b = c?

— Randall Munroe, xkcd, December 17, 2008 (http://xkcd.com/518/)

2

CS 473 Homework 0 (due January 27, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 0

Due in class at 11:00am, Tuesday, January 27, 2009

• This homework tests your familiarity with prerequisite material—big-Oh notation, elementary
algorithms and data structures, recurrences, graphs, and most importantly, induction—to help
you identify gaps in your background knowledge. You are responsible for filling those gaps.
The early chapters of any algorithms textbook should be sufficient review, but you may also want
consult your favorite discrete mathematics and data structures textbooks. If you need help, please
ask in office hours and/or on the course newsgroup.

• Each student must submit individual solutions for this homework. For all future homeworks,
groups of up to three students may submit a single, common solution.

• Please carefully read the course policies linked from the course web site. If you have any questions,
please ask during lecture or office hours, or post your question to the course newsgroup. In
particular:

– Submit five separately stapled solutions, one for each numbered problem, with your name
and NetID clearly printed on each page. Please do not staple everything together.

– You may use any source at your disposal—paper, electronic, or human—but you must write
your solutions in your own words, and you must cite every source that you use.

– Unless explicitly stated otherwise, every homework problem requires a proof.

– Answering “I don’t know” to any homework or exam problem (except for extra credit
problems) is worth 25% partial credit.

– Algorithms or proofs containing phrases like “and so on” or “repeat this process for all n”,
instead of an explicit loop, recursion, or induction, will receive 0 points.

Write the sentence “I understand the course policies." at the top of your solution to problem 1.

1. Professor George O’Jungle has a 27-node binary tree, in which every node is labeled with a unique
letter of the Roman alphabet or the character &. Preorder and postorder traversals of the tree visit
the nodes in the following order:

• Preorder: I Q J H L E M V O T S B R G Y Z K C A & F P N U D W X

• Postorder: H E M L J V Q S G Y R Z B T C P U D N F W & X A K O I

(a) List the nodes in George’s tree in the order visited by an inorder traversal.

(b) Draw George’s tree.

1

CS 473 Homework 0 (due January 27, 2009) Spring 2009

2. (a) [5 pts] Solve the following recurrences. State tight asymptotic bounds for each function in
the formΘ(f (n)) for some recognizable function f (n). Assume reasonable but nontrivial base
cases. If your solution requires a particular base case, say so. Do not submit proofs—just a
list of five functions—but you should do them anyway, just for practice.

A(n) = 10A(n/5) + n

B(n) = 2B
��

n+ 3

4

��
+ 5n6/7− 8

r
n

log n
+ 9
�

log10 n
�
− 11

C(n) = 3C(n/2) + C(n/3) + 5C(n/6) + n2

D(n) = max
0<k<n

(D(k) + D(n− k) + n)

E(n) =
E(n− 1) E(n− 3)

E(n− 2)
[Hint: Write out the first 20 terms.]

(b) [5 pts] Sort the following functions from asymptotically smallest to asymptotically largest,
indicating ties if there are any. Do not submit proofs—just a sorted list of 16 functions—but
you should do them anyway, just for practice.

Write f (n) � g(n) to indicate that f (n) = o(g(n)), and write f (n) ≡ g(n) to mean
f (n) = Θ(g(n)). We use the notation lg n= log2 n.

n lg n
p

n 3n

p
lg n lg

p
n 3

p
n p

3n

3lg n lg(3n) 3lg
p

n 3
p

lg n

p
3lg n lg(3

p
n) lg

p
3n

p
lg(3n)

3. Suppose you are given a pointer to the head of singly linked list. Normally, each node in the list
has a pointer to the next element, and the last node’s pointer is NULL. Unfortunately, your list
might have been corrupted (by a bug in somebody else’s code, of course), so that some node’s
pointer leads back to an earlier node in the list.

Top: A standard singly-linked list. Bottom: A corrupted singly linked list.

Describe an algorithm1 that determines whether the linked list is corrupted or not. Your algorithm
must not modify the list. For full credit, your algorithm should run in O(n) time, where n is the
number of nodes in the list, and use O(1) extra space (not counting the list itself).

1Since you understand the course policies, you know what this phrase means. Right?

2

CS 473 Homework 0 (due January 27, 2009) Spring 2009

4. (a) Prove that any integer (positive, negative, or zero) can be written in the form
∑

i±3i , where
the exponents i are distinct non-negative integers. For example:

42= 34− 33− 32− 31

25= 33− 31+ 30

17= 33− 32− 30

(b) Prove that any integer (positive, negative, or zero) can be written in the form
∑

i(−2)i,
where the exponents i are distinct non-negative integers. For example:

42= (−2)6+ (−2)5+ (−2)4+ (−2)0

25= (−2)6+ (−2)5+ (−2)3+ (−2)0

17= (−2)4+ (−2)0

[Hint: Don’t use weak induction. In fact, never use weak induction.]

5. An arithmetic expression tree is a binary tree where every leaf is labeled with a variable, every
internal node is labeled with an arithmetic operation, and every internal node has exactly two
children. For this problem, assume that the only allowed operations are + and ×. Different leaves
may or may not represent different variables.

Every arithmetic expression tree represents a function, transforming input values for the leaf
variables into an output value for the root, by following two simple rules: (1) The value of any
+-node is the sum of the values of its children. (2) The value of any ×-node is the product of the
values of its children.

Two arithmetic expression trees are equivalent if they represent the same function; that is,
the same input values for the leaf variables always leads to the same output value at both roots.
An arithmetic expression tree is in normal form if the parent of every +-node (if any) is another
+-node.

×
x +

y z

+

×
x z

×
y x

×
x+

yz

Three equivalent expression trees. Only the third is in normal form.

Prove that for any arithmetic expression tree, there is an equivalent arithmetic expression tree
in normal form.

3

CS 473 Homework 0 (due January 27, 2009) Spring 2009

?6. [Extra credit] You may be familiar with the story behind the famous Tower of Hanoï puzzle:

At the great temple of Benares, there is a brass plate on which three vertical diamond shafts are
fixed. On the shafts are mounted n golden disks of decreasing size. At the time of creation, the
god Brahma placed all of the disks on one pin, in order of size with the largest at the bottom.
The Hindu priests unceasingly transfer the disks from peg to peg, one at a time, never placing a
larger disk on a smaller one. When all of the disks have been transferred to the last pin, the
universe will end.

Recently the temple at Benares was relocated to southern California, where the monks are
considerably more laid back about their job. At the “Towers of Hollywood”, the golden disks have
been replaced with painted plywood, and the diamond shafts have been replaced with Plexiglas.
More importantly, the restriction on the order of the disks has been relaxed. While the disks are
being moved, the bottom disk on any pin must be the largest disk on that pin, but disks further up
in the stack can be in any order. However, after all the disks have been moved, they must be in
sorted order again.

The Towers of Hollywood. The sixth move leaves the disks out of order.

Describe an algorithm that moves a stack of n disks from one pin to the another using the
smallest possible number of moves. Exactly how many moves does your algorithm perform? [Hint:
The Hollywood monks can bring about the end of the universe considerably faster than their
Benaresian counterparts.]

4

CS 473 Homework 1 (due February 3, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 1

Due Tuesday, February 3, 2009 at 11:59:59pm.

• Groups of up to three students may submit a single, common solution for this and all future
homeworks. Please clearly write every group member’s name and NetID on every page of your
submission.

1. The traditional Devonian/Cornish drinking song “The Barley Mow” has the following pseudolyrics,
where container[i] is the name of a container that holds 2i ounces of beer. One version of the song
uses the following containers: nipperkin, gill pot, half-pint, pint, quart, pottle, gallon, half-anker,
anker, firkin, half-barrel, barrel, hogshead, pipe, well, river, and ocean. (Every container in this list
is twice as big as its predecessor, except that a firkin is actually 2.25 ankers, and the last three
units are just silly.)

BARLEYMOW(n):
“Here’s a health to the barley-mow, my brave boys,”
“Here’s a health to the barley-mow!”

“We’ll drink it out of the jolly brown bowl,”
“Here’s a health to the barley-mow!”
“Here’s a health to the barley-mow, my brave boys,”
“Here’s a health to the barley-mow!”

for i← 1 to n
“We’ll drink it out of the container[i], boys,”
“Here’s a health to the barley-mow!”
for j← i downto 1

“The container[j],”
“And the jolly brown bowl!”
“Here’s a health to the barley-mow!”
“Here’s a health to the barley-mow, my brave boys,”
“Here’s a health to the barley-mow!”

(a) Suppose each container name container[i] is a single word, and you can sing four words
a second. How long would it take you to sing BARLEYMOW(n)? (Give a tight asymptotic
bound.) [Hint: Is ‘barley-mow’ one word or two? Does it matter?]

(b) If you want to sing this song for n> 20, you’ll have to make up your own container names.
To avoid repetition, these names will get progressively longer as n increases1. Suppose
container[n] has Θ(log n) syllables, and you can sing six syllables per second. Now how long
would it take you to sing BARLEYMOW(n)? (Give a tight asymptotic bound.)

(c) Suppose each time you mention the name of a container, you actually drink the corresponding
amount of beer: one ounce for the jolly brown bowl, and 2i ounces for each container[i].
Assuming for purposes of this problem that you are at least 21 years old, exactly how many
ounces of beer would you drink if you sang BARLEYMOW(n)? (Give an exact answer, not just
an asymptotic bound.)

1“We’ll drink it out of the hemisemidemiyottapint, boys!”

1

CS 473 Homework 1 (due February 3, 2009) Spring 2009

2. For this problem, a subtree of a binary tree means any connected subgraph; a binary tree is complete
if every leaf has exactly the same depth. Describe and analyze a recursive algorithm to compute
the largest complete subtree of a given binary tree. Your algorithm should return the root and the
depth of this subtree.

The largest complete subtree of this binary tree has depth 2.

3. (a) Describe and analyze a recursive algorithm to reconstruct a binary tree, given its preorder
and postorder node sequences (as in Homework 0, problem 1).

(b) Describe and analyze a recursive algorithm to reconstruct a binary tree, given its preorder
and inorder node sequences.

2

CS 473 Homework 10 (Practice only) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 10

Due Tuesday, May 5, 2009 at 11:59:59pm

• Groups of up to three students may submit a single, common solution. Please clearly write every
group member’s name and NetID on every page of your submission.

• This homework is optional. If you submit solutions, they will be graded, and your overall
homework grade will be the average of ten homeworks (Homeworks 0–10, dropping the lowest).
If you do not submit solutions, your overall homework grade will be the average of nine homeworks
(Homeworks 0–9, dropping the lowest).

1. Suppose you are given a magic black box that can determine in polynomial time, given an
arbitrary graph G, the number of vertices in the largest complete subgraph of G. Describe and
analyze a polynomial-time algorithm that computes, given an arbitrary graph G, a complete
subgraph of G of maximum size, using this magic black box as a subroutine.

2. PLANARCIRCUITSAT is a special case of CIRCUITSAT where the input circuit is drawn ‘nicely’ in the
plane — no two wires cross, no two gates touch, and each wire touches only the gates it connects.
(Not every circuit can be drawn this way!) As in the general CIRCUITSAT problem, we want to
determine if there is an input that makes the circuit output TRUE?

Prove that PLANARCIRCUITSAT is NP-complete. [Hint: XOR.]

3. For each problem below, either describe a polynomial-time algorithm or prove that the problem is
NP-complete.

(a) A double-Eulerian circuit in an undirected graph G is a closed walk that traverses every edge
in G exactly twice. Given a graph G, does G have a double-Eulerian circuit?

(b) A double-Hamiltonian circuit in an undirected graph G is a closed walk that visits every vertex
in G exactly twice. Given a graph G, does G have a double-Hamiltonian circuit?

1

CS 473 Homework 2 (due February 10, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 2

Written solutions due Tuesday, February 10, 2009 at 11:59:59pm.

• Roughly 1/3 of the students will give oral presentations of their solutions to the TAs. Please check
Compass to check whether you are supposed give an oral presentation for this homework.
Please see the course web page for further details.

• Groups of up to three students may submit a common solution. Please clearly write every group
member’s name and NetID on every page of your submission.

• Please start your solution to each numbered problem on a new sheet of paper. Please don’t staple
solutions for different problems together.

• For this homework only: These homework problems ask you to describe recursive backtracking
algorithms for various problems. Don’t use memoization or dynamic programming to make your
algorithms more efficient; you’ll get to do that on HW3. Don’t analyze the running times of your
algorithms. The only things you should submit for each problem are (1) a description of your
recursive algorithm, and (2) a brief justification for its correctness.

1. A basic arithmetic expression is composed of characters from the set {1,+,×} and parentheses.
Almost every integer can be represented by more than one basic arithmetic expression. For
example, all of the following basic arithmetic expression represent the integer 14:

1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1

((1+ 1)× (1+ 1+ 1+ 1+ 1)) + ((1+ 1)× (1+ 1))

(1+ 1)× (1+ 1+ 1+ 1+ 1+ 1+ 1)

(1+ 1)× (((1+ 1+ 1)× (1+ 1)) + 1)

Describe a recursive algorithm to compute, given an integer n as input, the minimum number of
1’s in a basic arithmetic expression whose value is n. The number of parentheses doesn’t matter,
just the number of 1’s. For example, when n= 14, your algorithm should return 8, for the final
expression above.

2. A sequence A = 〈a1, a2, . . . , an〉 is bitonic if there is an index i with 1 < i < n, such that the
prefix 〈a1, a2, . . . , ai〉 is strictly increasing and the suffix 〈ai , ai+1, . . . , an〉 is strictly decreasing. In
particular, a bitonic sequence must contain at least three elements.

Describe a recursive algorithm to compute, given a sequence A, the length of the longest bitonic
subsequence of A.

1

CS 473 Homework 2 (due February 10, 2009) Spring 2009

3. A palindrome is a string that reads the same forwards and backwards, like x, pop, noon, redivider,
or amanaplanacatahamayakayamahatacanalpanama. Any string can be broken into sequence of
palindromes. For example, the string bubbaseesabanana (‘Bubba sees a banana.’) can be broken
into palindromes in several different ways; for example:

bub + baseesab + anana

b + u + bb + a + sees + aba + nan + a

b + u + bb + a + sees + a + b + anana

b + u + b + b + a + s + e + e + s + a + b + a + n + a + n + a

Describe a recursive algorithm to compute the minimum number of palindromes that make up a
given input string. For example, given the input string bubbaseesabanana, your algorithm would
return the integer 3.

2

CS 473 Homework 3 (due February 17, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 3

Written solutions due Tuesday, February 17, 2009 at 11:59:59pm.

1. Redo Homework 2, but now with dynamic programming!

(a) Describe and analyze an efficient algorithm to compute the minimum number of 1’s in a
basic arithmetic expression whose value is a given positive integer.

(b) Describe and analyze an efficient algorithm to compute the length of the longest bitonic
subsequence of a given input sequence.

(c) Describe and analyze an efficient algorithm to compute the minimum number of palindromes
that make up a given input string.

Please see Homework 2 for more detailed descriptions of each problem. Solutions for Home-
work 2 will be posted Friday, after the HW2 oral presentations. You may (and should!) use
anything from those solutions without justification.

2. Let T be a rooted tree with integer weights on its edges, which could be positive, negative, or
zero. Design an algorithm to find the minimum-length path from a node in T down to one of its
descendants. The length of a path is the sum of the weights of its edges. For example, given the
tree shown below, your algorithm should return the number −12. For full credit, your algorithm
should run in O(n) time.

57 –1

0–5 6

12 2–4

–53 –4

–5

–4

2

–3 0

4 6 –7

–10

–5 1

The minimum-weight downward path in this tree has weight −12.

3. Describe and analyze an efficient algorithm to compute the longest common subsequence of
three given strings. For example, given the input strings EPIDEMIOLOGIST, REFRIGERATION, and
SUPERCALIFRAGILISTICEXPIALODOCIOUS, your algorithm should return the number 5, because
the longest common subsequence is EIEIO.

1

CS 473 Homework 3½ (Practice only) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 3½

Practice only

1. After graduating from UIUC, you are hired by a mobile phone company to plan the placement of
new cell towers along a long, straight, nearly-deserted highway out west. Each cell tower can
transmit the same fixed distance from its location. Federal law requires that any building along
the highway must be within the broadcast range of at least one tower. On the other hand, your
company wants to build as few towers as possble. Given the locations of the buildings, where
should you build the towers?

More formally, suppose you are given a set X = {x1, x2, . . . , xn} of points on the real number
line. Describe an algorithm to compute the minimum number of intervals of length 1 that can
cover all the points in X . For full credit, your algorithm should run in O(n log n) time.

A set of points that can be covered by four unit intervals.

2. (a) The left spine of a binary tree is a path starting at the root and following only left-child
pointers down to a leaf. What is the expected number of nodes in the left spine of an n-node
treap?

(b) What is the expected number of leaves in an n-node treap? [Hint: What is the probability
that in an n-node treap, the node with kth smallest search key is a leaf?]

(c) Prove that the expected number of proper descendants of any node in a treap is exactly equal
to the expected depth of that node.

3. Death knocks on your door one cold blustery morning and challenges you to a game. Death knows
that you are an algorithms student, so instead of the traditional game of chess, Death presents you
with a complete binary tree with 4n leaves, each colored either black or white. There is a token at
the root of the tree. To play the game, you and Death will take turns moving the token from its
current node to one of its children. The game will end after 2n moves, when the token lands on a
leaf. If the final leaf is black, you die; if it’s white, you will live forever. You move first, so Death
gets the last turn.

∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧

∨ ∨ ∨

∨

1

CS 473 Homework 3½ (Practice only) Spring 2009

You can decide whether it’s worth playing or not as follows. Imagine that the nodes at even
levels (where it’s your turn) are OR gates, the nodes at odd levels (where it’s Death’s turn) are
AND gates. Each gate gets its input from its children and passes its output to its parent. White and
black stand for TRUE and FALSE. If the output at the top of the tree is TRUE, then you can win and
live forever! If the output at the top of the tree is FALSE, you should challenge Death to a game of
Twister instead.

(a) Describe and analyze a deterministic algorithm to determine whether or not you can win.
[Hint: This is easy!]

(b) Unfortunately, Death won’t give you enough time to look at every node in the tree. Describe
a randomized algorithm that determines whether you can win in O(3n) expected time. [Hint:
Consider the case n= 1.]

?(c) Describe a randomized algorithm that determines whether you can win in O(cn) expected
time, for some constant c < 3. [Hint: You may not need to change your algorithm from
part (b) at all!]

2

CS 473 Homework 4 (due March 2, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 3

Written solutions due Tuesday, March 2, 2009 at 11:59:59pm.

1. A meldable priority queue stores a set of keys from some totally-ordered universe (such as the
integers) and supports the following operations:

• MAKEQUEUE: Return a new priority queue containing the empty set.

• FINDMIN(Q): Return the smallest element of Q (if any).

• DELETEMIN(Q): Remove the smallest element in Q (if any).

• INSERT(Q, x): Insert element x into Q, if it is not already there.

• DECREASEKEY(Q, x , y): Replace an element x ∈ Q with a smaller key y. (If y > x , the
operation fails.) The input is a pointer directly to the node in Q containing x .

• DELETE(Q, x): Delete the element x ∈ Q. The input is a pointer directly to the node in Q
containing x .

• MELD(Q1,Q2): Return a new priority queue containing all the elements of Q1 and Q2; this
operation destroys Q1 and Q2.

A simple way to implement such a data structure is to use a heap-ordered binary tree, where
each node stores a key, along with pointers to its parent and two children. MELD can be imple-
mented using the following randomized algorithm:

MELD(Q1,Q2):
if Q1 is empty return Q2
if Q2 is empty return Q1

if key(Q1)> key(Q2)
swap Q1↔Q2

with probability 1/2
left(Q1)←MELD(left(Q1),Q2)

else
right(Q1)←MELD(right(Q1),Q2)

return Q1

(a) Prove that for any heap-ordered binary trees Q1 and Q2 (not just those constructed by the
operations listed above), the expected running time of MELD(Q1,Q2) is O(log n), where n is
the total number of nodes in both trees. [Hint: How long is a random root-to-leaf path in an
n-node binary tree if each left/right choice is made with equal probability?]

(b) Show that each of the other meldable priority queue operations can be implemented with at
most one call to MELD and O(1) additional time. (This implies that every operation takes
O(log n) expected time.)

1

CS 473 Homework 4 (due March 2, 2009) Spring 2009

2. Recall that a priority search tree is a binary tree in which every node has both a search key and
a priority, arranged so that the tree is simultaneously a binary search tree for the keys and a
min-heap for the priorities. A heater is a priority search tree in which the priorities are given by
the user, and the search keys are distributed uniformly and independently at random in the real
interval [0, 1]. Intuitively, a heater is the ‘opposite’ of a treap.

The following problems consider an n-node heater T whose node priorities are the integers
from 1 to n. We identify nodes in T by their priorities; thus, ‘node 5’ means the node in T with
priority 5. The min-heap property implies that node 1 is the root of T . Finally, let i and j be
integers with 1≤ i < j ≤ n.

(a) Prove that in a random permutation of the (i+ 1)-element set {1, 2, . . . , i, j}, elements i and
j are adjacent with probability 2/(i+ 1).

(b) Prove that node i is an ancestor of node j with probability 2/(i+ 1). [Hint: Use part (a)!]

(c) What is the probability that node i is a descendant of node j? [Hint: Don’t use part (a)!]

(d) What is the exact expected depth of node j?

3. Let P be a set of n points in the plane. The staircase of P is the set of all points in the plane that
have at least one point in P both above and to the right.

A set of points in the plane and its staircase (shaded).

(a) Describe an algorithm to compute the staircase of a set of n points in O(n log n) time.

(b) Describe and analyze a data structure that stores the staircase of a set of points, and an
algorithm ABOVE?(x , y) that returns TRUE if the point (x , y) is above the staircase, or FALSE

otherwise. Your data structure should use O(n) space, and your ABOVE? algorithm should
run in O(log n) time.

TRUE

FALSE

Two staircase queries.

2

CS 473 Homework 5 (due March 9, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 5

Written solutions due Tuesday, March 9, 2009 at 11:59:59pm.

1. Remember the difference between stacks and queues? Good.

(a) Describe how to implement a queue using two stacks and O(1) additional memory, so that
the amortized time for any enqueue or dequeue operation is O(1). The only access you have
to the stacks is through the standard methods PUSH and POP.

(b) A quack is an abstract data type that combines properties of both stacks and queues. It can
be viewed as a list of elements written left to right such that three operations are possible:

• Push: add a new item to the left end of the list;
• Pop: remove the item on the left end of the list;
• Pull: remove the item on the right end of the list.

Implement a quack using three stacks and O(1) additional memory, so that the amortized
time for any push, pop, or pull operation is O(1). Again, you are only allowed to access the
stacks through the standard methods PUSH and POP.

2. In a dirty binary search tree, each node is labeled either clean or dirty. The lazy deletion scheme
used for scapegoat trees requires us to purge the search tree, keeping all the clean nodes and
deleting all the dirty nodes, as soon as half the nodes become dirty. In addition, the purged tree
should be perfectly balanced.

Describe and analyze an algorithm to purge an arbitrary n-node dirty binary search tree in
O(n) time, using at most O(log n) space (in addition to the tree itself). Don’t forget to include the
recursion stack in your space bound. An algorithm that uses Θ(n) additional space in the worst
case is worth half credit.

3. Some applications of binary search trees attach a secondary data structure to each node in the
tree, to allow for more complicated searches. Maintaining these secondary structures usually
complicates algorithms for keeping the top-level search tree balanced.

Let T be an arbitrary binary tree. Suppose every node v in T stores a secondary structure
of size O(size(v)), which can be built in O(size(v)) time, where size(v) denotes the number of
descendants of v. Performing a rotation at any node v now requires O(size(v)) time, because we
have to rebuild one of the secondary structures.

(a) [1 pt] Overall, how much space does this data structure use in the worst case?

(b) [1 pt] How much space does this structure use if the primary search tree T is perfectly
balanced?

(c) [2 pts] Suppose T is a splay tree. Prove that the amortized cost of a splay (and therefore of
a search, insertion, or deletion) is Ω(n). [Hint: This is easy!]

1

CS 473 Homework 5 (due March 9, 2009) Spring 2009

(d) [3 pts] Now suppose T is a scapegoat tree, and that rebuilding the subtree rooted at v
requires Θ(size(v) log size(v)) time (because we also have to rebuild the secondary structures
at every descendant of v). What is the amortized cost of inserting a new element into T?

(e) [3 pts] Finally, suppose T is a treap. What’s the worst-case expected time for inserting a new
element into T?

2

CS 473 Homework 6 (due March 17, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 6

Written solutions due Tuesday, March 17, 2009 at 11:59:59pm.

1. Let G be an undirected graph with n nodes. Suppose that G contains two nodes s and t, such that
every path from s to t contains more than n/2 edges.

(a) Prove that G must contain a vertex v that lies on every path from s to t.
(b) Describe an algorithm that finds such a vertex v in O(V + E) time.

2. Suppose you are given a graph G with weighted edges and a minimum spanning tree T of G.

(a) Describe an algorithm to update the minimum spanning tree when the weight of a single
edge e is decreased.

(b) Describe an algorithm to update the minimum spanning tree when the weight of a single
edge e is increased.

In both cases, the input to your algorithm is the edge e and its new weight; your algorithms should
modify T so that it is still a minimum spanning tree. [Hint: Consider the cases e ∈ T and e 6∈ T
separately.]

3. (a) Describe and analyze an algorithm to compute the size of the largest connected component
of black pixels in an n× n bitmap B[1 .. n, 1 .. n].
For example, given the bitmap below as input, your algorithm should return the number 9,
because the largest conected black component (marked with white dots on the right) contains
nine pixels.

9

(b) Design and analyze an algorithm BLACKEN(i, j) that colors the pixel B[i, j] black and returns
the size of the largest black component in the bitmap. For full credit, the amortized running
time of your algorithm (starting with an all-white bitmap) must be as small as possible.
For example, at each step in the sequence below, we blacken the pixel marked with an X.
The largest black component is marked with white dots; the number underneath shows the
correct output of the BLACKEN algorithm.

9 14 14 16 17

(c) What is the worst-case running time of your BLACKEN algorithm?

1

CS 473 Homework 6½ (practice only) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 6½

Practice only—do not submit solutions

1. In class last Tuesday, we discussed Ford’s generic shortest-path algorithm—relax arbitrary tense
edges until no edge is tense. This problem asks you to fill in part of the proof that this algorithm is
correct.

(a) Prove that after every call to RELAX, for every vertex v, either dist(v) =∞ or dist(v) is the
total weight of some path from s to v.

(b) Prove that for every vertex v, when the generic algorithm halts, either pred(v) = NULL and
dist(v) =∞, or dist(v) is the total weight of the predecessor chain ending at v:

s→·· ·→pred(pred(v))→pred(v)→v.

2. Describe a modification of Shimbel’s shortest-path algorithm that actually computes a negative-
weight cycle if any such cycle is reachable from s, or a shortest-path tree rooted at s if there is no
such cycle. Your modified algorithm should still run in O(V E) time.

3. After graduating you accept a job with Aerophobes- R-Us, the leading traveling agency for people
who hate to fly. Your job is to build a system to help customers plan airplane trips from one city to
another. All of your customers are afraid of flying (and by extension, airports), so any trip you
plan needs to be as short as possible. You know all the departure and arrival times of all the flights
on the planet.

Suppose one of your customers wants to fly from city X to city Y . Describe an algorithm to
find a sequence of flights that minimizes the total time in transit—the length of time from the
initial departure to the final arrival, including time at intermediate airports waiting for connecting
flights. [Hint: Modify the input data and apply Dijkstra’s algorithm.]

1

CS 473 Homework 6¾ (practice only) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 6¾

Practice only—do not submit solutions

1. Mulder and Scully have computed, for every road in the United States, the exact probability that
someone driving on that road won’t be abducted by aliens. Agent Mulder needs to drive from
Langley, Virginia to Area 51, Nevada. What route should he take so that he has the least chance of
being abducted?

More formally, you are given a directed graph G = (V, E), where every edge e has an indepen-
dent safety probability p(e). The safety of a path is the product of the safety probabilities of its
edges. Design and analyze an algorithm to determine the safest path from a given start vertex s to
a given target vertex t.

0.2

0.7

0.50.9

0.1

0.5
Langley, VA

Area 51, AZ

Memphis, TN

Las Vegas, NV

For example, with the probabilities shown above, if Mulder tries to drive directly from Langley to
Area 51, he has a 50% chance of getting there without being abducted. If he stops in Memphis, he
has a 0.7× 0.9 = 63% chance of arriving safely. If he stops first in Memphis and then in Las Vegas,
he has a 1− 0.7× 0.1× 0.5= 96.5% chance of being abducted! (That’s how they got Elvis, you
know.)

2. Let G = (V, E) be a directed graph with weighted edges; edge weights could be positive, negative,
or zero. Suppose the vertices of G are partitioned into k disjoint subsets V1, V2, . . . , Vk; that is,
every vertex of G belongs to exactly one subset Vi . For each i and j, let δ(i, j) denote the minimum
shortest-path distance between any vertex in Vi and any vertex in Vj:

δ(i, j) =min{dist(u, v) | u ∈ Vi and v ∈ Vj}.

Describe an algorithm to compute δ(i, j) for all i and j in time O(V E+ kE log E). The output from
your algorithm is a k× k array.

1

CS 473 Homework 6¾ (practice only) Spring 2009

3. Recall1 that a deterministic finite automaton (DFA) is formally defined as a tuple M = (Σ,Q, q0, F,δ),
where the finite set Σ is the input alphabet, the finite set Q is the set of states, q0 ∈Q is the start
state, F ⊆ Q is the set of final (accepting) states, and δ : Q ×Σ→ Q is the transition function.
Equivalently, a DFA is a directed (multi-)graph with labeled edges, such that each symbol in Σ is
the label of exactly one edge leaving any vertex. There is a special ‘start’ vertex q0, and a subset of
the vertices are marked as ‘accepting states’. Any string in Σ∗ describes a unique walk starting
at q0.

Stephen Kleene2 proved that the language accepted by any DFA is identical to the language
described by some regular expression. This problem asks you to develop a variant of the Floyd-
Warshall all-pairs shortest path algorithm that computes a regular expression that is equivalent to
the language accepted by a given DFA.

Suppose the input DFA M has n states, numbered from 1 to n, where (without loss of generality)
the start state is state 1. Let L(i, j, r) denote the set of all words that describe walks in M from
state i to state j, where every intermediate state lies in the subset {1, 2, . . . , r}; thus, the language
accepted by the DFA is exactly ⋃

q∈F

L(1, q, n).

Let R(i, j, r) be a regular expression that describes the language L(i, j, r).

(a) What is the regular expression R(i, j, 0)?

(b) Write a recurrence for the regular expression R(i, j, r) in terms of regular expressions of the
form R(i′, j′, r − 1).

(c) Describe a polynomial-time algorithm to compute R(i, j, n) for all states i and j. (Assume
that you can concatenate two regular expressions in O(1) time.)

1No, really, you saw this in CS 273/373.
2Pronounced ‘clay knee’, not ‘clean’ or ‘clean-ee’ or ‘clay-nuh’ or ‘dimaggio’.

2

CS 473 Homework 7 (due April 14, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 7

Due Tuesday, April 14, 2009 at 11:59:59pm.

• Groups of up to three students may submit a single, common solution for this and all future
homeworks. Please clearly write every group member’s name and NetID on every page of your
submission.

1. A graph is bipartite if its vertices can be colored black or white such that every edge joins vertices
of two different colors. A graph is d-regular if every vertex has degree d. A matching in a graph is
a subset of the edges with no common endpoints; a matching is perfect if it touches every vertex.

(a) Prove that every regular bipartite graph contains a perfect matching.

(b) Prove that every d-regular bipartite graph is the union of d perfect matchings.

2. Let G = (V, E) be a directed graph where for each vertex v, the in-degree of v and out-degree of v
are equal. Let u and v be two vertices G, and suppose G contains k edge-disjoint paths from u
to v. Under these conditions, must G also contain k edge-disjoint paths from v to u? Give a proof
or a counterexample with explanation.

3. A flow f is called acyclic if the subgraph of directed edges with positive flow contains no directed
cycles. A flow is positive if its value is greater than 0.

(a) A path flow assigns positive values only to the edges of one simple directed path from s to t.
Prove that every positive acyclic flow can be written as the sum of a finite number of path
flows.

(b) Describe a flow in a directed graph that cannot be written as the sum of path flows.

(c) A cycle flow assigns positive values only to the edges of one simple directed cycle. Prove that
every flow can be written as the sum of a finite number of path flows and cycle flows.

(d) Prove that for any flow f , there is an acyclic flow with the same value as f . (In particular,
this implies that some maximum flow is acyclic.)

1

CS 473 Homework 8 (due April 21, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 8

Due Tuesday, April 21, 2009 at 11:59:59pm.

• Groups of up to three students may submit a single, common solution for this and all future
homeworks. Please clearly write every group member’s name and NetID on every page of your
submission.

1. A cycle cover of a given directed graph G = (V, E) is a set of vertex-disjoint cycles that cover all the
vertices. Describe and analyze an efficient algorithm to find a cycle cover for a given graph, or
correctly report that non exists. [Hint: Use bipartite matching!]

2. Suppose we are given an array A[1 .. m][1 .. n] of non-negative real numbers. We want to round A
to an integer matrix, by replacing each entry x in A with either bxc or dxe, without changing the
sum of entries in any row or column of A. For example:




1.2 3.4 2.4
3.9 4.0 2.1
7.9 1.6 0.5


 7−→



1 4 2
4 4 2
8 1 1




Describe an efficient algorithm that either rounds A in this fashion, or reports correctly that no
such rounding is possible.

3. Ad-hoc networks are made up of cheap, low-powered wireless devices. In principle1, these networks
can be used on battlefields, in regions that have recently suffered from natural disasters, and in
other hard-to-reach areas. The idea is that several simple devices could be distributed randomly
in the area of interest (for example, dropped from an airplane), and then they would somehow
automatically configure themselves into an efficiently functioning wireless network.

The devices can communicate only within a limited range. We assume all the devices are
identical; there is a distance D such that two devices can communicate if and only if the distance
between them is at most D.

We would like our ad-hoc network to be reliable, but because the devices are cheap and
low-powered, they frequently fail. If a device detects that it is likely to fail, it should transmit all its
information to some other backup device within its communication range. To improve reliability,
we require each device x to have k potential backup devices, all within distance D of x; we call
these k devices the backup set of x . Also, we do not want any device to be in the backup set of
too many other devices; otherwise, a single failure might affect a large fraction of the network.

Suppose we are given the communication distance D, parameters b and k, and an array
d[1 .. n, 1 .. n] of distances, where d[i, j] is the distance between device i and device j. Describe
and analyze an algorithm that either computes a backup set of size k for each of the n devices,
such that that no device appears in more than b backup sets, or correctly reports that no good
collection of backup sets exists.

1but not so much in practice

1

CS 473 Homework 9 (due April 28, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 9

Due Tuesday, April 28, 2009 at 11:59:59pm.

• Groups of up to three students may submit a single, common solution for this and all future
homeworks. Please clearly write every group member’s name and NetID on every page of your
submission.

1. Death knocks on your door one cold blustery morning and challenges you to a game. Death knows
that you are an algorithms student, so instead of the traditional game of chess, Death presents you
with a complete binary tree with 4n leaves, each colored either black or white. There is a token at
the root of the tree. To play the game, you and Death will take turns moving the token from its
current node to one of its children. The game will end after 2n moves, when the token lands on a
leaf. If the final leaf is black, you die; if it is white, you will live forever. You move first, so Death
gets the last turn.

∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧

∨ ∨ ∨

∨

You can decide whether it is worth playing or not as follows. Imagine that the nodes at even
levels (where it is your turn) are OR gates, the nodes at odd levels (where it is Death’s turn) are
AND gates. Each gate gets its input from its children and passes its output to its parent. White and
black leaves stand represent TRUE and FALSE inputs, respectively. If the output at the top of the
tree is TRUE, then you can win and live forever! If the output at the top of the tree is FALSE, you
should challenge Death to a game of Twister instead.

(a) Describe and analyze a deterministic algorithm to determine whether or not you can win.
[Hint: This is easy.]

(b) Prove that every deterministic algorithm must examine every leaf of the tree in the worst case.
Since there are 4n leaves, this implies that any deterministic algorithm must take Ω(4n) time
in the worst case. Use an adversary argument; in other words, assume that Death cheats.

(c) [Extra credit] Describe a randomized algorithm that runs in O(3n) expected time.

2. We say that an array A[1 .. n] is k-sorted if it can be divided into k blocks, each of size n/k, such
that the elements in each block are larger than the elements in earlier blocks, and smaller than
elements in later blocks. The elements within each block need not be sorted.

For example, the following array is 4-sorted:

1 2 4 3 7 6 8 5 10 11 9 12 15 13 16 14

1

CS 473 Homework 9 (due April 28, 2009) Spring 2009

(a) Describe an algorithm that k-sorts an arbitrary array in time O(n log k).

(b) Prove that any comparison-based k-sorting algorithm requires Ω(n log k) comparisons in the
worst case.

(c) Describe an algorithm that completely sorts an already k-sorted array in time O(n log(n/k)).

(d) Prove that any comparison-based algorithm to completely sort a k-sorted array requires
Ω(n log(n/k)) comparisons in the worst case.

In all cases, you can assume that n/k is an integer.

3. UIUC has just finished constructing the new Reingold Building, the tallest dormitory on campus. In
order to determine how much insurance to buy, the university administration needs to determine
the highest safe floor in the building. A floor is consdered safe if a drunk student an egg can fall
from a window on that floor and land without breaking; if the egg breaks, the floor is considered
unsafe. Any floor that is higher than an unsafe floor is also considered unsafe. The only way to
determine whether a floor is safe is to drop an egg from a window on that floor.

You would like to find the lowest unsafe floor L by performing as few tests as possible;
unfortunately, you have only a very limited supply of eggs.

(a) Prove that if you have only one egg, you can find the lowest unsafe floor with L tests. [Hint:
Yes, this is trivial.]

(b) Prove that if you have only one egg, you must perform at least L tests in the worst case. In
other words, prove that your algorithm from part (a) is optimal. [Hint: Use an adversary
argument.]

(c) Describe an algorithm to find the lowest unsafe floor using two eggs and only O(
p

L) tests.
[Hint: Ideally, each egg should be dropped the same number of times. How many floors can
you test with n drops?]

(d) Prove that if you start with two eggs, you must perform at least Ω(
p

L) tests in the worst
case. In other words, prove that your algorithm from part (c) is optimal.

?(e) [Extra credit!] Describe an algorithm to find the lowest unsafe floor using k eggs, using as
few tests as possible, and prove your algorithm is optimal for all values of k.

2

CS 473 Head-Banging Session 0 (January 20–21, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Head Banging Session 0

January 20 and 21, 2009

1. Solve the following recurrences. If base cases are provided, find an exact closed-form solution.
Otherwise, find a solution of the form Θ(f (n)) for some function f .

• Warmup: You should be able to solve these almost as fast as you can write down the answers.

(a) A(n) = A(n− 1) + 1, where A(0) = 0.

(b) B(n) = B(n− 5) + 2, where B(0) = 17.

(c) C(n) = C(n− 1) + n2

(d) D(n) = 3 D(n/2) + n2

(e) E(n) = 4 E(n/2) + n2

(f) F(n) = 5 F(n/2) + n2

• Real practice:

(a) A(n) = A(n/3) + 3A(n/5) + A(n/15) + n

(b) B(n) = min
0<k<n

(B(k) + B(n− k) + n)

(c) C(n) = max
n/4<k<3n/4

(C(k) + C(n− k) + n)

(d) D(n) = max
0<k<n

�
D(k) + D(n− k) + k(n− k)

�
, where D(1) = 0

(e) E(n) = 2E(n− 1) + E(n− 2), where E(0) = 1 and E(1) = 2

(f) F(n) =
1

F(n− 1) F(n− 2)
, where F(0) = 1 and F(2) = 2

?(g) G(n) = n G(
p

n) + n2

2. The Fibonacci numbers Fn are defined recursively as follows: F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2
for every integer n≥ 2. The first few Fibonacci numbers are 0, 1, 1, 2, 3,5, 8,13, 21,34, 55,

Prove that any non-negative integer can be written as the sum of distinct non-consecutive
Fibonacci numbers. That is, if any Fibonacci number Fn appears in the sum, then its neighbors
Fn−1 and Fn+1 do not. For example:

88= 55+ 21+ 8+ 3+ 1 = F10+ F8+ F6+ F4+ F2

42= 34+ 8 = F9+ F6

17= 13+ 3+ 1 = F7+ F4+ F2

1

CS 473 Head-Banging Session 0 (January 20–21, 2009) Spring 2009

3. Whenever groups of pigeons gather, they instinctively establish a pecking order. For any pair
of pigeons, one pigeon always pecks the other, driving it away from food or potential mates.
The same pair of pigeons always chooses the same pecking order, even after years of separation,
no matter what other pigeons are around. Surprisingly, the overall pecking order can contain
cycles—for example, pigeon A pecks pigeon B, which pecks pigeon C, which pecks pigeon A.

Prove that any finite set of pigeons can be arranged in a row from left to right so that every
pigeon pecks the pigeon immediately to its left. Pretty please.

2

CS 473 Head-Banging 1 (January 27 and 28, 2009) Spring 2009

1. An inversion in an array A[1 .. n] is a pair of indices (i, j) such that i < j and A[i] > A[j]. The
number of inversions in an n-element array is between 0 (if the array is sorted) and

�n
2

�
(if the

array is sorted backward).

Describe and analyze an algorithm to count the number of inversions in an n-element array in
O(n log n) time.

2. (a) Prove that the following algorithm actually sorts its input.

STOOGESORT(A[0 .. n− 1]) :
if n= 2 and A[0]> A[1]

swap A[0]↔ A[1]
else if n> 2

m= d2n/3e
STOOGESORT(A[0 .. m− 1])
STOOGESORT(A[n−m .. n− 1])
STOOGESORT(A[0 .. m− 1])

(b) Would STOOGESORT still sort correctly if we replaced m= d2n/3e with m= b2n/3c? Justify
your answer.

(c) State a recurrence (including base case(s)) for the number of comparisons executed by
STOOGESORT.

(d) Solve this recurrence. [Hint: Ignore the ceiling.]

(e) To think about on your own: Prove that the number of swaps executed by STOOGESORT is
at most
�n

2

�
.

3. Consider the following restricted variants of the Tower of Hanoi puzzle. In each problem, the
needles are numbered 0, 1, and 2, and your task is to move a stack of n disks from needle 1 to
needle 2.

(a) Suppose you are forbidden to move any disk directly between needle 1 and needle 2; every
move must involve needle 0. Describe an algorithm to solve this version of the puzzle using
as few moves as possible. Exactly how many moves does your algorithm make?

(b) Suppose you are only allowed to move disks from needle 0 to needle 2, from needle 2 to
needle 1, or from needle 1 to needle 0. Equivalently, Suppose the needles are arranged
in a circle and numbered in clockwise order, and you are only allowed to move disks
counterclockwise. Describe an algorithm to solve this version of the puzzle using as few
moves as possible. Exactly how many moves does your algorithm make?

10 32 4

65 87

The first eight moves in a counterclockwise Towers of Hanoi solution

1

CS 473 Head-Banging 1 (January 27 and 28, 2009) Spring 2009

Æ(c) Finally, suppose you are forbidden to move any disk directly from needle 1 to 2, but any
other move is allowed. Describe an algorithm to solve this version of the puzzle using as few
moves as possible. Exactly how many moves does your algorithm make?
[Hint: This version is considerably harder than the other two.]

2

CS 473 HBS 10 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 10

1. Consider the following problem, called BOX-DEPTH: Given a set of n axis-aligned rectangles in the
plane, how big is the largest subset of these rectangles that contain a common point?

(a) Describe a polynomial-time reduction from BOX-DEPTH to MAX-CLIQUE.

(b) Describe and analyze a polynomial-time algorithm for BOX-DEPTH. [Hint: O(n3) time should
be easy, but O(n log n) time is possible.]

(c) Why don’t these two results imply that P = N P?

2. Suppose you are given a magic black box that can determine in polynomial time, given an arbitrary
weighted graph G, the length of the shortest Hamiltonian cycle in G. Describe and analyze a
polynomial-time algorithm that computes, given an arbitrary weighted graph G, the shortest
Hamiltonian cycle in G, using this magic black box as a subroutine.

3. Prove that the following problems are NP-complete.

(a) Given an undirected graph G, does G have a spanning tree in which every node has degree
at most 17?

(b) Given an undirected graph G, does G have a spanning tree with at most 42 leaves?

1

CS 473 HBS 11 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 11

1. You step in a party with a camera in your hand. Each person attending the party has some friends
there. You want to have exactly one picture of each person in your camera. You want to use the
following protocol to collect photos. At each step, the person that has the camera in his hand takes
a picture of one of his/her friends and pass the camera to him/her. Of course, you only like the
solution if it finishes when the camera is in your hand. Given the friendship matrix of the people
in the party, design a polynomial algorithm that decides whether this is possible, or prove that this
decision problem is NP-hard.

2. A boolean formula is in disjunctive normal form (DNF) if it is a disjunctions (OR) of several clauses,
each of which is the conjunction (AND) of several literals, each of which is either a variable or its
negation. For example:

(a ∧ b ∧ c)∨ (ā ∧ b)∨ (c̄ ∧ x)

Given a DNF formula give a polynomial algorithm to check whether it is satisfiable or not. Why
this does not imply P = N P.

3. Prove that the following problems are NP-complete.

(a) Given an undirected graph G, does G have a spanning tree in which every node has degree
at most 17?

(b) Given an undirected graph G, does G have a spanning tree with at most 42 leaves?

1

CS 473 HBS 2 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 2

1. Consider two horizontal lines l1 and l2 in the plane. There are n points on l1 with x-coordinates
A= a1, a2, . . . , an and there are n points on l2 with x-coordinates B = b1, b2, . . . , bn. Design an
algorithm to compute, given A and B, a largest set S of non-intersecting line segments subject to
the following restrictions:

(a) Any segment in S connects ai to bi for some i(1≤ i ≤ n).

(b) Any two segments in S do not intersect.

2. Consider a 2n x2n chess board with one (arbitrarily chosen) square removed. Prove that any such
chessboard can be tiled without gaps or overlaps by L-shaped pieces of 3 squares each. Can you
give an algorithm to do the tiling?

3. Given a string of letters Y = y1 y2 . . . yn, a segmentation of Y is a partition of its letters into
contiguous blocks of letters (also called words). Each word has a quality that can be computed by
a given oracle (e.g. you can call quality("meet") to get the quality of the word "meet"). The quality
of a segmentation is equal to the sum over the qualities of its words. Each call to the oracle takes
linear time in terms of the argument; that is quality(S) takes O(|S|).

Using the given oracle, give an algorithm that takes a string Y and computes a segmentation
of maximum total quality.

1

CS 473 HBS 3 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 3

1. Change your recursive solutions for the following problems to efficient algorithms (Hint: use
dynamic programming!).

(a) Consider two horizontal lines l1 and l2 in the plane. There are n points on l1 with
x-coordinates A = a1, a2, . . . , an and there are n points on l2 with x-coordinates B =
b1, b2, . . . , bn. Design an algorithm to compute, given A and B, a largest set S of non-
intersecting line segments subject to the following restrictions:

i. Any segment in S connects ai to bi for some i(1≤ i ≤ n).
ii. Any two segments in S do not intersect.

(b) Given a string of letters Y = y1 y2 . . . yn, a segmentation of Y is a partition of its letters
into contiguous blocks of letters (also called words). Each word has a quality that can be
computed by a given oracle (e.g. you can call quality("meet") to get the quality of the word
"meet"). The quality of a segmentation is equal to the sum over the qualities of its words.
Each call to the oracle takes linear time in terms of the argument; that is quality(S) takes
O(|S|).
Using the given oracle, give an algorithm that takes a string Y and computes a segmentation
of maximum total quality.

2. Give a polynomial time algorithm which given two strings A and B returns the longest sequence S
that is a subsequence of A and B.

3. Consider a rooted tree T . Assume the root has a message to send to all nodes. At the beginning
only the root has the message. If a node has the message, it can forward it to one of its children at
each time step. Design an algorithm to find the minimum number of time steps required for the
message to be delivered to all nodes.

1

CS 473 HBS 3.5 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 3.5

1. Say you are given n jobs to run on a machine. Each job has a start time and an end time. If a job is
chosen to be run, then it must start at its start time and end at its end time. Your goal is to accept
as many jobs as possible, regardless of the job lengths, subject to the constraint that the processor
can run at most one job at any given point in time. Provide an algorithm to do this with a running
time that is polynomial in n. You may assume for simplicity that no two jobs have the same start
or end times, but the start time and end time of two jobs can overlap.

2. Describe and analyze an algorithm that chooses one element uniformly at random from a data
stream, without knowing the length of the stream in advance. Your algorithm should spend O(1)
time per stream element and use O(1) space (not counting the stream itself).

3. Design and analyze an algorithm that return a permutation of the integers {1,2, ..., n} chosen
uniformly at random.

1

CS 473 HBS 4 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 4

1. Let x and y be two elements of a set S whose ranks differ by exactly r. Prove that in a treap for S,
the expected length of the unique path from x to y is O(log r)

2. Consider the problem of making change for n cents using the least number of coins.

(a) Describe a greedy algorithm to make change consisting of quarters, dimes, nickels, and
pennies. Prove that your algorithm yields an optimal solution.

(b) Suppose that the available coins have the values c0, c1, . . . , ck for some integers c > 1 and
k ≥ 1. Show that the greedy algorithm always yields an optimal solution.

(c) Give a set of 4 coin values for which the greedy algorithm does not yield an optimal solution,
show why.

(d) Give a dynamic programming algorithm that yields an optimal solution for an arbitrary set of
coin values.

3. A heater is a sort of dual treap, in which the priorities of the nodes are given, but their search
keys are generate independently and uniformly from the unit interval [0,1]. You can assume
all priorities and keys are distinct. Describe algorithms to perform the operations INSERT and
DELETEMIN in a heater. What are the expected worst-case running times of your algorithms? In
particular, can you express the expected running time of INSERT in terms of the priority rank of
the newly inserted item?

1

CS 473 HBS 5 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 5

1. Recall that the staircase of a set of points consists of the points with no other point both above
and to the right. Describe a method to maintain the staircase as new points are added to the set.
Specifically, describe and analyze a data structure that stores the staircase of a set of points, and
an algorithm INSERT(x , y) that adds the point (x , y) to the set and returns TRU E or FALSE to
indicate whether the staircase has changed. Your data structure should use O(n) space, and your
INSERT algorithm should run in O(log n) amortized time.

2. In some applications, we do not know in advance how much space we will require. So, we start
the program by allocating a (dynamic) table of some fixed size. Later, as new objects are inserted,
we may have to allocate a larger table and copy the previous table to it. So, we may need more
than O(1) time for copying. In addition, we want to keep the table size small enough, avoiding a
very large table to keep only few items. One way to manage a dynamic table is by the following
rules:

(a) Double the size of the table if an item is inserted into a full table

(b) Halve the table size if a deletion causes the table to become less than 1/4 full

Show that, in such a dynamic table we only need O(1) amortized time, per operation.

3. Consider a stack data structure with the following operations:

• PUSH(x): adds the element x to the top of the stack

• POP: removes and returns the element that is currently on top of the stack (if the stack is
non-empty)

• SEARCH(x): repeatedly removes the element on top of the stack until x is found or the stack
becomes empty

What is the amortized cost of an operation?

1

CS 473 HBS 6 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 6

1. Let G be a connected graph and let v be a vertex in G. Show that T is both a DFS tree and a BFS
tree rooted at v, then G = T .

2. An Euler tour of a graph G is a walk that starts from a vertex v, visits every edge of G exactly once
and gets back to v. Prove that G has an Euler tour if and only if all the vertices of G has even
degrees. Can you give an efficient algorithm to find an Euler tour of such a graph.

3. You are helping a group of ethnographers analyze some oral history data they have collected by
interviewing members of a village to learn about the lives of people lived there over the last two
hundred years. From the interviews, you have learned about a set of people, all now deceased,
whom we will denote P1, P2, . . . , Pn. The ethnographers have collected several facts about the
lifespans of these people, of one of the following forms:

(a) Pi died before Pj was born.

(b) Pi and Pj were both alive at some moment.

Naturally, the ethnographers are not sure that their facts are correct; memories are not so good,
and all this information was passed down by word of mouth. So they’d like you to determine
whether the data they have collected is at least internally consistent, in the sense that there could
have existed a set of people for which all the facts they have learned simultaneously hold.

Describe and analyze and algorithm to answer the ethnographers’ problem. Your algorithm
should either output possible dates of birth and death that are consistent with all the stated facts,
or it should report correctly that no such dates exist.

1

CS 473 HBS 6.5 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 6.5

1. (a) Describe and analyze and algorithm to find the second smallest spanning tree of a given
graph G, that is, the spanning tree of G with smallest total weight except for the minimum
spanning tree.

?(b) Describe and analyze an efficient algorithm to compute, given a weighted undirected graph G
and an integer k, the k smallest spanning trees of G.

2. A looped tree is a weighted, directed graph built from a binary tree by adding an edge from every
leaf back to the root. Every edge has a non-negative weight.

5 8

17 0 1

23 9 14

424

16

7

(a) How much time would Dijkstra’s algorithm require to compute the shortest path between
two vertices u and v in a looped tree with n nodes?

(b) Describe and analyze a faster algorithm.

3. Consider a path between two vertices s and t in an undirected weighted graph G. The bottleneck
length of this path is the maximum weight of any edge in the path. The bottleneck distance between
s and t is the minimum bottleneck length of any path from s to t. (If there are no paths from s
to t, the bottleneck distance between s and t is∞.)

s

t

1 11

7

128

5
10

9

2

3
6

4

The bottleneck distance between s and t is 5.

Describe and analyze an algorithm to compute the bottleneck distance between every pair of
vertices in an arbitrary undirected weighted graph. Assume that no two edges have the same
weight.

1

CS 473 HBS 6.55 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 6.55

1. Suppose you are given a directed graph G = (V, E) with non-negative edge lengths; `(e) is the
length of e ∈ E. You are interested in the shortest path distance between two given locations/nodes
s and t. It has been noticed that the existing shortest path distance between s and t in G is not
satisfactory and there is a proposal to add exactly one edge to the graph to improve the situation.
The candidate edges from which one has to be chosen is given by E′ = {e1, e2, . . . , ek} and you
can assume that E ∪ E′ = ;. The length of the ei is αi ≥ 0. Your goal is figure out which of these
k edges will result in the most reduction in the shortest path distance from s to t. Describe an
algorithm for this problem that runs in time O((m+ n) log n+ k) where m = |E| and n = |V |. Note
that one can easily solve this problem in O(k(m+ n) log n) by running Dijkstra’s algorithm k times,
one for each Gi where Gi is the graph obtained by adding ei to G.

2. Let G be an undirected graph with non-negative edge weights. Let s and t be two vertices such
that the shortest path between s and t in G contains all the vertices in the graph. For each edge e,
let G\e be the graph obtained from G by deleting the edge e. Design an O(E log V) algorithm that
finds the shortest path distance between s and t in G\e for all e. [Note that you need to output E
distances, one for each graph G\e]

3. Given a Directed Acyclic Graph (DAG) and two vertices s and t you want to determine if there is
an s to t path that includes at least k vertices.

1

CS 473 HBS 7 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 7

1. Let G = (V, E) be a directed graph with non-negative capacities. Give an efficient algorithm to
check whether there is a unique max-flow on G?

2. Let G = (V, E) be a graph and s, t ∈ V be two specific vertices of G. We call (S, T = V\S) an
(s, t)-cut if s ∈ S and t ∈ T . Moreover, it is a minimum cut if the sum of the capacities of the edges
that have one endpoint in S and one endpoint in T equals the maximum (s, t)-flow. Show that,
both intersection and union of two min-cuts is a min-cut itself.

3. Let G = (V, E) be a graph. For each edge e let d(e) be a demand value attached to it. A flow is
feasible if it sends more than d(e) through e. Assume you have an oracle that is capable of solving
the maximum flow problem. Give efficient algorithms for the following problems that call the
oracle at most once.

(a) Find a feasible flow.

(b) Find a feasible flow of minimum possible value.

1

CS 473 HBS 8 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 8

1. A box i can be specified by the values of its sides, say (i1, i2, i3). We know all the side lengths
are larger than 10 and smaller than 20 (i.e. 10 < i1, i2, i3 < 20). Geometrically, you know what
it means for one box to nest in another: It is possible if you can rotate the smaller so that it fits
inside the larger in each dimension. Of course, nesting is recursive, that is if i nests in j and j
nests in k then i nests in k. After doing some nesting operations, we say a box is visible if it is not
nested in any other one. Given a set of boxes (each specified by the lengthes of their sides) the
goal is to find a set of nesting operations to minimize the number of visible boxes. Design and
analyze an efficient algorithm to do this.

2. Let the number of papers submitted to a conference be n and the number of available reviewers be
m. Each reviewer has a list of papers that he/she can review and each paper should be reviewed
by three different persons. Also, each reviewer can review at most 5 papers. Design and analyze
an algorithm to make the assignment or decide no feasible assignment exists.

3. Back in the euphoric early days of the Web, people liked to claim that much of the enormous
potential in a company like Yahoo! was in the "eyeballs" - the simple fact that it gets millions of
people looking at its pages every day. And further, by convincing people to register personal data
with the site, it can show each user an extremely targeted advertisement whenever he or she visits
the site, in away that TV networks or magazines could not hope to match. So if the user has told
Yahoo! that he is a 20-year old computer science major from Cornell University, the site can throw
up a banner ad for apartments in Ithaca, NY; on the other hand, if he is a 50-year-old investment
banker from Greenwich, Connecticut, the site can display a banner ad pitching Lincoln Town Cars
instead.

But deciding on which ads to show to which people involves some serious computation behind
the scenes. Suppose that the managers of a popular Web site have identified k distinct demographic
groups G1, G2, . . . , Gk. (These groups can overlap; for example G1 can be equal to all residents of
New York State, and G2 can be equal to all people with a degree in computer science.) The site
has contracts with m different advertisers, to show a certain number of copies of their ads to users
of the site. Here is what the contract with the i th advertiser looks like:

(a) For a subset X i ⊂ {G1, . . . , Gk} of the demographic groups, advertiser i wants its ads shown
only to users who belong to at least one of the demographic groups in the set X i

(b) For a number ri , advertiser i wants its ads shown to at least ri users each minute.

Now, consider the problem of designing a good advertising policy - a way to show a single ad
to each user of the site. Suppose at a given minute, there are n users visiting the site. Because
we have registration information on each of these users, we know that user j(for j = 1,2, . . . , n)
belongs to a subset U j ⊂ {G1, . . . , Gk} of the demographic groups. The problem is: is there a
way to show a single ad to each user so that the site’s contracts with each of the m advertisers is
satisfied for this minute? (That is, for each i = 1, 2, . . . , m, at least ri of the n users, each belonging
to at least one demographic group in X i , are shown an ad provided by advertiser i.)

Give an efficient algorithm to decide if this is possible, and if so, to actually choose an ad to
show each user.

1

CS 473 HBS 9 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 9

1. Prove that any algorithm to merge two sorted arrays, each of size n, requires at least 2n− 1
comparisons.

2. Suppose you want to determine the largest number in an n-element set X = {x1, x2, . . . , xn},
where each element x i is an integer between 1 and 2m− 1. Describe an algorithm that solves this
problem in O(n+m) steps, where at each step, your algorithm compares one of the elements x i
with a constant. In particular, your algorithm must never actually compare two elements of X !
[Hint: Construct and maintain a nested set of ‘pinning intervals’ for the numbers that you have
not yet removed from consideration, where each interval but the largest is either the upper half or
lower half of the next larger block.]

3. Let P be a set of n points in the plane. The staircase of P is the set of all points in the plane
that have at least one point in P both above and to the right. Prove that computing the staircase
requires at least Ω(n log n) comparisons in two ways,

(a) Reduction from sorting.

(b) Directly.

1

CS 473 Midterm 1 Questions (February 24, 2008) Spring 2009

You have 90 minutes to answer four of the five questions.
Write your answers in the separate answer booklet.
You may take the question sheet with you when you leave.

1. Each of these ten questions has one of the following five answers:

A: Θ(1) B: Θ(log n) C: Θ(n) D: Θ(n log n) E: Θ(n2)

Choose the correct answer for each question. Each correct answer is worth +1 point; each incorrect
answer is worth −1/2 point; each “I don’t know" is worth +1/4 point. Your score will be rounded
to the nearest non-negative integer.

(a) What is
n∑

i=1

n

i
?

(b) What is

È
n∑

i=1
i ?

(c) How many digits are required to write 3n in decimal?

(d) What is the solution to the recurrence D(n) = D(n/π) +
p

2 ?

(e) What is the solution to the recurrence E(n) = E(n−p2) +π?

(f) What is the solution to the recurrence F(n) = 4F(n/2) + 3n ?

(g) What is the worst-case time to search for an item in a binary search tree?

(h) What is the worst-case running time of quicksort?

(i) Let H[1 .. n, 1 .. n] be a fixed array of numbers. Consider the following recursive function:

Glub(i, j) =





0 if i = 0

∞ if i > n or j = 0

max
�
Glub(i− 1, j), H[i, j] +Glub(i+ 1, j− 1)

	
otherwise

How long does it take to compute Glub(n, n) using dynamic programming?

(j) What is the running time of the fastest possible algorithm to solve KenKen puzzles?
A KenKen puzzle is a 6× 6 grid, divided into regions called cages. Each cage is labeled

with a numerical value and an arithmetic operation: +, −, ×, or ÷. (The operation can be
omitted if the cage consists of a single cell.) The goal is to place an integer between 1 and 6
in each grid cell, so that no number appears twice in any row or column, and the numbers
inside each cage can be combined using only that cage’s operation to obtain that cage’s value.
The solution is guaranteed to be unique.

6+ 96 × 90×

30× 12×

25× 1– 3–

2÷ 6

72× 9+ 3+ 13+

6+ 96 × 90×

30× 12×

25× 1– 3–

2÷ 6

72× 9+ 3+ 13+

1 3 4 2 5 6
5 2 6 4 1 3
6 5 2 3 4 1
2 1 5 6 3 4
4 6 3 1 2 5
3 4 1 5 6 2

A Kenken puzzle and its solution

1

CS 473 Midterm 1 Questions (February 24, 2008) Spring 2009

2. (a) Suppose A[1 .. n] is an array of n distinct integers, sorted so that A[1]< A[2]< · · ·< A[n].
Each integer A[i] could be positive, negative, or zero. Describe an efficient algorithm that
either computes an index i such that A[i] = i or correctly reports that no such index exists.
An algorithm that runs in Θ(n) time is worth at most 3 points.

(b) Now suppose A[1 .. n] is a sorted array of n distinct positive integers. Describe an even faster
algorithm that either computes an index i such that A[i] = i or correctly reports that no such
index exists. [Hint: This is really easy!]

3. Moby Selene is a solitaire game played on a row of n squares. Each square contains four positive
integers. The player begins by placing a token on the leftmost square. On each move, the player
chooses one of the numbers on the token’s current square, and then moves the token that number
of squares to the right. The game ends when the token moves past the rightmost square. The
object of the game is to make as many moves as possible before the game ends.

25
63

2
1

7
8

6
107
93 8

9 4
4 8

36
1

8
4

3
2
6

10
7

1
2
8

4 1
2
6

7 3
94
8

92
75 5 9

7 2 1
3

4
5

A Moby Selene puzzle that allows six moves. (This is not the longest legal sequence of moves.)

(a) Prove that the obvious greedy strategy (always choose the smallest number) does not give
the largest possible number of moves for every Moby Selene puzzle.

(b) Describe and analyze an efficient algorithm to find the largest possible number of legal moves
for a given Moby Selene puzzle.

4. Consider the following algorithm for finding the largest element in an unsorted array:

RANDOMMAX(A[1 .. n]):
max←∞
for i← 1 to n in random order

if A[i]>max
max← A[i] (?)

return max

(a) In the worst case, how many times does RANDOMMAX execute line (?)?

(b) What is the exact probability that line (?) is executed during the last iteration of the for loop?

(c) What is the exact expected number of executions of line (?)? (A correct Θ() bound is worth
half credit.)

5. This question is taken directly from HBS 0. Whenever groups of pigeons gather, they instinctively
establish a pecking order. For any pair of pigeons, one pigeon always pecks the other, driving it
away from food or potential mates. The same pair of pigeons always chooses the same pecking
order, even after years of separation, no matter what other pigeons are around. Surprisingly, the
overall pecking order can contain cycles—for example, pigeon A pecks pigeon B, which pecks
pigeon C , which pecks pigeon A.

Prove that any finite set of pigeons can be arranged in a row from left to right so that every
pigeon pecks the pigeon immediately to its left. Pretty please.

2

CS 473 Midterm 2 Questions (April 7, 2009) Spring 2009

You have 90 minutes to answer four of the five questions.
Write your answers in the separate answer booklet.
You may take the question sheet with you when you leave.

1. Recall that a tree is a connected graph with no cycles. A graph is bipartite if we can color its
vertices black and white, so that every edge connects a white vertex to a black vertex.

(a) Prove that every tree is bipartite.

(b) Describe and analyze a fast algorithm to determine whether a given graph is bipartite.

2. Describe and analyze an algorithm SHUFFLE(A[1 .. n]) that randomly permutes the input array A,
so that each of the n! possible permutations is equally likely. You can assume the existence of
a subroutine RANDOM(k) that returns a random integer chosen uniformly between 1 and k in
O(1) time. For full credit, your SHUFFLE algorithm should run in O(n) time. [Hint: This problem
appeared in HBS 3½.]

3. Let G be an undirected graph with weighted edges.

(a) Describe and analyze an algorithm to compute the maximum weight spanning tree of G.

(b) A feedback edge set of G is a subset F of the edges such that every cycle in G contains at
least one edge in F . In other words, removing every edge in F makes G acyclic. Describe and
analyze a fast algorithm to compute the minimum weight feedback edge set of G.

[Hint: Don’t reinvent the wheel!]

4. Let G = (V, E) be a connected directed graph with non-negative edge weights, let s and t be
vertices of G, and let H be a subgraph of G obtained by deleting some edges. Suppose we want to
reinsert exactly one edge from G back into H, so that the shortest path from s to t in the resulting
graph is as short as possible. Describe and analyze an algorithm to choose the best edge to reinsert.
For full credit, your algorithm should run in O(E log V) time. [Hint: This problem appeared in
HBS 6¾.]

5. Describe and analyze an efficient data structure to support the following operations on an array
X [1 .. n] as quickly as possible. Initially, X [i] = 0 for all i.

• Given an index i such that X [i] = 0, set X [i] to 1.

• Given an index i, return X [i].

• Given an index i, return the smallest index j ≥ i such that X [j] = 0, or report that no such
index exists.

For full credit, the first two operations should run in worst-case constant time, and the amortized
cost of the third operation should be as small as possible.

1

CS 473 Final Exam Questions (May 14, 2009) Spring 2009

You have 180 minutes to answer six of the seven questions.
Write your answers in the separate answer booklet.

You may take the question sheet with you when you leave.

1. SUBSETSUM and PARTITION are two closely related NP-hard problems, defined as follows.

SUBSETSUM: Given a set X of positive integers and a positive integer k, does X have a subset
whose elements sum up to k?

PARTITION: Given a set Y of positive integers, can Y be partitioned into two subsets whose sums
are equal?

(a) [2 pts] Prove that PARTITION and SUBSETSUM are both in NP.

(b) [1 pt] Suppose you already know that SUBSETSUM is NP-hard. Which of the following
arguments could you use to prove that PARTITION is NP-hard? You do not need to justify
your answer — just answer 1© or 2©.

1© Given a set X and an integer k, construct a set Y in polynomial time, such that
PARTITION(Y) is true if and only if SUBSETSUM(X , k) is true.

2© Given a set Y , construct a set X and an integer k in polynomial time, such that
PARTITION(Y) is true if and only if SUBSETSUM(X , k) is true.

(c) [3 pts] Describe and analyze a polynomial-time reduction from PARTITION to SUBSETSUM.
You do not need to prove that your reduction is correct.

(d) [4 pts] Describe and analyze a polynomial-time reduction from SUBSETSUM to PARTITION.
You do not need to prove that your reduction is correct.

2. (a) [4 pts] For any node v in a binary tree, let size(v) denote the number of nodes in the subtree
rooted at v. Let k be an arbitrary positive number. Prove that every binary tree with at least k
nodes contains a node v such that k ≤ size(v)≤ 2k.

(b) [2 pts] Removing any edge from an n-node binary tree T separates it into two smaller binary
trees. An edge is called a balanced separator if both of these subtrees have at least n/3
nodes (and therefore at most 2n/3 nodes). Prove that every binary tree with more than one
node has a balanced separator. [Hint: Use part (a).]

(c) [4 pts] Describe and analyze an algorithm to find a balanced separator in a given binary
tree. [Hint: Use part (a).]

Removing a balanced separator from a binary tree.

1

CS 473 Final Exam Questions (May 14, 2009) Spring 2009

3. Racetrack (also known as Graph Racers and Vector Rally) is a two-player paper-and-pencil racing
game that Jeff played on the bus in 5th grade.1 The game is played with a track drawn on a sheet
of graph paper. The players alternately choose a sequence of grid points that represent the motion
of a car around the track, subject to certain constraints explained below.

Each car has a position and a velocity, both with integer x- and y-coordinates. The initial
position is a point on the starting line, chosen by the player; the initial velocity is always (0, 0). At
each step, the player optionally increments or decrements either or both coordinates of the car’s
velocity; in other words, each component of the velocity can change by at most 1 in a single step.
The car’s new position is then determined by adding the new velocity to the car’s previous position.
The new position must be inside the track; otherwise, the car crashes and that player loses the
race. The race ends when the first car reaches a position on the finish line.

Suppose the racetrack is represented by an n× n array of bits, where each 0 bit represents a
grid point inside the track, each 1 bit represents a grid point outside the track, the ‘starting line’ is
the first column, and the ‘finish line’ is the last column.

Describe and analyze an algorithm to find the minimum number of steps required to move a
car from the starting line to the finish line of a given racetrack. [Hint: Build a graph. What are the
vertices? What are the edges? What problem is this?]

velocity position

(0, 0) (1,5)
(1, 0) (2,5)
(2,−1) (4,4)
(3, 0) (7,4)
(2, 1) (9,5)
(1, 2) (10,7)
(0, 3) (10,10)
(−1, 4) (9,14)
(0, 3) (9,17)
(1, 2) (10,19)
(2, 2) (12,21)
(2, 1) (14,22)
(2, 0) (16,22)
(1,−1) (17,21)
(2,−1) (19,20)
(3, 0) (22,20)
(3, 1) (25,21)

ST
A
RT

FIN
ISH

A 16-step Racetrack run, on a 25× 25 track.

4. A palindrome is any string that is exactly the same as its reversal, like I, or DEED, or RACECAR,
or AMANAPLANACATACANALPANAMA. Describe and analyze an algorithm to find the length of the
longest subsequence of a given string that is also a palindrome.

For example, the longest palindrome subsequence of MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM
is MHYMRORMYHM, so given that string as input, your algorithm should output the number 11.

1The actual game is a bit more complicated than the version described here.

2

CS 473 Final Exam Questions (May 14, 2009) Spring 2009

5. The Island of Sodor is home to a large number of towns and villages, connected by an extensive
rail network. Recently, several cases of a deadly contagious disease (either swine flu or zombies;
reports are unclear) have been reported in the village of Ffarquhar. The controller of the Sodor
railway plans to close down certain railway stations to prevent the disease from spreading to
Tidmouth, his home town. No trains can pass through a closed station. To minimize expense
(and public notice), he wants to close down as few stations as possible. However, he cannot close
the Ffarquhar station, because that would expose him to the disease, and he cannot close the
Tidmouth station, because then he couldn’t visit his favorite pub.

Describe and analyze an algorithm to find the minimum number of stations that must be closed
to block all rail travel from Ffarquhar to Tidmouth. The Sodor rail network is represented by an
undirected graph, with a vertex for each station and an edge for each rail connection between two
stations. Two special vertices f and t represent the stations in Ffarquhar and Tidmouth.

For example, given the following input graph, your algorithm should return the number 2.

f t

6. A multistack consists of an infinite series of stacks S0, S1, S2, . . . , where the ith stack Si can hold up
to 3i elements. Whenever a user attempts to push an element onto any full stack Si , we first pop
all the elements off Si and push them onto stack Si+1 to make room. (Thus, if Si+1 is already full,
we first recursively move all its members to Si+2.) Moving a single element from one stack to the
next takes O(1) time.

×9

×3

Making room for one new element in a multistack.

(a) In the worst case, how long does it take to push one more element onto a multistack
containing n elements?

(b) Prove that the amortized cost of a push operation is O(log n), where n is the maximum
number of elements in the multistack.

7. Recall the problem 3COLOR: Given a graph, can we color each vertex with one of 3 colors, so that
every edge touches two different colors? We proved in class that 3COLOR is NP-hard.

Now consider the related problem 12COLOR: Given a graph, can we color each vertex with one
of twelve colors, so that every edge touches two different colors? Prove that 12COLOR is NP-hard.

3

You may assume the following problems are NP-hard:

CIRCUITSAT: Given a boolean circuit, are there any input values that make the circuit output True?

PLANARCIRCUITSAT: Given a boolean circuit drawn in the plane so that no two wires cross, are there any
input values that make the circuit output True?

3SAT: Given a boolean formula in conjunctive normal form, with exactly three literals per clause, does the
formula have a satisfying assignment?

MAXINDEPENDENTSET: Given an undirected graph G, what is the size of the largest subset of vertices in G
that have no edges among them?

MAXCLIQUE: Given an undirected graph G, what is the size of the largest complete subgraph of G?

MINVERTEXCOVER: Given an undirected graph G, what is the size of the smallest subset of vertices that
touch every edge in G?

MINSETCOVER: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subcollection whose union is S?

MINHITTINGSET: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subset of S that intersects every subset Si?

3COLOR: Given an undirected graph G, can its vertices be colored with three colors, so that every edge
touches vertices with two different colors?

HAMILTONIANCYCLE: Given a graph G, can is there a cycle in G that visits every vertex once?

HAMILTONIANPATH: Given a graph G, can is there a path in G that visits every vertex once?

DOUBLEHAMILTONIANCYCLE: Given a graph G, can is there a closed walk in G that visits every vertex twice?

DOUBLEHAMILTONIANPATH: Given a graph G, can is there an open walk in G that visits every vertex twice?

MINDEGREESPANNINGTREE: Given an undirected graph G, what is the minimum degree of any spanning
tree of G?

MINLEAVESSPANNINGTREE: Given an undirected graph G, what is the minimum number of leaves in any
spanning tree of G?

TRAVELINGSALESMAN: Given a graph G with weighted edges, what is the minimum cost of any Hamiltonian
path/cycle in G?

LONGESTPATH: Given a graph G with weighted edges and two vertices s and t, what is the length of the
longest simple path from s to t in G?

SUBSETSUM: Given a set X of positive integers and an integer k, does X have a subset whose elements
sum to k?

PARTITION: Given a set X of positive integers, can X be partitioned into two subsets with the same sum?

3PARTITION: Given a set X of n positive integers, can X be partitioned into n/3 three-element subsets, all
with the same sum?

MINESWEEPER: Given a Minesweeper configuration and a particular square x , is it safe to click on x?

TETRIS: Given a sequence of N Tetris pieces and a partially filled n× k board, is it possible to play every
piece in the sequence without overflowing the board?

SUDOKU: Given an n× n Sudoku puzzle, does it have a solution?

KENKEN: Given an n× n Ken-Ken puzzle, does it have a solution?

CS 473 Homework 0 (due January 26, 2009) Spring 2010

CS 473: Undergraduate Algorithms, Spring 2010
Homework 0

Due Tuesday, January 26, 2009 in class

• This homework tests your familiarity with prerequisite material—big-Oh notation, elementary
algorithms and data structures, recurrences, graphs, and most importantly, induction—to help
you identify gaps in your background knowledge. You are responsible for filling those gaps.
The early chapters of any algorithms textbook should be sufficient review, but you may also want
consult your favorite discrete mathematics and data structures textbooks. If you need help, please
ask in office hours and/or on the course newsgroup.

• Each student must submit individual solutions for these homework problems. For all future
homeworks, groups of up to three students may submit (or present) a single group solution for
each problem.

• Please carefully read the course policies linked from the course web site. If you have any questions,
please ask during lecture or office hours, or post your question to the course newsgroup. In
particular:

– Submit five separately stapled solutions, one for each numbered problem, with your name
and NetID clearly printed on each page. Please do not staple everything together.

– You may use any source at your disposal—paper, electronic, or human—but you must write
your solutions in your own words, and you must cite every source that you use.

– Unless explicitly stated otherwise, every homework problem requires a proof.

– Answering “I don’t know” to any homework or exam problem (except for extra credit
problems) is worth 25% partial credit.

– Algorithms or proofs containing phrases like “and so on” or “repeat this process for all n”,
instead of an explicit loop, recursion, or induction, will receive 0 points.

1

CS 473 Homework 0 (due January 26, 2009) Spring 2010

1. (a) Write the sentence “I understand the course policies."

(b) [5 pts] Solve the following recurrences. State tight asymptotic bounds for each function in
the form Θ(f (n)) for some recognizable function f (n). Assume reasonable but nontrivial
base cases if none are given. Do not submit proofs—just a list of five functions—but you
should do them anyway, just for practice.

• A(n) = 3 A(n− 1) + 1

• B(n) = B(n− 5) + 2n− 3

• C(n) = 4 C(n/2) +
p

n

• D(n) = 3 D(n/3) + n2

• E(n) = E(n− 1)2− E(n− 2)2, where E(0) = 0 and E(1) = 1 [Hint: This is easy!]

(c) [5 pts] Sort the following functions from asymptotically smallest to asymptotically largest,
indicating ties if there are any. Do not submit proofs—just a sorted list of 16 functions—but
you should do them anyway, just for practice.

Write f (n) � g(n) to indicate that f (n) = o(g(n)), and write f (n) ≡ g(n) to mean
f (n) = Θ(g(n)). We use the notation lg n= log2 n.

n lg n
p

n 5n

p
lg n lg

p
n 5

p
n p

5n

5lg n lg(5n) 5lg
p

n 5
p

lg n

p
5lg n lg(5

p
n) lg

p
5n

p
lg(5n)

2. [CS 225 Spring 2009] Suppose we build up a binary search tree by inserting elements one at a
time from the set {1, 2, 3, . . . , n}, starting with the empty tree. The structure of the resulting binary
search tree depends on the order that these elements are inserted; every insertion order leads to a
different n-node binary search tree.

Recall that the depth of a leaf ` in a binary search tree is the number of edges between ` and
the root, and the depth of a binary tree is the maximum depth of its leaves.

(a) What is the maximum possible depth of an n-node binary search tree? Give an exact answer,
and prove that it is correct.

(b) Exactly how many different insertion orders result in an n-node binary search tree with
maximum possible depth? Prove your answer is correct. [Hint: Set up and solve a recurrence.
Don’t forget to prove that recurrence counts what you want it to count.]

2

CS 473 Homework 0 (due January 26, 2009) Spring 2010

3. [CS 173 Spring 2009] A binomial tree of order k is defined recursively as follows:

• A binomial tree of order 0 is a single node.

• For all k > 0, a binomial tree of order k consists of two binomial trees of order k− 1, with
the root of one tree connected as a new child of the root of the other. (See the figure below.)

Prove the following claims:

(a) For all non-negative integers k, a binomial tree of order k has exactly 2k nodes.

(b) For all positive integers k, attaching a leaf to every node in a binomial tree of order k− 1
results in a binomial tree of order k.

(c) For all non-negative integers k and d, a binomial tree of order k has exactly
�k

d

�
nodes with

depth d.

Binomial trees of order 0 through 5.
Top row: the recursive definition. Bottom row: the property claimed in part (b).

4. [CS 373 Fall 2009] For any language L ∈ Σ∗, let

Rotate(L) :=
¦

w ∈ Σ∗
�� w = x y and y x ∈ L for some strings x , y ∈ Σ∗

©

For example, Rotate({OOK!,OOKOOK}) = {OOK!,OK!O,K!OO,!OOK,OOKOOK,OKOOKO,KOOKOO}.
Prove that if L is a regular language, then Rotate(L) is also a regular language. [Hint:

Remember the power of nondeterminism.]

5. Herr Professor Doktor Georg von den Dschungel has a 24-node binary tree, in which every node is
labeled with a unique letter of the German alphabet, which is just like the English alphabet with
four extra letters: Ä, Ö, Ü, and ß. (Don’t confuse these with A, O, U, and B!) Preorder and postorder
traversals of the tree visit the nodes in the following order:

• Preorder: B K Ü E H L Z I Ö R C ß T S O A Ä D F M N U G

• Postorder: H I Ö Z R L E C Ü S O T A ß K D M U G N F Ä B

(a) List the nodes in George’s tree in the order visited by an inorder traversal.

(b) Draw George’s tree.

3

CS 473 Homework 0 (due January 26, 2009) Spring 2010

?6. [Extra credit] You may be familiar with the story behind the famous Tower of Hanoï puzzle, as
related by Henri de Parville in 1884:

In the great temple at Benares beneath the dome which marks the centre of the world, rests a brass plate
in which are fixed three diamond needles, each a cubit high and as thick as the body of a bee. On one of
these needles, at the creation, God placed sixty-four discs of pure gold, the largest disc resting on the
brass plate, and the others getting smaller and smaller up to the top one. This is the Tower of Bramah.
Day and night unceasingly the priests transfer the discs from one diamond needle to another according
to the fixed and immutable laws of Bramah, which require that the priest on duty must not move more
than one disc at a time and that he must place this disc on a needle so that there is no smaller disc below
it. When the sixty-four discs shall have been thus transferred from the needle on which at the creation
God placed them to one of the other needles, tower, temple, and Brahmins alike will crumble into dust,
and with a thunderclap the world will vanish.

A less familiar chapter in the temple’s history is its brief relocation to Pisa in the early 13th
century. The relocation was organized by the wealthy merchant-mathematician Leonardo Fibonacci,
at the request of the Holy Roman Emperor Frederick II, who had heard reports of the temple
from soldiers returning from the Crusades. The Towers of Pisa and their attendant monks became
famous, helping to establish Pisa as a dominant trading center on the Italian peninsula.

Unfortunately, almost as soon as the temple was moved, one of the diamond needles began
to lean to one side. To avoid the possibility of the leaning tower falling over from too much
use, Fibonacci convinced the priests to adopt a more relaxed rule: Any number of disks on the
leaning needle can be moved together to another needle in a single move. It was still forbidden
to place a larger disk on top of a smaller disk, and disks had to be moved one at a time onto the
leaning needle or between the two vertical needles.

Thanks to Fibonacci’s new rule, the priests could bring about the end of the universe somewhat
faster from Pisa then they could than could from Benares. Fortunately, the temple was moved
from Pisa back to Benares after the newly crowned Pope Gregory IX excommunicated Frederick II,
making the local priests less sympathetic to hosting foreign heretics with strange mathematical
habits. Soon afterward, a bell tower was erected on the spot where the temple once stood; it too
began to lean almost immediately.

The Towers of Pisa. In the fifth move, two disks are taken off the leaning needle.

Describe an algorithm to transfer a stack of n disks from one vertical needle to the other
vertical needle, using the smallest possible number of moves. Exactly how many moves does your
algorithm perform?

4

CS 473 Homework 0 (due February 2, 2009) Spring 2010

• For this and all future homeworks, groups of up to three students can submit (or present) a single
common solution. Please remember to write the names of all group members on every page.

• Please fill out the online input survey linked from the course web page no later than Thurs-
day, January 28. Among other things, this survey asks you to identify the other members of your
HW1 group, so that we can partition the class into presentation clusters without breaking up your
group. We will announce the presentation clusters on Friday, January 29.

• Students in Cluster 1 will present their solutions to Jeff or one of the TAs, on Tuesday or
Wednesday of the due date (February 2 or February 3), instead of submitting written solutions.
Each homework group in Cluster 1 must sign up for a 30-minute time slot no later than
Monday, February 1. Signup sheets will be posted at 3303 Siebel Center (‘The Theory Lab’) later
this week. Please see the course web page for more details.

1. Suppose we have n points scattered inside a two-dimensional box. A kd-tree recursively subdivides
the points as follows. First we split the box into two smaller boxes with a vertical line, then we
split each of those boxes with horizontal lines, and so on, always alternating between horizontal
and vertical splits. Each time we split a box, the splitting line partitions the rest of the interior
points as evenly as possible by passing through a median point in the interior of the box (not on its
boundary). If a box doesn’t contain any points, we don’t split it any more; these final empty boxes
are called cells.

A kd-tree for 15 points. The dashed line crosses the four shaded cells.

(a) How many cells are there, as a function of n? Prove your answer is correct.

(b) In the worst case, exactly how many cells can a horizontal line cross, as a function of n?
Prove your answer is correct. Assume that n= 2k − 1 for some integer k.

(c) Suppose we have n points stored in a kd-tree. Describe and analyze an algorithm that counts
the number of points above a horizontal line (such as the dashed line in the figure) as quickly
as possible. [Hint: Use part (b).]

(d) Describe an analyze an efficient algorithm that counts, given a kd-tree storing n points, the
number of points that lie inside a rectangle R with horizontal and vertical sides. [Hint: Use
part (c).]

1

CS 473 Homework 0 (due February 2, 2009) Spring 2010

2. Most graphics hardware includes support for a low-level operation called blit, or block transfer,
which quickly copies a rectangular chunk of a pixel map (a two-dimensional array of pixel values)
from one location to another. This is a two-dimensional version of the standard C library function
memcpy().

Suppose we want to rotate an n×n pixel map 90◦ clockwise. One way to do this, at least when
n is a power of two, is to split the pixel map into four n/2× n/2 blocks, move each block to its
proper position using a sequence of five blits, and then recursively rotate each block. Alternately,
we could first recursively rotate the blocks and then blit them into place.

A B
C D

C A
D B

C A
D B

recurse

blit ×
 5

A B
C D

recurse

blit ×
 5

Two algorithms for rotating a pixel map.
Solid arrows indicate blitting the blocks into place; hollow arrows indicate recursively rotating the blocks.

The first rotation algorithm (blit then recurse) in action.

(a) Prove that both versions of the algorithm are correct when n is a power of two.

(b) Exactly how many blits does the algorithm perform when n is a power of two?

(c) Describe how to modify the algorithm so that it works for arbitrary n, not just powers of two.
How many blits does your modified algorithm perform?

(d) What is your algorithm’s running time if a k× k blit takes O(k2) time?

(e) What if a k× k blit takes only O(k) time?

2

CS 473 Homework 0 (due February 2, 2009) Spring 2010

3. For this problem, a subtree of a binary tree means any connected subgraph. A binary tree is
complete if every internal node has two children, and every leaf has exactly the same depth.
Describe and analyze a recursive algorithm to compute the largest complete subtree of a given
binary tree. Your algorithm should return the root and the depth of this subtree.

The largest complete subtree of this binary tree has depth 2.

3

CS 473 Homework 2 (due February 9, 2010) Spring 2010

CS 473: Undergraduate Algorithms, Spring 2010
Homework 2

Written solutions due Tuesday, February 9, 2010 at noon

• Roughly 1/3 of the students will give oral presentations of their solutions to the TAs. You should
have received an email telling you whether you are expected to present this homework. Please
see the course web page for further details.

• Groups of up to three students may submit a common solution. Please clearly write every group
member’s name and NetID on every page of your submission. Please start your solution to each
numbered problem on a new sheet of paper. Please don’t staple solutions for different problems
together.

1. A palindrome is a string that reads the same forwards and backwards, like x, pop, noon, redivider,
or "sator arepo tenet opera rotas", Describe and analyze an algorithm to find the length of the
longest subsequence of a given string that is also a palindrome. For example, the longest palin-
drome subsequence of MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM is MHYMRORMYHM, so
given that string as input, your algorithm should output the number 11.

2. Oh, no! You have been appointed as the gift czar for Giggle, Inc.’s annual mandatory holiday
party! The president of the company, who is certifiably insane, has declared that every Giggle
employee must receive one of three gifts: (1) an all-expenses-paid six-week vacation anywhere in
the world, (2) an all-the-pancakes-you-can-eat breakfast for two at Jumping Jack Flash’s Flapjack
Stack Shack, or (3) a burning paper bag full of dog poop. Corporate regulations prohibit any
employee from receiving the same gift as his/her direct supervisor. Any employee who receives a
better gift than his/her direct supervisor will almost certainly be fired in a fit of jealousy. How do
you decide what gifts everyone gets if you want to minimize the number of people that get fired?

More formally, suppose you are given a rooted tree T , representing the company hierarchy.
You want to label each node in T with an integer 1, 2, or 3, such that every node has a different
label from its parent.. The cost of an labeling is the number of nodes that have smaller labels than
their parents. Describe and analyze an algorithm to compute the minimum cost of any labeling of
the given tree T . (Your algorithm does not have to compute the actual best labeling—just its cost.)

1

23 32

3 3221

31

22

1 1

3

2 1

3

1

3

A tree labeling with cost 9. Bold nodes have smaller labels than their parents.
This is not the optimal labeling for this tree.

1

CS 473 Homework 2 (due February 9, 2010) Spring 2010

3. After graduating from UIUC, you have decided to join the Wall Street Bank Boole Long Live. The
managing director of the bank, Eloob Egroeg, is a genius mathematician who worships George
Boole1 every morning before leaving for the office. The first day of every hired employee is a
’solve-or-die’ day where s/he has to solve one of the problems posed by Eloob within 24 hours.
Those who fail to solve the problem are fired immediately!

Entering into the bank for the first time, you notice that the offices of the employees are
organized in a straight row, with a large “T ” or “F” written on the door of each office. Furthermore,
between each adjacent pair of offices, there is a board marked by one of the symbols ∧,∨, or ⊕.
When you ask about these arcane symbols, Eloob confirms that T and F represent the boolean
values ‘true’ and ‘false’, and the symbols on the boards represent the standard boolean operators
AND, OR, and XOR. He also explains that these letters and symbols describe whether certain
combinations of employees can work together successfully. At the start of any new project, Eloob
hierarchically clusters his employees by adding parentheses to the sequence of symbols, to obtain
an unambiguous boolean expression. The project is successful if this parenthesized boolean
expression evaluates to T .

For example, if the bank has three employees, and the sequence of symbols on and between
their doors is T ∧ F ⊕ T , there is exactly one successful parenthesization scheme: (T ∧ (F ⊕ T)).
However, if the list of door symbols is F ∧ T ⊕ F , there is no way to add parentheses to make the
project successful.

Eloob finally poses your solve-or-die question: Describe and algorithm to decide whether a
given sequence of symbols can be parenthesized so that the resulting boolean expression evaluates
to T . The input to your algorithm is an array S[0 .. 2n], where S[i] ∈ {T, F} when i is even, and
S[i] ∈ {∨,∧,⊕} when i is odd.

11815-1864, The inventor of Boolean Logic

2

CS 473 Homework 3 (due February 16, 2010) Spring 2010

• For this and all future homeworks, groups of up to three students can submit (or present) a single
common solution. Please remember to write the names of all group members on every page.

• Students in Cluster 3 will present their solutions to Jeff or one of the TAs, on Tuesday or
Wednesday of the due date (February 16 or February 17), instead of submitting written solutions.
Each homework group in Cluster 3 must sign up for a 30-minute time slot no later than
Monday, February 15. Signup sheets will be posted at 3304 Siebel Center (‘The Theory Lab’)
later this week. Please see the course web page for more details.

1. You saw in class a correct greedy algorithm for finding the maximum number of non-conflicting
courses from a given set of possible courses. This algorithm repeatedly selects the class with the
earliest completion time that does not conflict with any previously selected class.

Below are four alternative greedy algorithms. For each algorithm, either prove that the
algorithm constructs an optimal schedule, or give a concrete counterexample showing that the
algorithm is suboptimal.

(a) Choose the course that ends latest, discard all conflicting classes, and recurse.

(b) Choose the course that starts first, discard all conflicting classes, and recurse.

(c) Choose the course with shortest duration, discard all conflicting classes, and recurse.

(d) Choose a course that conflicts with the fewest other courses (breaking ties arbitrarily), discard
all conflicting classes, and recurse.

2. You have been given the task of designing an algorithm for vending machines that computes the
smallest number of coins worth any given amount of money. Your supervisors at The Area 51
Soda Company are anticipating a hostile takeover of earth by an advanced alien race that uses an
unknown system of currency. So your algorithm must be as general as possible so that it will work
with the alien system, whatever it turns out to be.

Given a quantity of money x , and a set of coin denominations b1, . . . , bk, your algorithm should
compute how to make change for x with the fewest number of coins. For example, if you use
the US coin denominations (1¢, 5¢, 10¢, 25¢, 50¢, and 100¢), the optimal way to make 17¢ in
change uses 4 coins: one dime (10¢), one nickel (5¢), and two pennies (1¢).

(a) Show that the following greedy algorithm does not work for all currency systems: If x = 0,
do nothing. Otherwise, find the largest denomination c ≤ x , issue one c-cent coin, and
recursively give x − c cents in change.

(b) Now suppose that the system of currency you are concerned with only has coins in powers of
some base b. That is, the coin denominations are b0, b1, b2, . . . , bk. Show that the greedy
algorithm described in part (a) does make optimal change in this currency system.

(c) Describe and analyze an algorithm that computes optimal change for any set of coin denomi-
nations. (You may assume the aliens’ currency system includes a 1-cent coin, so that making
change is always possible.)

1

CS 473 Homework 3 (due February 16, 2010) Spring 2010

3. Suppose you have just purchased a new type of hybrid car that uses fuel extremely efficiently, but
can only travel 100 miles on a single battery. The car’s fuel is stored in a single-use battery, which
must be replaced after at most 100 miles. The actual fuel is virtually free, but the batteries are
expensive and can only be installed by licensed battery-replacement technicians. Thus, even if you
decide to replace your battery early, you must still pay full price for the new battery to be installed.
Moreover, because these batteries are in high demand, no one can afford to own more than one
battery at a time.

Suppose you are trying to get from San Francisco to New York City on the new Inter-Continental
Super-Highway, which runs in a direct line between these two cities. There are several fueling
stations along the way; each station charges a different price for installing a new battery. Before
you start your trip, you carefully print the Wikipedia page listing the locations and prices of every
fueling station on the ICSH. Given this information, how do you decide the best places to stop for
fuel?

More formally, suppose you are given two arrays D[1 .. n] and C[1 .. n], where D[i] is the
distance from the start of the highway to the ith station, and C[i] is the cost to replace your
battery at the ith station. Assume that your trip starts and ends at fueling stations (so D[1] = 0
and D[n] is the total length of your trip), and that your car starts with an empty battery (so you
must install a new battery at station 1).

(a) Describe and analyze a greedy algorithm to find the minimum number of refueling stops
needed to complete your trip. Don’t forget to prove that your algorithm is correct.

(b) But what you really want to minimize is the total cost of travel. Show that your greedy
algorithm in part (a) does not produce an optimal solution when extended to this setting.

(c) Describe a dynamic programming algorithm to compute the locations of the fuel stations you
should stop at to minimize the cost of travel.

2

CS 473 Homework 4 (due March 2, 2010) Spring 2010

1. Suppose we want to write an efficient function SHUFFLE(n) that returns a permutation of the set
{1,2, . . . , n} chosen uniformly at random.

(a) Prove that the following algorithm is not correct. [Hint: Consider the case n= 3.]

SHUFFLE(n):
for i← 1 to n

π[i]← i
for i← 1 to n

swap π[i]↔ π[RANDOM(n)]
return π[1 .. n]

(b) Consider the following implementation of SHUFFLE.

SHUFFLE(n):
for i← 1 to n

π[i]← NULL
for i← 1 to n

j← RANDOM(n)
while (π[j] != NULL)

j← RANDOM(n)
π[j]← i

return π[1 .. n]

Prove that this algorithm is correct. What is its expected running time?

(c) Describe and analyze an implementation of SHUFFLE that runs in O(n) time. (An algorithm
that runs in O(n) expected time is fine, but O(n) worst-case time is possible.)

2. Death knocks on your door one cold blustery morning and challenges you to a game. Death knows
you are an algorithms student, so instead of the traditional game of chess, Death presents you
with a complete binary tree with 4n leaves, each colored either black or white. There is a token at
the root of the tree. To play the game, you and Death will take turns moving the token from its
current node to one of its children. The game will end after 2n moves, when the token lands on a
leaf. If the final leaf is black, you die; if it’s white, you will live forever. You move first, so Death
gets the last turn.

⊼ ⊼ ⊼ ⊼ ⊼ ⊼ ⊼ ⊼

⊼ ⊼ ⊼ ⊼

⊼ ⊼

⊼

You can decide whether it’s worth playing or not as follows. Imagine that the tree is a Boolean
circuit whose inputs are specified at the leaves: white and black represent TRUE and FALSE inputs,
respectively. Each internal node in the tree is a NAND gate that gets its input from its children and
passes its output to its parent. (Recall that a NAND gate outputs FALSE if and only if both its inputs
are TRUE.) If the output at the top of the tree is TRUE, then you can win and live forever! If the
output at the top of the tree is FALSE, you should challenge Death to a game of Twister instead. Or
maybe Battleship.

1

CS 473 Homework 4 (due March 2, 2010) Spring 2010

(a) Describe and analyze a deterministic algorithm to determine whether or not you can win.
[Hint: This is easy!]

(b) Unfortunately, Death won’t give you enough time to look at every node in the tree. Describe
a randomized algorithm that determines whether you can win in O(3n) expected time. [Hint:
Consider the case n= 1.]

?(c) [Extra credit] Describe and analyze a randomized algorithm that determines whether you
can win in O(cn) expected time, for some constant c < 3. [Hint: You may not need to change
your algorithm from part (b) at all!]

3. A meldable priority queue stores a set of keys from some totally-ordered universe (such as the
integers) and supports the following operations:

• MAKEQUEUE: Return a new priority queue containing the empty set.

• FINDMIN(Q): Return the smallest element of Q (if any).

• DELETEMIN(Q): Remove the smallest element in Q (if any).

• INSERT(Q, x): Insert element x into Q, if it is not already there.

• DECREASEKEY(Q, x , y): Replace an element x ∈ Q with a smaller key y. (If y > x , the
operation fails.) The input is a pointer directly to the node in Q containing x .

• DELETE(Q, x): Delete the element x ∈ Q. The input is a pointer directly to the node in Q
containing x .

• MELD(Q1,Q2): Return a new priority queue containing all the elements of Q1 and Q2; this
operation destroys Q1 and Q2.

A simple way to implement such a data structure is to use a heap-ordered binary tree, where
each node stores a key, along with pointers to its parent and two children. MELD can be imple-
mented using the following randomized algorithm:

MELD(Q1,Q2):
if Q1 is empty return Q2
if Q2 is empty return Q1

if key(Q1)> key(Q2)
swap Q1↔Q2

with probability 1/2
left(Q1)←MELD(left(Q1),Q2)

else
right(Q1)←MELD(right(Q1),Q2)

return Q1

(a) Prove that for any heap-ordered binary trees Q1 and Q2 (not just those constructed by the
operations listed above), the expected running time of MELD(Q1,Q2) is O(log n), where
n = |Q1|+ |Q2|. [Hint: How long is a random root-to-leaf path in an n-node binary tree if
each left/right choice is made with equal probability?]

(b) Show that each of the other meldable priority queue operations can be implemented with at
most one call to MELD and O(1) additional time. (This implies that every operation takes
O(log n) expected time.)

2

CS 473 Homework 5 (due March 9, 2010) Spring 2010

1. A multistack consists of an infinite series of stacks S0, S1, S2, . . . , where the ith stack Si can hold up
to 3i elements. The user always pushes and pops elements from the smallest stack S0. However,
before any element can be pushed onto any full stack Si, we first pop all the elements off Si and
push them onto stack Si+1 to make room. (Thus, if Si+1 is already full, we first recursively move
all its members to Si+2.) Similarly, before any element can be popped from any empty stack Si,
we first pop 3i elements from Si+1 and push them onto Si to make room. (Thus, if Si+1 is already
empty, we first recursively fill it by popping elements from Si+2.) Moving a single element from
one stack to another takes O(1) time.

Here is pseudocode for the multistack operations MSPUSH and MSPOP. The internal stacks are
managed with the subroutines PUSH and POP.

MPUSH(x) :
i← 0
while Si is full

i← i+ 1

while i > 0
i← i− 1
for j← 1 to 3i

PUSH(Si+1, POP(Si))

PUSH(S0, x)

MPOP(x) :
i← 0
while Si is empty

i← i+ 1

while i > 0
i← i− 1
for j← 1 to 3i

PUSH(Si , POP(Si+1))

return POP(S0)

×9

×3

Making room in a multistack, just before pushing on a new element.

(a) In the worst case, how long does it take to push one more element onto a multistack
containing n elements?

(b) Prove that if the user never pops anything from the multistack, the amortized cost of a push
operation is O(log n), where n is the maximum number of elements in the multistack during
its lifetime.

(c) Prove that in any intermixed sequence of pushes and pops, each push or pop operation takes
O(log n) amortized time, where n is the maximum number of elements in the multistack
during its lifetime.

1

CS 473 Homework 5 (due March 9, 2010) Spring 2010

2. Design and analyze a simple data structure that maintains a list of integers and supports the
following operations.

• CREATE() creates and returns a new list

• PUSH(L, x) appends x to the end of L

• POP(L) deletes the last entry of L and returns it

• LOOKUP(L, k) returns the kth entry of L

Your solution may use these primitive data structures: arrays, balanced binary search trees, heaps,
queues, single or doubly linked lists, and stacks. If your algorithm uses anything fancier, you must
give an explicit implementation. Your data structure must support all operations in amortized
constant time. In addition, your data structure must support each LOOKUP in worst-case O(1) time.
At all times, the size of your data structure must be linear in the number of objects it stores.

2

CS 473 Homework 5 (due March 9, 2010) Spring 2010

3. Let P be a set of n points in the plane. The staircase of P is the set of all points in the plane that
have at least one point in P both above and to the right.

A set of points in the plane and its staircase (shaded).

(a) Describe an algorithm to compute the staircase of a set of n points in O(n log n) time.

(b) Describe and analyze a data structure that stores the staircase of a set of points, and an
algorithm ABOVE?(x , y) that returns TRUE if the point (x , y) is above the staircase, or FALSE

otherwise. Your data structure should use O(n) space, and your ABOVE? algorithm should
run in O(log n) time.

TRUE

FALSE

Two staircase queries.

(c) Describe and analyze a data structure that maintains a staircase as new points are inserted.
Specifically, your data structure should support a function INSERT(x , y) that adds the point
(x , y) to the underlying point set and returns TRUE or FALSE to indicate whether the staircase
of the set has changed. Your data structure should use O(n) space, and your INSERT algorithm
should run in O(log n) amortized time.

TRUE!

FALSE!

Two staircase insertions.

3

CS 473 Homework 6 (due March 16, 2010) Spring 2010

CS 473: Undergraduate Algorithms, Spring 2010
Homework 6

Written solutions due Tuesday, March 16, 2010 at noon

1. (a) Describe and analyze an algorithm to compute the size of the largest connected component of
black pixels in an n× n bitmap B[1 .. n, 1 .. n]. For example, given the bitmap below as input,
your algorithm should return the number 9, because the largest conected black component
(marked with white dots on the right) contains nine pixels.

9

(b) Design and analyze an algorithm BLACKEN(i, j) that colors the pixel B[i, j] black and returns
the size of the largest black component in the bitmap. For full credit, the amortized running
time of your algorithm (starting with an all-white bitmap) must be as small as possible.

For example, at each step in the sequence below, we blacken the pixel marked with an X.
The largest black component is marked with white dots; the number underneath shows the
correct output of the BLACKEN algorithm.

9 14 14 16 17

(c) What is the worst-case running time of your BLACKEN algorithm?

2. Suppose you are given a graph G with weighted edges and a minimum spanning tree T of G.

(a) Describe an algorithm to update the minimum spanning tree when the weight of a single
edge e is increased.

(b) Describe an algorithm to update the minimum spanning tree when the weight of a single
edge e is decreased.

In both cases, the input to your algorithm is the edge e and its new weight; your algorithms should
modify T so that it is still a minimum spanning tree. [Hint: Consider the cases e ∈ T and e 6∈ T
separately.]

1

CS 473 Homework 6 (due March 16, 2010) Spring 2010

3. Racetrack (also known as Graph Racers and Vector Rally) is a two-player paper-and-pencil racing
game of uncertain origin that Jeff played on the bus in 5th grade.1 The game is played using a
racetrack drawn on a sheet of graph paper. The players alternately choose a sequence of grid
points that represent the motion of a car around the track, subject to certain constraints explained
below.

Each car has a position and a velocity, both with integer x- and y-coordinates. The initial
position is an arbitrary point on the starting line, chosen by the player; the initial velocity is always
(0,0). At each step, the player optionally increments or decrements either or both coordinates
of the car’s velocity; in other words, each component of the velocity can change by at most 1 in
a single step. The car’s new position is then determined by adding the new velocity to the car’s
previous position. The new position must lie inside the track; otherwise, the car crashes and that
player immediately loses the race. The first car that reaches a position on the finish line is the
winner.

Suppose the racetrack is represented by an n× n array of bits, where each 0 bit represents a
grid point inside the track, each 1 bit represents a grid point outside the track, the ‘starting line’ is
the first column, and the ‘finish line’ is the last column.

Describe and analyze an algorithm to find the minimum number of steps required to move a car
from the starting line to the finish line according to these rules, given a racetrack bitmap as input.
[Hint: Build a graph. What are the vertices? What are the edges? What problem is this?]

velocity position

(0, 0) (1, 5)
(1, 0) (2, 5)
(2,−1) (4, 4)
(3, 0) (7, 4)
(2, 1) (9, 5)
(1, 2) (10, 7)
(0,3) (10, 10)
(−1, 4) (9, 14)
(0,3) (9, 17)
(1,2) (10, 19)
(2,2) (12, 21)
(2,1) (14, 22)
(2,0) (16, 22)
(1,−1) (17, 21)
(2,−1) (19, 20)
(3,0) (22, 20)
(3,1) (25, 21)

ST
A
RT

FIN
ISH

A 16-step Racetrack run, on a 25× 25 track. This is not the shortest run on this track.

1The actual game Jeff played was a bit more complicated than the version described in this problem. In particular, the track
was a freeform curve, and by default, the entire line segment traversed by a car in a single step had to lie entirely inside the
track. If a car did run off the track, it started its next turn with velocity zero, at the legal grid point closest to where it first
crossed the track boundary.

2

CS 473 Homework 7 (due April 6, 2010) Spring 2010

1. On an overnight camping trip in Sunnydale National Park, you are woken from a restless sleep
by a scream. As you crawl out of your tent to investigate, a terrified park ranger runs out of the
woods, covered in blood and clutching a crumpled piece of paper to his chest. As he reaches your
tent, he gasps, “Get out. . . while. . . you. . . ”, thrusts the paper into your hands, and falls to the
ground. Checking his pulse, you discover that the ranger is stone dead.

You look down at the paper and recognize a map of the park, drawn as an undirected
graph, where vertices represent landmarks in the park, and edges represent trails between those
landmarks. (Trails start and end at landmarks and do not cross.) You recognize one of the vertices
as your current location; several vertices on the boundary of the map are labeled EXIT.

On closer examination, you notice that someone (perhaps the poor dead park ranger) has
written a real number between 0 and 1 next to each vertex and each edge. A scrawled note on
the back of the map indicates that a number next to an edge is the probability of encountering
a vampire along the corresponding trail, and a number next to a vertex is the probability of
encountering a vampire at the corresponding landmark. (Vampires can’t stand each other’s
company, so you’ll never see more than one vampire on the same trail or at the same landmark.)
The note warns you that stepping off the marked trails will result in a slow and painful death.

You glance down at the corpse at your feet. Yes, his death certainly looked painful. Wait, was
that a twitch? Are his teeth getting longer? After driving a tent stake through the undead ranger’s
heart, you wisely decide to leave the park immediately.

Describe and analyze an efficient algorithm to find a path from your current location to an
arbitrary EXIT node, such that the total expected number of vampires encountered along the path is
as small as possible. Be sure to account for both the vertex probabilities and the edge probabilities!

2. In this problem we will discover how you, too, can be employed by Wall Street and cause a major
economic collapse! The arbitrage business is a money-making scheme that takes advantage of
differences in currency exchange. In particular, suppose that 1 US dollar buys 120 Japanese yen; 1
yen buys 0.01 euros; and 1 euro buys 1.2 US dollars. Then, a trader starting with $1 can convert
his money from dollars to yen, then from yen to euros, and finally from euros back to dollars,
ending with $1.44! The cycle of currencies $ → ¥ → € → $ is called an arbitrage cycle. Of
course, finding and exploiting arbitrage cycles before the prices are corrected requires extremely
fast algorithms.

Suppose n different currencies are traded in your currency market. You are given the matrix
R[1 .. n, 1 .. n] of exchange rates between every pair of currencies; for each i and j, one unit of
currency i can be traded for R[i, j] units of currency j. (Do not assume that R[i, j] · R[j, i] = 1.)

(a) Describe an algorithm that returns an array V[1 .. n], where V[i] is the maximum amount
of currency i that you can obtain by trading, starting with one unit of currency 1, assuming
there are no arbitrage cycles.

(b) Describe an algorithm to determine whether the given matrix of currency exchange rates
creates an arbitrage cycle.

(c) Modify your algorithm from part (b) to actually return an arbitrage cycle, if it exists.

1

CS 473 Homework 7 (due April 6, 2010) Spring 2010

3. Let G = (V, E) be a directed graph with weighted edges; edge weights could be positive, negative,
or zero. In this problem, you will develop an algorithm to compute shortest paths between every
pair of vertices. The output from this algorithm is a two-dimensional array dist[1 .. V, 1 .. V], where
dist[i, j] is the length of the shortest path from vertex i to vertex j.

(a) How could we delete some node v from this graph, without changing the shortest-path
distance between any other pair of nodes? Describe an algorithm that constructs a directed
graph G′ = (V ′, E′) with weighted edges, where V ′ = V \ {v}, and the shortest-path distance
between any two nodes in G′ is equal to the shortest-path distance between the same two
nodes in G. For full credit, your algorithm should run in O(V 2) time.

(b) Now suppose we have already computed all shortest-path distances in G′. Describe an
algorithm to compute the shortest-path distances from v to every other node, and from every
other node to v, in the original graph G. For full credit, your algorithm should run in O(V 2)
time.

(c) Combine parts (a) and (b) into an algorithm that finds the shortest paths between every pair
of vertices in the graph. For full credit, your algorithm should run in O(V 3) time.

The lecture notes (along with most algorithms textbooks and Wikipedia) describe a dynamic
programming algorithm due to Floyd and Warshall that computes all shortest paths in O(V 3) time.
This is not that algorithm.

2

CS 473 Homework 8 (due April 20, 2010) Spring 2010

CS 473: Undergraduate Algorithms, Spring 2010
Homework 8

Written solutions due Tuesday, April 20, 2010 in class.

1. Suppose you have already computed a maximum (s, t)-flow f in a flow network G with integer
capacities. Let k be an arbitrary positive integer, and let e be an arbitrary edge in G whose capacity
is at least k.

(a) Suppose we increase the capacity of e by k units. Describe and analyze an algorithm to
update the maximum flow.

(b) Now suppose we decrease the capacity of e by k units. Describe and analyze an algorithm to
update the maximum flow.

For full credit, both algorithms should run in O(Ek) time. [Hint: First consider the case k = 1.]

2. Suppose we are given an array A[1 .. m][1 .. n] of non-negative real numbers. We want to round A
to an integer matrix, by replacing each entry x in A with either bxc or dxe, without changing the
sum of entries in any row or column of A. For example:




1.2 3.4 2.4
3.9 4.0 2.1
7.9 1.6 0.5


 7−→



1 4 2
4 4 2
8 1 1




Describe an efficient algorithm that either rounds A in this fashion, or reports correctly that no
such rounding is possible.

3. A cycle cover of a given directed graph G = (V, E) is a set of vertex-disjoint cycles that cover all the
vertices. Describe and analyze an efficient algorithm to find a cycle cover for a given graph, or
correctly report that none exists. [Hint: Use ipartite atching!]

1

CS 473 Homework 9 (due April 27, 2010) Spring 2010

1. We say that an array A[1 .. n] is k-sorted if it can be divided into k blocks, each of size n/k, such
that the elements in each block are larger than the elements in earlier blocks, and smaller than
elements in later blocks. The elements within each block need not be sorted.

For example, the following array is 4-sorted:

1 2 4 3 7 6 8 5 10 11 9 12 15 13 16 14

(a) Describe an algorithm that k-sorts an arbitrary array in time O(n log k).
(b) Prove that any comparison-based k-sorting algorithm requires Ω(n log k) comparisons in the

worst case.

(c) Describe an algorithm that completely sorts an already k-sorted array in time O(n log(n/k)).
(d) Prove that any comparison-based algorithm to completely sort a k-sorted array requires
Ω(n log(n/k)) comparisons in the worst case.

In all cases, you can assume that n/k is an integer and that n!≈
�

n
e

�n
.

2. Recall the nuts and bolts problem from the first randomized algorithms lecture. You are given n
nuts and n bolts of different sizes. Each nut matches exactly one bolt and vice versa. The nuts and
bolts are all almost exactly the same size, so we can’t tell if one bolt is bigger than the other, or if
one nut is bigger than the other. If we try to match a nut with a bolt, however, we will discover
either that the nut is too big, the nut is too small, or the nut is just right for the bolt. The goal was
to find the matching nut for every bolt.

Now consider a relaxed version of the problem where the goal is to find the matching nuts for
half of the bolts, or equivalently, to find n/2 matched nut-bolt pairs. (It doesn’t matter which n/2
nuts and bolts are matched.) Prove that any deterministic algorithm to solve this problem must
perform Ω(n log n) nut-bolt tests in the worst case.

3. UIUC has just finished constructing the new Reingold Building, the tallest dormitory on campus. In
order to determine how much insurance to buy, the university administration needs to determine
the highest safe floor in the building. A floor is consdered safe if a drunk student an egg can fall
from a window on that floor and land without breaking; if the egg breaks, the floor is considered
unsafe. Any floor that is higher than an unsafe floor is also considered unsafe. The only way to
determine whether a floor is safe is to drop an egg from a window on that floor.

You would like to find the lowest unsafe floor L by performing as few tests as possible;
unfortunately, you have only a very limited supply of eggs.

(a) Prove that if you have only one egg, you can find the lowest unsafe floor with L tests. [Hint:
Yes, this is trivial.]

(b) Prove that if you have only one egg, you must perform at least L tests in the worst case. In
other words, prove that your algorithm from part (a) is optimal. [Hint: Use an adversary
argument.]

(c) Describe an algorithm to find the lowest unsafe floor using two eggs and only O(
p

L) tests.
[Hint: Ideally, each egg should be dropped the same number of times. How many floors can
you test with n drops?]

(d) Prove that if you start with two eggs, you must perform at least Ω(
p

L) tests in the worst
case. In other words, prove that your algorithm from part (c) is optimal.

1

CS 473 Homework 10 (practice only) Spring 2010

This homework is practice only. However, there will be at least one NP-hardness problem
on the final exam, so working through this homework is strongly recommended. Stu-
dents/groups are welcome to submit solutions for feedback (but not credit) in class on May
4, after which we will publish official solutions.

1. Recall that 3SAT asks whether a given boolean formula in conjunctive normal form, with exactly
three literals in each clause, is satisfiable. In class we proved that 3SAT is NP-complete, using a
reduction from CIRCUITSAT.

Now consider the related problem 2SAT: Given a boolean formula in conjunctive normal form,
with exactly two literals in each clause, is the formula satisfiable? For example, the following
boolean formula is a valid input to 2SAT:

(x ∨ y)∧ (y ∨ z)∧ (x ∨ z)∧ (w ∨ y).

Either prove that 2SAT is NP-hard or describe a polynomial-time algorithm to solve it. [Hint:
Recall that (x ∨ y)≡ (x → y), and build a graph.]

2. Let G = (V, E) be a graph. A dominating set in G is a subset S of the vertices such that every vertex
in G is either in S or adjacent to a vertex in S. The DOMINATINGSET problem asks, given a graph G
and an integer k as input, whether G contains a dominating set of size k. Either prove that this
problem is NP-hard or describe a polynomial-time algorithm to solve it.

A dominating set of size 3 in the Peterson graph.

3. Consider the following solitaire game. The puzzle consists of an n×m grid of squares, where each
square may be empty, occupied by a red stone, or occupied by a blue stone. The goal of the puzzle
is to remove some of the given stones so that the remaining stones satisfy two conditions: (1)
every row contains at least one stone, and (2) no column contains stones of both colors. For some
initial configurations of stones, reaching this goal is impossible.

A solvable puzzle and one of its many solutions. An unsolvable puzzle.

Prove that it is NP-hard to determine, given an initial configuration of red and blue stones,
whether the puzzle can be solved.

1

CS 473 Midterm 1 Questions — Version 1 Spring 2010

This exam lasts 120 minutes.
Write your answers in the separate answer booklet.

Please return this question sheet with your answers.

1. Each of these ten questions has one of the following five answers:

A: Θ(1) B: Θ(log n) C: Θ(n) D: Θ(n log n) E: Θ(n2)

Choose the correct answer for each question. Each correct answer is worth +1 point; each incorrect
answer is worth −1/2 point; and each “I don’t know" is worth +1/4 point. Negative scores will be
recorded as 0.

(a) What is
3

n
+

n

3
?

(b) What is
n∑

i=1

i

n
?

(c) What is

s
n∑

i=1

i ?

(d) How many bits are required to write the number n! (the factorial of n) in binary?

(e) What is the solution to the recurrence E(n) = E(n− 3) + 17n ?

(f) What is the solution to the recurrence F(n) = 2F(n/4) + 6n ?

(g) What is the solution to the recurrence G(n) = 9G(n/9) + 9n ?

(h) What is the worst-case running time of quicksort?

(i) Let X [1 .. n, 1 .. n] be a fixed array of numbers. Consider the following recursive function:

WTF(i, j) =





0 if min{i, j} ≤ 0

−∞ if max{i, j}> n

X [i, j] +max





WTF(i− 2, j+ 1)
WTF(i− 2, j− 1)
WTF(i− 1, j− 2)
WTF(i+ 1, j− 2)





otherwise

How long does it take to compute WTF(n, n) using dynamic programming?

(j) The Rubik’s Cube is a mechanical puzzle invented in 1974 by Ernő
Rubik, a Hungarian professor of architecture. The puzzle consists of
a 3× 3× 3 grid of ‘cubelets’, whose faces are covered with stickers
in six different colors. In the puzzle’s solved state, each face of the
puzzle is one solid color. A mechanism inside the puzzle allows
any face of the cube to be freely turned (as shown on the right).
The puzzle can be scrambled by repeated turns. Given a scrambled
Rubik’s Cube, how long does it take to find the shortest sequence of
turns that returns the cube to its solved state?

1

CS 473 Midterm 1 Questions — Version 1 Spring 2010

2. Let T be a rooted tree with integer weights on its edges, which could be positive, negative, or zero.
The weight of a path in T is the sum of the weights of its edges. Describe and analyze an algorithm
to compute the minimum weight of any path from a node in T down to one of its descendants. It
is not necessary to compute the actual minimum-weight path; just its weight. For example, given
the tree shown below, your algorithm should return the number −12.

57 –1

0–5 6

12 2–4

–53 –4

–5

–4

2

–3 0

4 6 –7

–10

–5 1

The minimum-weight downward path in this tree has weight −12.

3. Describe and analyze efficient algorithms to solve the following problems:

(a) Given a set of n integers, does it contain two elements a, b such that a+ b = 0?

(b) Given a set of n integers, does it contain three elements a, b, c such that a+ b = c?

4. A common supersequence of two strings A and B is another string that includes both the characters
of A in order and the characters of B in order. Describe and analyze and algorithm to compute the
length of the shortest common supersequence of two strings A[1 .. m] and B[1 .. n]. You do not
need to compute an actual supersequence, just its length.

For example, if the input strings are ANTHROHOPOBIOLOGICAL and PRETERDIPLOMATICALLY,
your algorithm should output 31, because a shortest common supersequence of those two strings
is PREANTHEROHODPOBIOPLOMATGICALLY.

5. [Taken directly from HBS0.] Recall that the Fibonacci numbers Fn are recursively defined as
follows: F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for every integer n ≥ 2. The first few Fibonacci
numbers are 0,1, 1,2, 3,5, 8,13, 21, 34, 55,

Prove that any non-negative integer can be written as the sum of distinct non-consecutive
Fibonacci numbers. That is, if any Fibonacci number Fn appears in the sum, then its neighbors
Fn−1 and Fn+1 do not. For example:

88= 55+ 21+ 8+ 3+ 1 = F10+ F8+ F6+ F4+ F2

42= 34+ 8 = F9+ F6

17= 13+ 3+ 1 = F7+ F4+ F2

2

CS 473 Midterm 2 Questions — Version β Spring 2010

This exam lasts 120 minutes.
Write your answers in the separate answer booklet.

Please return this question sheet with your answers.

1. Find the following spanning trees for the weighted graph shown below.

(a) A depth-first spanning tree rooted at s.

(b) A breadth-first spanning tree rooted at s.

(c) A shortest-path tree rooted at s. Oops!

(d) A minimum spanning tree.

s

1

2

3

4

10

-1

6

8

9

7 5

You do not need to justify your answers; just clearly indicate the edges of each spanning tree in
your answer booklet. Yes, one of the edges has negative weight.

2. [Taken directly from HBS 6.] An Euler tour of a graph G is a walk that starts and ends at the same
vertex and traverses every edge of G exactly once. Prove that a connected undirected graph G has
an Euler tour if and only if every vertex in G has even degree.

3. You saw in class that the standard algorithm to INCREMENT a binary counter runs in O(1) amortized
time. Now suppose we also want to support a second function called RESET, which resets all bits
in the counter to zero.

Here are the INCREMENT and RESET algorithms. In addition to the array B[. . .] of bits, we now
also maintain the index of the most significant bit, in an integer variable msb.

INCREMENT(B[0 ..∞], msb):
i← 0
while B[i] = 1

B[i]← 0
i← i+ 1

B[i]← 1
if i >msb

msb← i

RESET(B[0 ..∞], msb):
for i← 0 to msb

B[i]← 0
msb← 0

In parts (a) and (b), let n denote the number currently stored in the counter.

(a) What is the worst-case running time of INCREMENT, as a function of n?

(b) What is the worst-case running time of RESET, as a function of n?

(c) Prove that in an arbitrary intermixed sequence of INCREMENT and RESET operations, the
amortized time for each operation is O(1).

1

CS 473 Midterm 2 Questions — Version β Spring 2010

4. The following puzzle was invented by the infamous Mongolian puzzle-warrior Vidrach Itky Leda in
the year 1473. The puzzle consists of an n× n grid of squares, where each square is labeled with a
positive integer, and two tokens, one red and the other blue. The tokens always lie on distinct
squares of the grid. The tokens start in the top left and bottom right corners of the grid; the goal
of the puzzle is to swap the tokens.

In a single turn, you may move either token up, right, down, or left by a distance determined by
the other token. For example, if the red token is on a square labeled 3, then you may move the
blue token 3 steps up, 3 steps left, 3 steps right, or 3 steps down. However, you may not move a
token off the grid or to the same square as the other token.

Describe and analyze an efficient algorithm that either returns the minimum number of moves
required to solve a given Vidrach Itky Leda puzzle, or correctly reports that the puzzle has no
solution. For example, given the puzzle below, your algorithm would return the number 5.

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

A five-move solution for a 4× 4 Vidrach Itky Leda puzzle.

5. Suppose you are given an array X [1 .. n] of real numbers chosen independently and uniformly at
random from the interval [0, 1]. An array entry X [i] is called a local maximum if it is larger than
its neighbors X [i− 1] and X [i+ 1] (if they exist).

What is the exact expected number of local maxima in X? Prove that your answer is correct.
[Hint: Consider the special case n= 3.]

0.7 0.3 1.0 0.1 0.0 0.5 0.6 0.2 0.4 0.9 0.8

A randomly filled array with 4 local maxima.

2

CS 473 Final Exam Questions — Extended Dance Remix Spring 2010

This exam lasts 180 minutes.
Write your answers in the separate answer booklet.

Please return this question sheet with your answers.

1. Choreographer Michael Flatley has hired a new dance company to perform his latest Irish step-
dancing extravaganza. At their first practice session, the new dancers line up in a row on stage and
practice a movement called the Flatley Flip: Whenever Mr. Flatley calls out any positive integer k,
the k rightmost dancers rotate 180 degrees as a group, so that their order in the line is reversed.

Each dancer wears a shirt with a positive integer printed on the front and back; different
dancers have different numbers. Mr. Flatley wants to rearrange the dancers, using only a sequence
of Flatley Flips, so that these numbers are sorted from left to right in increasing order.

7 4 1 5 3 8 2 6

6 2 8 3 57 4 1

6 27 4 1 5 3 8

“5”

“3”

Two Flatley flips.

(a) Describe an algorithm to sort an arbitrary row of n numbered dancers, using O(n) Flatley
flips. (After sorting, the dancers may face forward, backward, or some of each.) Exactly how
many flips does your algorithm perform in the worst case?1

(b) Describe an algorithm that sorts an arbitrary row of n numbered dancers and ensures that
all dancers are facing forward, using O(n) Flatley flips. Exactly how many flips does your
algorithm perform in the worst case?2

2. You’re in charge of choreographing a musical for your local community theater, and it’s time to
figure out the final pose of the big show-stopping number at the end. (“Streetcar!”) You’ve decided
that each of the n cast members in the show will be positioned in a big line when the song finishes,
all with their arms extended and showing off their best spirit fingers.

The director has declared that during the final flourish, each cast member must either point
both their arms up or point both their arms down; it’s your job to figure out who points up and
who points down. Moreover, in a fit of unchecked power, the director has also given you a list of
arrangements that will upset his delicate artistic temperament. Each forbidden arrangement is a
subset of cast members paired with arm positions; for example: “Marge may not point her arms
up while Ned and Apu point their arms down.”

Prove that finding an acceptable arrangement of arm positions is NP-hard. [Hint: Describe a
reduction from 3SAT.]

1This is really a question about networking.
2This is really a question about mutating DNA.

1

CS 473 Final Exam Questions — Extended Dance Remix Spring 2010

3. Dance Dance Revolution is a dance video game, first introduced in Japan by Konami in 1998.
Players stand on a platform marked with four arrows, pointing forward, back, left, and right,
arranged in a cross pattern. During play, the game plays a song and scrolls a sequence of n arrows
(

Ü

, Ü,

Ü

, or Ü) from the bottom to the top of the screen. At the precise moment each arrow
reaches the top of the screen, the player must step on the corresponding arrow on the dance
platform. (The arrows are timed so that you’ll step with the beat of the song.)

You are playing a variant of this game called “Vogue Vogue Revolution”, where the goal is to
play perfectly but move as little as possible. When an arrow reaches the top of the screen, if one
of your feet is already on the correct arrow, you are awarded one style point for maintaining your
current pose. If neither foot is on the right arrow, you must move one (and only one) of your feet
from its current location to the correct arrow on the platform. If you ever step on the wrong arrow,
or fail to step on the correct arrow, or move more than one foot at a time, all your style points are
taken away and the games ends.

How should you move your feet to maximize your total number of style points? For purposes
of this problem, assume you always start with you left foot on

Ü

and you right foot on Ü, and that
you’ve memorized the entire sequence of arrows. For example, if the sequence is Ü Ü

Ü Ü Ü

Ü

Ü

Ü,
you can earn 5 style points by moving you feet as shown below:

➜

➜

➜

➜

➜

➜
➜ ➜

➜

➜ ➜

➜➜

➜

➜➜

➜➜

➜ ➜

➜

➜

➜➜

➜ ➜

➜

➜

L R R R R R R L R L

➜L ➜L

➜L ➜L
➜L ➜L ➜R➜RL R R R R R L R L

L L

L L
L L RR

Style point! Style point! Style point! Style point!Style point!

➜ ➜

➜ ➜ ➜ ➜

➜

R

➜

Begin!

(a) Prove that for any sequence of n arrows, it is possible to earn at least n/4− 1 style points.

(b) Describe an efficient algorithm to find the maximum number of style points you can earn
during a given VVR routine.3 The input to your algorithm is an array Arrow[1 .. n] containing
the sequence of arrows. [Hint: Build a graph!]

4. It’s almost time to show off your flippin’ sweet dancing skills! Tomorrow is the big dance contest
you’ve been training for your entire life, except for that summer you spent with your uncle in
Alaska hunting wolverines. You’ve obtained an advance copy of the the list of n songs that the
judges will play during the contest, in chronological order.

You know all the songs, all the judges, and your own dancing ability extremely well. For each
integer k, you know that if you dance to the kth song on the schedule, you will be awarded exactly
Score[k] points, but then you will be physically unable to dance for the next Wait[k] songs (that
is, you cannot dance to songs k+ 1 through k+Wait[k]). The dancer with the highest total score
at the end of the night wins the contest, so you want your total score to be as high as possible.

Describe and analyze an efficient algorithm to compute the maximum total score you can
achieve. The input to your sweet algorithm is the pair of arrays Score[1 .. n] and Wait[1 .. n].4

3This is really a question about paging.
4This is really a question about processor scheduling.

2

CS 473 Final Exam Questions — Extended Dance Remix Spring 2010

5. You’re organizing the First Annual UIUC Computer Science 72-Hour Dance Exchange, to be held
all day Friday, Saturday, and Sunday. Several 30-minute sets of music will be played during the
event, and a large number of DJs have applied to perform. You need to hire DJs according to the
following constraints.

• Exactly k sets of music must be played each day, and thus 3k sets altogether.

• Each set must be played by a single DJ in a consistent music genre (ambient, bubblegum,
dubstep, horrorcore, hyphy, trip-hop, Nitzhonot, Kwaito, J-pop, Nashville country, . . .).

• Each genre must be played at most once per day.

• Each candidate DJ has given you a list of genres they are willing to play.

• Each DJ can play at most three sets during the entire event.

Suppose there are n candidate DJs and g different musical genres available. Describe and analyze
an efficient algorithm that either assigns a DJ and a genre to each of the 3k sets, or correctly
reports that no such assignment is possible.

6. You’ve been put in charge of putting together a team for the “Dancing with the Computer Scientists”
international competition. Good teams in this competition must be capable of performing a wide
variety of dance styles. You are auditioning a set of n dancing computer scientists, each of whom
specializes in a particular style of dance.

Describe an algorithm to determine in O(n) time if more than half of the n dancers specialize
exactly in the same dance style. The input to your algorithm is an array of n positive integers,
where each integer identifies a style: 1 = ballroom, 2 = latin, 3 = swing, 4 = b-boy, 42 = contact
improv, 101 = peanut butter jelly time, and so on. [Hint: Remember the SELECT algorithm!]

7. The party you are attending is going great, but now it’s time to line up for The Algorithm
March (アアアルルルゴゴゴリリリズズズムムムこここうううしししんんん)! This dance was originally developed by the Japanese comedy
duo Itsumo Kokokara (いつもここから) for the children’s television show PythagoraSwitch
(ピタゴラスイッチ). The Algorithm March is performed by a line of people; each person in line
starts a specific sequence of movements one measure later than the person directly in front of
them. Thus, the march is the dance equivalent of a musical round or canon, like “Row Row Row
Your Boat”.

Proper etiquette dictates that each marcher must know the person directly in front of them in
line, lest a minor mistake during lead to horrible embarrassment between strangers. Suppose you
are given a complete list of which people at your party know each other. Prove that it is NP-hard
to determine the largest number of party-goers that can participate in the Algorithm March.5

5This is really a question about ninjas.

3

You may assume the following problems are NP-hard:

CIRCUITSAT: Given a boolean circuit, are there any input values that make the circuit output True?

PLANARCIRCUITSAT: Given a boolean circuit drawn in the plane so that no two wires cross, are there any
input values that make the circuit output True?

3SAT: Given a boolean formula in conjunctive normal form, with exactly three literals per clause, does the
formula have a satisfying assignment?

MAXINDEPENDENTSET: Given an undirected graph G, what is the size of the largest subset of vertices in G
that have no edges among them?

MAXCLIQUE: Given an undirected graph G, what is the size of the largest complete subgraph of G?

MINVERTEXCOVER: Given an undirected graph G, what is the size of the smallest subset of vertices that
touch every edge in G?

MINDOMINATINGSET: Given an undirected graph G, what is the size of the smallest subset S of vertices
such that every vertex in G is either in S or adjacent to a vertex in S?

MINSETCOVER: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subcollection whose union is S?

MINHITTINGSET: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subset of S that intersects every subset Si?

3COLOR: Given an undirected graph G, can its vertices be colored with three colors, so that every edge
touches vertices with two different colors?

CHROMATICNUMBER: Given an undirected graph G, what is the minimum number of colors needed to color
its vertices, so that every edge touches vertices with two different colors?

MAXCUT: Given a graph G, what is the size (number of edges) of the largest bipartite subgraph of G?

HAMILTONIANCYCLE: Given a graph G, is there a cycle in G that visits every vertex exactly once?

HAMILTONIANPATH: Given a graph G, is there a path in G that visits every vertex exactly once?

TRAVELINGSALESMAN: Given a graph G with weighted edges, what is the minimum total weight of any
Hamiltonian path/cycle in G?

SUBSETSUM: Given a set X of positive integers and an integer k, does X have a subset whose elements
sum to k?

PARTITION: Given a set X of positive integers, can X be partitioned into two subsets with the same sum?

3PARTITION: Given a set X of n positive integers, can X be partitioned into n/3 three-element subsets, all
with the same sum?

MINESWEEPER: Given a Minesweeper configuration and a particular square x , is it safe to click on x?

TETRIS: Given a sequence of N Tetris pieces and a partially filled n× k board, is it possible to play every
piece in the sequence without overflowing the board?

SUDOKU: Given an n× n Sudoku puzzle, does it have a solution?

KENKEN: Given an n× n Ken-Ken puzzle, does it have a solution?

CS 573 Homework 0 (due September 1, 2010) Fall 2010

CS 573: Graduate Algorithms, Fall 2010
Homework 0

Due Wednesday, September 1, 2010 in class

• This homework tests your familiarity with prerequisite material (http://www.cs.uiuc.edu/class/
fa10/cs573/stuff-you-already-know.html) to help you identify gaps in your background knowl-
edge. You are responsible for filling those gaps. Fr most topics, the early chapters of any
algorithms textbook should be sufficient review, but you may also want consult your favorite
discrete mathematics and data structures textbooks. If you need help, please ask in office hours
and/or on the course newsgroup.

• Each student must submit individual solutions for these homework problems. For all future
homeworks, groups of up to three students may submit (or present) a single group solution for
each problem.

• Please carefully read the course policies linked from the course web site. If you have any questions,
please ask during lecture or office hours, or post your question to the course newsgroup. In
particular:

– Submit five separately stapled solutions, one for each numbered problem, with your name
and NetID clearly printed on each page. Please do not staple everything together.

– You may use any source at your disposal—paper, electronic, or human—but you must write
your solutions in your own words, and you must cite every source that you use. In particular,
each solution should include a list of everyone you worked with to solve that problem.

– Unless explicitly stated otherwise, every homework problem requires a proof.

– Answering “I don’t know” to any homework or exam problem (except for extra credit
problems) is worth 25% partial credit.

– Algorithms or proofs containing phrases like “and so on” or “repeat this process for all n”
instead of an explicit loop, recursion, or induction, will receive 0 points.

1

CS 573 Homework 0 (due September 1, 2010) Fall 2010

1. (•) Write the sentence “I understand the course policies."
Solutions that omit this sentence will not be graded.

(a) [5 pts] Solve the following recurrences. State tight asymptotic bounds for each function in
the form Θ(f (n)) for some recognizable function f (n). Assume reasonable but nontrivial
base cases if none are given. Do not submit proofs—just a list of five functions—but you
should do them anyway, just for practice.

• A(n) = 4 A(n− 1) + 1

• B(n) = B(n− 3) + n2

• C(n) = 2 C(n/2) + 3 C(n/3) + n2

• D(n) = 2 D(n/3) +
p

n

• E(n) =





n if n≤ 3,

E(n− 1)E(n− 2)
E(n− 3)

otherwise
[Hint: This is easier than it looks!]

(b) [5 pts] Sort the following functions from asymptotically smallest to asymptotically largest,
indicating ties if there are any. Do not submit proofs—just a sorted list of 16 functions—but
you should do them anyway, just for practice.

Write f (n) � g(n) to indicate that f (n) = o(g(n)), and write f (n) ≡ g(n) to mean
f (n) = Θ(g(n)). We use the notation lg n= log2 n.

n lg n
p

n 7n

p
lg n lg

p
n 7

p
n p

7n

7lg n lg(7n) 7lg
p

n 7
p

lg n

p
7lg n lg(7

p
n) lg

p
7n
p

lg(7n)

2. Professore Giorgio della Giungla has a 23-node binary tree, in which every node is labeled with a
unique letter of the Roman alphabet, which is just like the modern English alphabet, but without
the letters J, U, and W. Inorder and postorder traversals of the tree visit the nodes in the following
order:

• Inorder: S V Z A T P R D B X O L F E H I Q M N G Y K C

• Postorder: A Z P T X B D L E F O H R I V N M K C Y G Q S

(a) List the nodes in Prof. della Giungla’s tree in the order visited by a preorder traversal.

(b) Draw Prof. della Giungla’s tree.

2

CS 573 Homework 0 (due September 1, 2010) Fall 2010

3. The original version of this problem asked to support the mirror-image operations LOWESTTORIGHT

and LEFTMOSTABOVE, which are much harder to support with a single data structure that stores

each point at most once. We will accept O(n)-space data structures for either version of the

problem for full credit.

Describe a data structure that stores a set S of n points in the plane, each represented by a pair
(x , y) of coordinates, and supports the following queries.

• HIGHESTTORIGHT(`): Return the highest point in S whose x-coordinate is greater than or
equal to `. If every point in S has x-coordinate less than `, return NONE.

• RIGHTMOSTABOVE(`): Return the rightmost point in S whose y-coordinate is greater than or
equal to `. If every point in S has y-coordinate less than `, return NONE.

For example, if S = {(3,1), (1,9), (9, 2), (6, 3), (5, 8), (7, 5), (10, 4), (0, 7)}, then both HIGHEST-
TORIGHT(4) and RIGHTMOSTABOVE(6) should return the point (5,8), and HIGHESTTORIGHT(15)
should return NONE.

HIGHESTTORIGHT(4) = RIGHTMOSTABOVE(6) = (5,8)

Analyze both the size of your data structure and the running times of your query algorithms.
For full credit, your data structure should use O(n) space, and each query algorithm should
run in O(log n) time. For 5 extra credit points, describe a data structure that stores each
point at most once. You may assume that no two points in S have equal x-coordinates or equal
y-coordinates.

[Hint: Modify one of the standard data structures listed at http://www.cs.uiuc.edu/class/fa10/
cs573/stuff-you-already-know.html, but just describe your changes; don’t regurgitate the details
of the standard data structure.]

4. An arithmetic expression tree is a binary tree where every leaf is labeled with a variable, every
internal node is labeled with an arithmetic operation, and every internal node has exactly two
children. For this problem, assume that the only allowed operations are + and ×. Different leaves
may or may not represent different variables.

Every arithmetic expression tree represents a function, transforming input values for the leaf
variables into an output value for the root, by following two simple rules: (1) The value of any
+-node is the sum of the values of its children. (2) The value of any ×-node is the product of the
values of its children.

Two arithmetic expression trees are equivalent if they represent the same function; that is,
the same input values for the leaf variables always leads to the same output value at both roots.

3

CS 573 Homework 0 (due September 1, 2010) Fall 2010

×
x +

y z

+

×
x z

×
y x

×
x+

yz

Three equivalent expression trees. Only the third tree is in normal form.

An arithmetic expression tree is in normal form if the parent of every +-node (if any) is another
+-node.

Prove that for any arithmetic expression tree, there is an equivalent arithmetic expression tree
in normal form. [Hint: Be careful. This is trickier than it looks.]

5. Recall that a standard (Anglo-American) deck of 52 playing cards contains 13 cards in each of four
suits: spades («), hearts (ª), diamonds (©), and clubs (¨). Within each suit, the 13 cards have
distinct ranks: 2, 3, 4, 5, 6, 7, 8, 9, 10, jack (J), queen (Q), king (K), and ace (A). The ranks are
ordered 2< 3< · · ·< 9< 10< J <Q < K < A; thus, for example, the jack of spades has higher
rank thank the eight of diamonds.

Professor Jay is about to perform a public demonstration with two decks of cards, one with red
backs (‘the red deck’) and one with blue backs (‘the blue deck’). Both decks lie face-down on a
table in front of Professor Jay, shuffled uniformly and independently. Thus, in each deck, every
permutation of the 52 cards is equally likely.

To begin the demonstration, Professor Jay turns over the top card from each deck. Then, while
he has not yet turned over a three of clubs (3¨), the good Professor hurls the two cards he just
turned over into the thick, pachydermatous outer melon layer of a nearby watermelon (that most
prodigious of household fruits) and then turns over the next card from the top of each deck. Thus,
if 3¨ is the last card in both decks, the demonstration ends with 102 cards embedded in the
watermelon.

(a) What is the exact expected number of cards that Professor Jay hurls into the watermelon?

(b) For each of the statements below, give the exact probability that the statement is true of the
first pair of cards Professor Jay turns over.

i. Both cards are threes.
ii. One card is a three, and the other card is a club.

iii. If (at least) one card is a heart, then (at least) one card is a diamond.
iv. The card from the red deck has higher rank than the card from the blue deck.

(c) For each of the statements below, give the exact probability that the statement is true of the
last pair of cards Professor Jay turns over.

i. Both cards are threes.
ii. One card is a three, and the other card is a club.

iii. If (at least) one card is a heart, then (at least) one card is a diamond.
iv. The card from the red deck has higher rank than the card from the blue deck.

Express each of your answers as rational numbers in simplest form, like 123/4567. Do not submit
proofs—just a list of rational numbers—but you should do them anyway, just for practice.

4

CS 573: Graduate Algorithms, Fall 2010
Homework 1

Due Friday, September 10, 2010 at 1pm

Due Monday, September 13, 2010 at 5pm
(in the homework drop boxes in the basement of Siebel)

For this and all future homeworks, groups of up to three students may submit a single,
common solution. Please neatly print (or typeset) the full name and NetID on each page of
your submission.

1. Two graphs are said to be isomorphic if one can be transformed into the other just by relabeling the
vertices. For example, the graphs shown below are isomorphic; the left graph can be transformed
into the right graph by the relabeling (1,2, 3,4, 5,6, 7) 7→ (c, g, b, e, a, f , d).

1 2

3 4 5

6 7

c

g

b

e

f

a

d

Two isomorphic graphs.

Consider the following related decision problems:

• GRAPHISOMORPHISM: Given two graphs G and H, determine whether G and H are isomorphic.

• EVENGRAPHISOMORPHISM: Given two graphs G and H, such that every vertex in G and H has
even degree, determine whether G and H are isomorphic.

• SUBGRAPHISOMORPHISM: Given two graphs G and H, determine whether G is isomorphic to a
subgraph of H.

(a) Describe a polynomial-time reduction from EVENGRAPHISOMORPHISM to GRAPHISOMORPHISM.

(b) Describe a polynomial-time reduction from GRAPHISOMORPHISM to EVENGRAPHISOMORPHISM.

(c) Describe a polynomial-time reduction from GRAPHISOMORPHISM to SUBGRAPHISOMORPHISM.

(d) Prove that SUBGRAPHISOMORPHISM is NP-complete.

(e) What can you conclude about the NP-hardness of GRAPHISOMORPHISM? Justify your answer.

[Hint: These are all easy!]

2. Suppose you are given a magic black box that can solve the 3COLORABLE problem in polynomial
time. That is, given an arbitrary graph G as input, the magic black box returns TRUE if G has
a proper 3-coloring, and returns FALSE otherwise. Describe and analyze a polynomial-time
algorithm that computes an actual proper 3-coloring of a given graph G, or correctly reports that
no such coloring exists, using this magic black box as a subroutine. [Hint: The input to the black
box is a graph. Just a graph. Nothing else.]

CS 573 Homework 2 (due September 13, 2010) Fall 2010

3. Let G be an undirected graph with weighted edges. A heavy Hamiltonian cycle is a cycle C that
passes through each vertex of G exactly once, such that the total weight of the edges in C is at
least half of the total weight of all edges in G. Prove that deciding whether a graph has a heavy
Hamiltonian cycle is NP-complete.

4

8

2

7

5

3

1

12
8

6

5

9

5

A heavy Hamiltonian cycle. The cycle has total weight 34; the graph has total weight 67.

4. Consider the following solitaire game. The puzzle consists of an n×m grid of squares, where each
square may be empty, occupied by a red stone, or occupied by a blue stone. The goal of the puzzle
is to remove some of the given stones so that the remaining stones satisfy two conditions: (1)
every row contains at least one stone, and (2) no column contains stones of both colors. For some
initial configurations of stones, reaching this goal is impossible.

A solvable puzzle and one of its many solutions. An unsolvable puzzle.

Prove that it is NP-hard to determine, given an initial configuration of red and blue stones,
whether the puzzle can be solved.

5. A boolean formula in exclusive-or conjunctive normal form (XCNF) is a conjunction (AND) of
several clauses, each of which is the exclusive-or of one or more literals. For example:

(u⊕ v⊕ w̄⊕ x)∧ (ū⊕ w̄⊕ y)∧ (v̄⊕ y)∧ (ū⊕ v̄⊕ x ⊕ y)∧ (w⊕ x)∧ y

The XCNF-SAT problem asks whether a given XCNF boolean formula is satisfiable. Either describe
a polynomial-time algorithm for XCNF-SAT or prove that it is NP-complete.

1

CS 573 Homework 2 (due September 27, 2010) Fall 2010

CS 573: Graduate Algorithms, Fall 2010
Homework 2

Due Monday, September 27, 2010 at 5pm
(in the homework drop boxes in the basement of Siebel)

• For this and all future homeworks, groups of up to three students may submit a single, common
solution. Please neatly print (or typeset) the full name and NetID of every group member on the
first page of your submission.

• We will use the following rubric to grade all dynamic programming algorithms:

– 60% for a correct recurrence (including base cases and a plain-English specification); no
credit for anything else if this is wrong.

– 10% for describing a suitable memoization data structure.

– 20% for describing a correct evaluation order. (A clear picture is sufficient.)

– 10% point for analyzing the running time of the resulting algorithm.

Official solutions will always include pseudocode for the final dynamic programming algorithm,
but this is not required for full credit. However, if you do provide correct pseudocode for the
dynamic programming algorithm, it is not necessary to separately describe the recurrence, the
memoization data structure, or the evaluation order.

It is not necessary to state a space bound. There is no penalty for using more space than the
official solution, but +1 extra credit for using less space with the same (or better) running time.

• The official solution for every problem will provide a target time bound. Algorithms faster than the
official solution are worth more points (as extra credit); algorithms slower than the official solution
are worth fewer points. For slower algorithms, partial credit is scaled to the lower maximum
score. For example, if a full dynamic programming algorithm would be worth 5 points, just the
recurrence is worth 3 points. However, incorrect algorithms are worth zero points, no matter how
fast they are.

• Greedy algorithms must be accompanied by proofs of correctness in order to receive any credit.
Otherwise, any correct algorithm, no matter how slow, is worth at least 2½ points, assuming
it is properly analyzed.

1. Suppose you are given an array A[1 .. n] of positive integers. Describe and analyze an algorithm to
find the smallest positive integer that is not an element of A in O(n) time.

2. Suppose you are given an m× n bitmap, represented by an array M[1 .. m, 1 .. n] whose entries
are all 0 or 1. A solid block is a subarray of the form M[i .. i′, j .. j′] in which every bit is equal to 1.
Describe and analyze an efficient algorithm to find a solid block in M with maximum area.

1

CS 573 Homework 2 (due September 27, 2010) Fall 2010

3. Let T be a tree in which each edge e has a weight w(e). A matching M in T is a subset of the edges
such that each vertex of T is incident to at most one edge in M . The weight of a matching M is
the sum of the weights of its edges. Describe and analyze an algorithm to compute a maximum
weight matching, given the tree T as input.

4. For any string x and any non-negative integer k, let xk denote the string obtained by concatenating
k copies of x . For example, STRING3 =STRINGSTRINGSTRING and STRING0 is the empty string.

A repetition of x is a prefix of xk for some integer k. For example, STRINGSTRINGSTRINGST
and STR are both repetitions of STRING, as is the empty string.

An interleaving of two strings x and y is any string obtained by shuffling a repetition of x
with a repetition of y . For example, STRWORINDGSTWORIRNGDWSTORR is an interleaving of STRING
and WORD, as is the empty string.

Describe and analyze an algorithm that accepts three strings x , y , and z as input, and decides
whether z is an interleaving of x and y .

5. Every year, as part of its annual meeting, the Antarctican Snail Lovers of Upper Glacierville hold a
Round Table Mating Race. Several high-quality breeding snails are placed at the edge of a round
table. The snails are numbered in order around the table from 1 to n. During the race, each snail
wanders around the table, leaving a trail of slime behind it. The snails have been specially trained
never to fall off the edge of the table or to cross a slime trail, even their own. If two snails meet,
they are declared a breeding pair, removed from the table, and whisked away to a romantic hole
in the ground to make little baby snails. Note that some snails may never find a mate, even if the
race goes on forever.

For every pair of snails, the Antarctican SLUG race organizers have posted a monetary reward,
to be paid to the owners if that pair of snails meets during the Mating Race. Specifically, there
is a two-dimensional array M[1 .. n, 1 .. n] posted on the wall behind the Round Table, where
M[i, j] = M[j, i] is the reward to be paid if snails i and j meet.

Describe and analyze an algorithm to compute the maximum total reward that the organizers
could be forced to pay, given the array M as input.

1

2

3

4

5

6

7

8 8

1

5 2

6

3
4

7

The end of a typical Antarctican SLUG race. Snails 6 and 8 never find mates.
The organizers must pay M[3,4] +M[2,5] +M[1,7].

2

CS 573 Homework 3 (due October 18, 2010) Fall 2010

CS 573: Graduate Algorithms, Fall 2010
Homework 3

Due Monday, October 18, 2010 at 5pm
(in the homework drop boxes in the basement of Siebel)

1. Suppose we are given two arrays C[1 .. n] and R[1 .. n] of positive integers. An n× n matrix of 0s
and 1s agrees with R and C if, for every index i, the ith row contains R[i] 1s, and the ith column
contains C[i] 1s. Describe and analyze an algorithm that either constructs a matrix that agrees
with R and C , or correctly reports that no such matrix exists.

2. Suppose we have n skiers with heights given in an array P[1 .. n], and n skis with heights given in
an array S[1 .. n]. Describe an efficient algorithm to assign a ski to each skier, so that the average
difference between the height of a skier and her assigned ski is as small as possible. The algorithm
should compute a permutation σ such that the expression

1

n

n∑
i=1

��P[i]− S[σ(i)]
��

is as small as possible.

3. Alice wants to throw a party and she is trying to decide who to invite. She has n people to choose
from, and she knows which pairs of these people know each other. She wants to pick as many
people as possible, subject to two constraints:

• For each guest, there should be at least five other guests that they already know.

• For each guest, there should be at least five other guests that they don’t already know.

Describe and analyze an algorithm that computes the largest possible number of guests Alice can
invite, given a list of n people and the list of pairs who know each other.

4. Consider the following heuristic for constructing a vertex cover of a connected graph G: return
the set of non-leaf nodes in any depth-first spanning tree of G.

(a) Prove that this heuristic returns a vertex cover of G.

(b) Prove that this heuristic returns a 2-approximation to the minimum vertex cover of G.

(c) Describe an infinite family of graphs for which this heuristic returns a vertex cover of size
2·OPT .

5. Suppose we want to route a set of N calls on a telecommunications network that consist of a cycle
on n nodes, indexed in order from 0 to n− 1. Each call has a source node and a destination node,
and can be routed either clockwise or counterclockwise around the cycle. Our goal is to route
the calls so as to minimize the overall load on the network. The load Li on any edge (i, (i + 1)
mod n) is the number of calls routed through that edge, and the overall load is maxi Li . Describe
and analyze an efficient 2-approximation algorithm for this problem.

1

CS 573 Homework 4 (due November 1, 2010) Fall 2010

CS 573: Graduate Algorithms, Fall 2010
Homework 4

Due Monday, November 1, 2010 at 5pm
(in the homework drop boxes in the basement of Siebel)

1. Consider an n-node treap T . As in the lecture notes, we identify nodes in T by the ranks of their
search keys. Thus, ‘node 5’ means the node with the 5th smallest search key. Let i, j, k be integers
such that 1≤ i ≤ j ≤ k ≤ n.

(a) What is the exact probability that node j is a common ancestor of node i and node k?

(b) What is the exact expected length of the unique path from node i to node k in T?

2. Let M[1 .. n, 1 .. n] be an n× n matrix in which every row and every column is sorted. Such an
array is called totally monotone. No two elements of M are equal.

(a) Describe and analyze an algorithm to solve the following problem in O(n) time: Given indices
i, j, i′, j′ as input, compute the number of elements of M smaller than M[i, j] and larger
than M[i′, j′].

(b) Describe and analyze an algorithm to solve the following problem in O(n) time: Given
indices i, j, i′, j′ as input, return an element of M chosen uniformly at random from the
elements smaller than M[i, j] and larger than M[i′, j′]. Assume the requested range is
always non-empty.

(c) Describe and analyze a randomized algorithm to compute the median element of M in
O(n log n) expected time.

3. Suppose we are given a complete undirected graph G, in which each edge is assigned a weight
chosen independently and uniformly at random from the real interval [0, 1]. Consider the following
greedy algorithm to construct a Hamiltonian cycle in G. We start at an arbitrary vertex. While
there is at least one unvisited vertex, we traverse the minimum-weight edge from the current
vertex to an unvisited neighbor. After n− 1 iterations, we have traversed a Hamiltonian path; to
complete the Hamiltonian cycle, we traverse the edge from the last vertex back to the first vertex.
What is the expected weight of the resulting Hamiltonian cycle? [Hint: What is the expected
weight of the first edge? Consider the case n= 3.]

1

CS 573 Homework 4 (due November 1, 2010) Fall 2010

4. (a) Consider the following deterministic algorithm to construct a vertex cover C of a graph G.

VERTEXCOVER(G):
C ← ;
while C is not a vertex cover

pick an arbitrary edge uv that is not covered by C
add either u or v to C

return C

Prove that VERTEXCOVER can return a vertex cover that is Ω(n) times larger than the smallest
vertex cover. You need to describe both an input graph with n vertices, for any integer n, and
the sequence of edges and endpoints chosen by the algorithm.

(b) Now consider the following randomized variant of the previous algorithm.

RANDOMVERTEXCOVER(G):
C ← ;
while C is not a vertex cover

pick an arbitrary edge uv that is not covered by C
with probability 1/2

add u to C
else

add v to C
return C

Prove that the expected size of the vertex cover returned by RANDOMVERTEXCOVER is at most
2 ·OPT, where OPT is the size of the smallest vertex cover.

(c) Let G be a graph in which each vertex v has a weight w(v). Now consider the following
randomized algorithm that constructs a vertex cover.

RANDOMWEIGHTEDVERTEXCOVER(G):
C ← ;
while C is not a vertex cover

pick an arbitrary edge uv that is not covered by C
with probability w(v)/(w(u) +w(v))

add u to C
else

add v to C
return C

Prove that the expected weight of the vertex cover returned by RANDOMWEIGHTEDVERTEXCOVER

is at most 2 ·OPT, where OPT is the weight of the minimum-weight vertex cover. A correct
answer to this part automatically earns full credit for part (b).

2

CS 573 Homework 4 (due November 1, 2010) Fall 2010

5. (a) Suppose n balls are thrown uniformly and independently at random into m bins. For any
integer k, what is the exact expected number of bins that contain exactly k balls?

(b) Consider the following balls and bins experiment, where we repeatedly throw a fixed number
of balls randomly into a shrinking set of bins. The experiment starts with n balls and n bins.
In each round i, we throw n balls into the remaining bins, and then discard any non-empty
bins; thus, only bins that are empty at the end of round i survive to round i+ 1.

BALLSDESTROYBINS(n):
start with n empty bins
while any bins remain

throw n balls randomly into the remaining bins
discard all bins that contain at least one ball

Suppose that in every round, precisely the expected number of bins are empty. Prove that
under these conditions, the experiment ends after O(log∗ n) rounds.1

?(c) [Extra credit] Now assume that the balls are really thrown randomly into the bins in each
round. Prove that with high probability, BALLSDESTROYBINS(n) ends after O(log∗ n) rounds.

(d) Now consider a variant of the previous experiment in which we discard balls instead of bins.
Again, the experiment n balls and n bins. In each round i, we throw the remaining balls into
n bins, and then discard any ball that lies in a bin by itself; thus, only balls that collide in
round i survive to round i+ 1.

BINSDESTROYSINGLEBALLS(n):
start with n balls
while any balls remain

throw the remaining balls randomly into n bins
discard every ball that lies in a bin by itself
retrieve the remaining balls from the bins

Suppose that in every round, precisely the expected number of bins contain exactly one ball.
Prove that under these conditions, the experiment ends after O(log log n) rounds.

?(e) [Extra credit] Now assume that the balls are really thrown randomly into the bins in each
round. Prove that with high probability, BINSDESTROYSINGLEBALLS(n) ends after O(log log n)
rounds.

1Recall that the iterated logarithm is defined as follows: log∗ n= 0 if n≤ 1, and log∗ n= 1+ log∗(lg n) otherwise.

3

CS 573 Homework 5 (due November 19, 2010) Fall 2010

CS 573: Graduate Algorithms, Fall 2010
Homework 5

Due Friday, November 19, 2010 at 5pm
(in the homework drop boxes in the basement of Siebel)

1. Suppose we are given a set of boxes, each specified by their height, width, and depth in centimeters.
All three side lengths of every box lie strictly between 10cm and 20cm. As you should expect, one
box can be placed inside another if the smaller box can be rotated so that its height, width, and
depth are respectively smaller than the height, width, and depth of the larger box. Boxes can be
nested recursively. Call a box is visible if it is not inside another box.

Describe and analyze an algorithm to nest the boxes so that the number of visible boxes is as
small as possible.

2. Suppose we are given an array A[1 .. m][1 .. n] of non-negative real numbers. We want to round A
to an integer matrix, by replacing each entry x in A with either bxc or dxe, without changing the
sum of entries in any row or column of A. For example:




1.2 3.4 2.4
3.9 4.0 2.1
7.9 1.6 0.5


 7−→



1 4 2
4 4 2
8 1 1




Describe an efficient algorithm that either rounds A in this fashion, or reports correctly that no
such rounding is possible.

3. The Autocratic Party is gearing up their fund-raising campaign for the 2012 election. Party
leaders have already chosen their slate of candidates for president and vice-president, as well as
various governors, senators, representatives, city council members, school board members, and
dog-catchers. For each candidate, the party leaders have determined how much money they must
spend on that candidate’s campaign to guarantee their election.

The party is soliciting donations from each of its members. Each voter has declared the total
amount of money they are willing to give each candidate between now and the election. (Each
voter pledges different amounts to different candidates. For example, everyone is happy to donate
to the presidential candidate,1 but most voters in New York will not donate anything to the
candidate for Trash Commissioner of Los Angeles.) Federal election law limits each person’s total
political contributions to $100 per day.

Describe and analyze an algorithm to compute a donation schedule, describing how much
money each voter should send to each candidate on each day, that guarantees that every candidate
gets enough money to win their election. (Party members will of course follow their given schedule
perfectly.2) The schedule must obey both Federal laws and individual voters’ budget constraints. If
no such schedule exists, your algorithm should report that fact.

1or some nice men in suits will be visiting their home.
2It’s a nice house you’ve got here. Shame if anything happened to it.

1

CS 573 Homework 5 (due November 19, 2010) Fall 2010

4. Consider an n× n grid, some of whose cells are marked. A monotone path through the grid starts
at the top-left cell, moves only right or down at each step, and ends at the bottom-right cell. We
want to compute the minimum number of monotone paths that cover all the marked cells.

(a) One of your friends suggests the following greedy strategy:

• Find (somehow) one “good” path π that covers the maximum number of marked cells.
• Unmark the cells covered by π.
• If any cells are still marked, recursively cover them.

Prove that this greedy strategy does not always compute an optimal solution.

Greedily covering the marked cells in a grid with four monotone paths.

(b) Describe and analyze an efficient algorithm to compute the smallest set of monotone paths
that covers every marked cell. The input to your algorithm is an array M[1 .. n, 1 .. n] of
booleans, where M[i, j] = TRUE if and only if cell (i, j) is marked.

5. Let G be a directed graph with two distinguished vertices s and t, and let r be a positive integer.
Two players named Paul and Sally play the following game. Paul chooses a path P from s to t,
and Sally chooses a subset S of at most r edges in G. The players reveal their chosen subgraphs
simultaneously. If P ∩ S = ∅, Paul wins; if P ∩ S 6= ∅, then Sally wins. Both players want to
maximize their chances of winning the game.

(a) Prove that if Paul uses a deterministic strategy, and Sally knows his strategy, then Sally can
guarantee that she wins.3

(b) Let M be the number of edges in a minimum (s, t)-cut. Describe a deterministic strategy for
Sally that guarantees that she wins when r ≥ M , no matter what strategy Paul uses.

(c) Prove that if Sally uses a deterministic strategy, and Paul knows her strategy then Paul can
guarantee that he wins when r < M .

(d) Describe a randomized strategy for Sally that guarantees that she wins with probability at
least min{r/M , 1}, no matter what strategy Paul uses.

(e) Describe a randomized strategy for Paul that guarantees that he loses with probability at
most min{r/M , 1}, no matter what strategy Sally uses.

Paul and Sally’s strategies are, of course, algorithms. (For example, Paul’s strategy is an
algorithm that takes the graph G and the integer r as input and produces a path P as output.) You
do not need to analyze the running times of these algorithms, but you must prove all claims about
their winning probabilities. Most of these questions are easy.

3“Good old rock. Nothing beats rock. . . . D’oh!”

2

CS 573: Graduate Algorithms, Fall 2010
Homework 5

Practice only — Do not submit solutions

1. (a) Describe how to transform any linear program written in general form into an equivalent
linear program written in slack form.

maximize
d∑

j=1
c j x j

subject to
d∑

j=1
ai j x j≤ bi for each i = 1 .. p

d∑
j=1

ai j x j= bi for each i = p+ 1 .. p+ q

d∑
j=1

ai j x j≥ bi for each i = p+ q+ 1 .. n

Z=⇒
max c · x

s.t. Ax= b
x≥ 0

(b) Describe precisely how to dualize a linear program written in slack form.

(c) Describe precisely how to dualize a linear program written in general form.

In all cases, keep the number of variables in the resulting linear program as small as possible.

2. Suppose you have a subroutine that can solve linear programs in polynomial time, but only if they
are both feasible and bounded. Describe an algorithm that solves arbitrary linear programs in
polynomial time. Your algorithm should return an optimal solution if one exists; if no optimum
exists, your algorithm should report that the input instance is UNBOUNDED or INFEASIBLE, whichever
is appropriate. [Hint: Add one variable and one constraint.]

3. An integer program is a linear program with the additional constraint that the variables must take
only integer values.

(a) Prove that deciding whether an integer program has a feasible solution is NP-complete.

(b) Prove that finding the optimal feasible solution to an integer program is NP-hard.

[Hint: Almost any NP-hard decision problem can be formulated as an integer program. Pick your
favorite.]

4. Give a linear-programming formulation of the minimum-cost feasible circulation problem. You
are given a flow network whose edges have both capacities and costs, and your goal is to find a
feasible circulation (flow with value 0) whose cost is as small as possible.

CS 573 Homework 6 (Practice only) Fall 2010

5. Given points (x1, y1), (x2, y2), . . . , (xn, yn) in the plane, the linear regression problem asks for real
numbers a and b such that the line y = ax + b fits the points as closely as possible, according to
some criterion. The most common fit criterion is minimizing the L2 error, defined as follows:1

ε2(a, b) =
n∑

i=1

(yi − ax i − b)2.

But there are several other fit criteria, some of which can be optimized via linear programming.

(a) The L1 error (or total absolute deviation) of the line y = ax + b is defined as follows:

ε1(a, b) =
n∑

i=1

��yi − ax i − b
�� .

Describe a linear program whose solution (a, b) describes the line with minimum L1 error.

(b) The L∞ error (or maximum absolute deviation) of the line y = ax + b is defined as follows:

ε∞(a, b) =
n

max
i=1

��yi − ax i − b
�� .

Describe a linear program whose solution (a, b) describes the line with minimum L∞ error.

1This measure is also known as sum of squared residuals, and the algorithm to compute the best fit is normally called
(ordinary/linear) least squares fitting.

2

CS 573 Midterm 1 Questions Fall 2010

This exam lasts 90 minutes.
Write your answers in the separate answer booklet.

Please return this question sheet with your answers.

1. (a) Suppose A[1 .. n] is an array of n distinct integers, sorted so that A[1]< A[2]< · · ·< A[n].
Each integer A[i] could be positive, negative, or zero. Describe and analyze an efficient
algorithm that either computes an index i such that A[i] = i or correctly reports that no such
index exists.

(b) Now suppose A[1 .. n] is a sorted array of n distinct positive integers. Describe and analyze
an even faster algorithm that either computes an index i such that A[i] = i or correctly
reports that no such index exists.

2. A double-Hamiltonian circuit a closed walk in a graph that visits every vertex exactly twice. Prove
that it is NP-hard to determine whether a given graph contains a double-Hamiltonian circuit.

b

d

c

f

g

a

e

This graph contains the double-Hamiltonian circuit a�b�d�g�e�b�d�c� f �a�c� f �g�e�a.

3. A palindrome is any string that is exactly the same as its reversal, like I, or DEED, or HANNAH, or
AMANAPLANACATACANALPANAMA. Describe and analyze an algorithm to find the length of the longest
subsequence of a given string that is also a palindrome.

For example, the longest palindrome subsequence of MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM
is MHYMRORMYHM, so given that string as input, your algorithm should return the integer 11.

4. Suppose you are given a magic black box that can determine in polynomial time, given an
arbitrary graph G, the number of vertices in the largest complete subgraph of G. Describe and
analyze a polynomial-time algorithm that computes, given an arbitrary graph G, a complete
subgraph of G of maximum size, using this magic black box as a subroutine.

5. Suppose we are given a 4× n grid, where each grid cell has an integer value. Suppose we want to
mark a subset of the grid cells, so that the total value of the marked cells is as large as possible.
However, we are forbidden to mark any pair of grid cells that are immediate horizontal or vertical
neighbors. (Marking diagonal neighbors is fine.) Describe and analyze an algorithm that computes
the largest possible sum of marked cells, subject to this non-adjacency condition.

For example, given the grid on the left below, your algorithm should return the integer 36,
which is the sum of the circled numbers on the right.

4 −5 1 6

2 6 −1 8

5 4 3 3

1 −1 7 4

−3 4 5 −2

=⇒

4© −5 1 6©
2 6© −1 8

5© 4 3 3©
1 −1 7© 4

−3 5© 4 −2

1

You may assume the following problems are NP-hard:

CIRCUITSAT: Given a boolean circuit, are there any input values that make the circuit output True?

PLANARCIRCUITSAT: Given a boolean circuit drawn in the plane so that no two wires cross, are there any
input values that make the circuit output True?

3SAT: Given a boolean formula in conjunctive normal form, with exactly three literals per clause, does the
formula have a satisfying assignment?

MAX2SAT: Given a boolean formula in conjunctive normal form, with exactly two literals per clause, what is
the largest number of clauses that can be satisfied by an assignment?

MAXINDEPENDENTSET: Given an undirected graph G, what is the size of the largest subset of vertices in G
that have no edges among them?

MAXCLIQUE: Given an undirected graph G, what is the size of the largest complete subgraph of G?

MINVERTEXCOVER: Given an undirected graph G, what is the size of the smallest subset of vertices that
touch every edge in G?

MINDOMINATINGSET: Given an undirected graph G, what is the size of the smallest subset S of vertices
such that every vertex in G is either in S or adjacent to a vertex in S?

MINSETCOVER: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subcollection whose union is S?

MINHITTINGSET: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subset of S that intersects every subset Si?

3COLOR: Given an undirected graph G, can its vertices be colored with three colors, so that every edge
touches vertices with two different colors?

CHROMATICNUMBER: Given an undirected graph G, what is the minimum number of colors needed to color
its vertices, so that every edge touches vertices with two different colors?

MAXCUT: Given a graph G, what is the size (number of edges) of the largest bipartite subgraph of G?

HAMILTONIANCYCLE: Given a graph G, is there a cycle in G that visits every vertex exactly once?

HAMILTONIANPATH: Given a graph G, is there a path in G that visits every vertex exactly once?

TRAVELINGSALESMAN: Given a graph G with weighted edges, what is the minimum total weight of any
Hamiltonian path/cycle in G?

SUBSETSUM: Given a set X of positive integers and an integer k, does X have a subset whose elements
sum to k?

PARTITION: Given a set X of positive integers, can X be partitioned into two subsets with the same sum?

3PARTITION: Given a set X of n positive integers, can X be partitioned into n/3 three-element subsets, all
with the same sum?

MINESWEEPER: Given a Minesweeper configuration and a particular square x , is it safe to click on x?

TETRIS: Given a sequence of N Tetris pieces and a partially filled n× k board, is it possible to play every
piece in the sequence without overflowing the board?

SUDOKU: Given an n× n Sudoku puzzle, does it have a solution?

KENKEN: Given an n× n Ken-Ken puzzle, does it have a solution?

CS 573 Midterm 2 Questions Fall 2010

This exam lasts 90 minutes.
Write your answers in the separate answer booklet.

Please return this question sheet with your answers.

1. Assume we have access to a function RANDOM(k) that returns, given any positive integer k, an
integer chosen independently and uniformly at random from the set {1,2, . . . , k}, in O(1) time.
For example, to perform a fair coin flip, we could call RANDOM(2).

Now suppose we want to write an efficient function RANDOMPERMUTATION(n) that returns a
permutation of the set {1,2, . . . , n} chosen uniformly at random; that is, each permutation must
be chosen with probability 1/n!.

(a) Prove that the following algorithm is not correct. [Hint: Consider the case n= 3.]

RANDOMPERMUTATION(n):
for i← 1 to n

π[i]← i
for i← 1 to n

swap π[i]↔ π[RANDOM(n)]
return π

(b) Describe and analyze a correct RANDOMPERMUTATION algorithm that runs in O(n) expected
time. (In fact, O(n) worst-case time is possible.)

2. Suppose we have n pieces of candy with weights W[1 .. n] (in ounces) that we want to load into
boxes. Our goal is to load the candy into as many boxes as possible, so that each box contains at
least L ounces of candy. Describe an efficient 2-approximation algorithm for this problem. Prove
that the approximation ratio of your algorithm is 2.

(For 7 points partial credit, assume that every piece of candy weighs less than L ounces.)

3. The MAXIMUM-k-CUT problem is defined as follows. We are given a graph G with weighted edges
and an integer k. Our goal is to partition the vertices of G into k subsets S1, S2, . . . , Sk, so that
the sum of the weights of the edges that cross the partition (that is, with endpoints in different
subsets) is as large as possible.

(a) Describe an efficient randomized approximation algorithm for MAXIMUM-k-CUT, and prove
that its expected approximation ratio is at most (k− 1)/k.

(b) Now suppose we want to minimize the sum of the weights of edges that do not cross the
partition. What expected approximation ratio does your algorithm from part (a) achieve for
this new problem? Prove your answer is correct.

1

CS 573 Midterm 2 Questions Fall 2010

4. The citizens of Binaria use coins whose values are powers of two. That is, for any non-negative
integer k, there are Binarian coins with value is 2k bits. Consider the natural greedy algorithm
to make x bits in change: If x > 0, use one coin with the largest denomination d ≤ x and
then recursively make x − d bits in change. (Assume you have an unlimited supply of each
denomination.)

(a) Prove that this algorithm uses at most one coin of each denomination.

(b) Prove that this algorithm finds the minimum number of coins whose total value is x .

5. Any permutation π can be represented as a set of disjoint cycles, by considering the directed graph
whose vertices are the integers between 1 and n and whose edges are i�π(i) for each i. For
example, the permutation 〈5,4, 2,6, 7, 8, 1, 3, 9〉 has three cycles: (175) (24683) (9).

In the following questions, let π be a permutation of {1, 2, . . . , n} chosen uniformly at random,
and let k be an arbitrary integer such that 1≤ k ≤ n.

(a) Prove that the probability that the number 1 lies in a cycle of length k in π is precisely 1/n.
[Hint: Consider the cases k = 1 and k = 2.]

(b) What is the exact expected length of the cycle in π that contains the number 1?

(c) What is the exact expected number of cycles of length k in π?

(d) What is the exact expected number of cycles in π?

You may assume part (a) in your solutions to parts (b), (c), and (d).

2

CS 573 Final Exam Questions Fall 2010

This exam lasts 180 minutes.
Write your answers in the separate answer booklet.

Please return this question sheet with your answers.

1. A subset S of vertices in an undirected graph G is called triangle-free if, for every triple of vertices
u, v, w ∈ S, at least one of the three edges uv, uw, vw is absent from G. Prove that finding the size
of the largest triangle-free subset of vertices in a given undirected graph is NP-hard.

A triangle-free subset of 7 vertices.
This is not the largest triangle-free subset in this graph.

2. An n× n grid is an undirected graph with n2 vertices organized into n rows and n columns. We
denote the vertex in the ith row and the jth column by (i, j). Every vertex in the grid have exactly
four neighbors, except for the boundary vertices, which are the vertices (i, j) such that i = 1, i = n,
j = 1, or j = n.

Let (x1, y1), (x2, y2), . . . , (xm, ym) be distinct vertices, called terminals, in the n× n grid. The
escape problem is to determine whether there are m vertex-disjoint paths in the grid that connect
the terminals to any m distinct boundary vertices. Describe and analyze an efficient algorithm to
solve the escape problem.

A positive instance of the escape problem, and its solution.

3. Consider the following problem, called UNIQUESETCOVER. The input is an n-element set S, together
with a collection of m subsets S1, S2, . . . , Sm ⊆ S, such that each element of S lies in exactly k
subsets Si . Our goal is to select some of the subsets so as to maximize the number of elements of S
that lie in exactly one selected subset.

(a) Fix a real number p between 0 and 1, and consider the following algorithm:

For each index i, select subset Si independently with probability p.

What is the exact expected number of elements that are uniquely covered by the chosen
subsets? (Express your answer as a function of the parameters p and k.)

(b) What value of p maximizes this expectation?

(c) Describe a polynomial-time randomized algorithm for UNIQUESETCOVER whose expected
approximation ratio is O(1).

1

CS 573 Final Exam Questions Fall 2010

4. Suppose we need to distribute a message to all the nodes in a rooted tree. Initially, only the root
node knows the message. In a single round, any node that knows the message can forward it to at
most one of its children. Describe and analyze an efficient algorithm to compute the minimum
number of rounds required for the message to be delivered to every node.

A message being distributed through a tree in five rounds.

5. Every year, Professor Dumbledore assigns the instructors at Hogwarts to various faculty committees.
There are n faculty members and c committees. Each committee member has submitted a list of
their prices for serving on each committee; each price could be positive, negative, zero, or even
infinite. For example, Professor Snape might declare that he would serve on the Student Recruiting
Committee for 1000 Galleons, that he would pay 10000 Galleons to serve on the Defense Against
the Dark Arts Course Revision Committee, and that he would not serve on the Muggle Relations
committee for any price.

Conversely, Dumbledore knows how many instructors are needed for each committee, as
well as a list of instructors who would be suitable members for each committee. (For example:
“Dark Arts Revision: 5 members, anyone but Snape.”) If Dumbledore assigns an instructor to a
committee, he must pay that instructor’s price from the Hogwarts treasury.

Dumbledore needs to assign instructors to committees so that (1) each committee is full, (3) no
instructor is assigned to more than three committees, (2) only suitable and willing instructors
are assigned to each committee, and (4) the total cost of the assignment is as small as possible.
Describe and analyze an efficient algorithm that either solves Dumbledore’s problem, or correctly
reports that there is no valid assignment whose total cost is finite.

6. Suppose we are given a rooted tree T , where every edge e has a non-negative length `(e). Describe
and analyze an efficient algorithm to assign a stretched length s`(e) ≥ `(e) to every edge e,
satisfying the following conditions:

• Every root-to-leaf path in T has the same total stretched length.

• The total stretch
∑

e(s`(e)− `(e)) is as small as possible.

7. Let G = (V, E) be a directed graph with edge capacities c : E→ R+, a source vertex s, and a target
vertex t. Suppose someone hands you an arbitrary function f : E→ R. Describe and analyze fast
and simple algorithms to answer the following questions:

(a) Is f a feasible (s, t)-flow in G?

(b) Is f a maximum (s, t)-flow in G?

(c) Is f the unique maximum (s, t)-flow in G?

2

Chernoff bounds:

If X is the sum of independent indicator variables and µ= E[X], then

Pr[X > (1+δ)µ]≤
�

eδ

(1+δ)1+δ

�µ
for any δ > 0

Pr[X > (1−δ)µ]≤
�

e−δ

(1−δ)1−δ
�µ

for any 0< δ < 1

You may assume the following running times:

• Maximum flow or minimum cut: O(E| f ∗|) or O(V E log V)
• Minimum-cost maximum flow: O(E2 log2 V)

(These are not the best time bounds known, but they’re close enough for
the final exam.)

You may assume the following problems are NP-hard:

CIRCUITSAT: Given a boolean circuit, are there any input values that make the circuit output True?

PLANARCIRCUITSAT: Given a boolean circuit drawn in the plane so that no two wires cross, are there any
input values that make the circuit output True?

3SAT: Given a boolean formula in conjunctive normal form, with exactly three literals per clause, does the
formula have a satisfying assignment?

MAX2SAT: Given a boolean formula in conjunctive normal form, with exactly two literals per clause, what is
the largest number of clauses that can be satisfied by an assignment?

MAXINDEPENDENTSET: Given an undirected graph G, what is the size of the largest subset of vertices in G
that have no edges among them?

MAXCLIQUE: Given an undirected graph G, what is the size of the largest complete subgraph of G?

MINVERTEXCOVER: Given an undirected graph G, what is the size of the smallest subset of vertices that
touch every edge in G?

MINSETCOVER: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subcollection whose union is S?

MINHITTINGSET: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subset of S that intersects every subset Si?

3COLOR: Given an undirected graph G, can its vertices be colored with three colors, so that every edge
touches vertices with two different colors?

MAXCUT: Given a graph G, what is the size (number of edges) of the largest bipartite subgraph of G?

HAMILTONIANCYCLE: Given a graph G, is there a cycle in G that visits every vertex exactly once?

HAMILTONIANPATH: Given a graph G, is there a path in G that visits every vertex exactly once?

TRAVELINGSALESMAN: Given a graph G with weighted edges, what is the minimum total weight of any
Hamiltonian path/cycle in G?

SUBSETSUM: Given a set X of positive integers and an integer k, does X have a subset whose elements
sum to k?

PARTITION: Given a set X of positive integers, can X be partitioned into two subsets with the same sum?

3PARTITION: Given a set X of n positive integers, can X be partitioned into n/3 three-element subsets, all
with the same sum?

CS 473 Homework 0 (due September 3, 2013) Fall 2013

CS 473: Undergraduate Algorithms, Fall 2013
Homework 0

Due Tuesday, September 3, 2013 at 12:30pm

Quiz 0 (on the course Moodle page)
is also due Tuesday, September 3, 2013 at noon.

• Please carefully read the course policies on the course web site. These policies may be
different than other classes you have taken. (For example: No late anything ever; “I don’t know” is
worth 25%, but “Repeat this for all n” is an automatic zero; every homework question requires a
proof; collaboration is allowed, but you must cite your collaborators.) If you have any questions,
please ask in lecture, in headbanging, on Piazza, in office hours, or by email.

• Homework 0 and Quiz 0 test your familiarity with prerequisite material—big-Oh notation, elemen-
tary algorithms and data structures, recurrences, graphs, and most importantly, induction—to help
you identify gaps in your background knowledge. You are responsible for filling those gaps.
The course web page has pointers to several excellent online resources for prerequisite material. If
you need help, please ask in headbanging, on Piazza, in office hours, or by email.

• Each student must submit individual solutions for these homework problems. You may use
any source at your disposal—paper, electronic, or human—but you must cite every source that
you use. For all future homeworks, groups of up to three students may submit joint solutions.

• Submit your solutions on standard printer/copier paper, not notebook paper. If you write
your solutions by hand, please use the last three pages of this homework as a template. At the top
of each page, please clearly print your name and NetID, and indicate your registered discussion
section. Use both sides of the page. If you plan to typeset your homework, you can find a LATEX
template on the course web site; well-typeset homework will get a small amount of extra credit.

• Submit your solution to each numbered problem (stapled if necessary) in the corresponding drop
box outside 1404 Siebel, or in the corresponding box in Siebel 1404 immediately before/after
class. (This is the last homework we’ll collect in 1404.) Do not staple your entire homework
together.

1

CS 473 Homework 0 (due September 3, 2013) Fall 2013

1. Consider the following recursively-defined sets of strings of left brackets π and right brackets ∫ :

• A string x is balanced if it satisfies one of the following conditions:

– x is the empty string, or
– x = π y ∫ z, where y and z are balanced strings.

For example, the following diagram shows that the string π π ∫ π ∫ ∫ π ∫ is balanced. Each
boxed substring is balanced, and " is the empty string.

π π " ∫ π " ∫ " ∫ π " ∫ "

• A string x is erasable if it satisfies one of two conditions:

– x is the empty string, or
– x = y π ∫ z, where yz is an erasable string.

For example, we can prove that the string π π ∫ π ∫ ∫ π ∫ is erasable as follows:

π π ∫ π ∫ ∫ π ∫ ! π π ∫ ∫ π ∫ ! π ∫ π ∫ ! π ∫ ! "

Your task is to prove that these two definitions are equivalent.

(a) Prove that every balanced string is erasable.

(b) Prove that every erasable string is balanced.

2. A tournament is a directed graph with exactly one directed edge between each pair of vertices.
That is, for any vertices v and w, a tournament contains either an edge v�w or an edge w�v, but
not both. A Hamiltonian path in a directed graph G is a directed path that visits every vertex
of G exactly once.

(a) Prove that every tournament contains a Hamiltonian path.

(b) Prove that every tournament contains either exactly one Hamiltonian path or a directed cycle
of length three.

z

y

x

w

v

u

z

y

x

w

v

u

z

y

x

w

v

u

A tournament with two Hamiltonian paths u�v�w�x�z�y and y�u�v�x�z�w
and a directed triangle w�x�z�w.

2

CS 473 Homework 0 (due September 3, 2013) Fall 2013

3. Suppose you are given a set P =
�
(x1, y1), (x2, y2), . . . , (xn, yn)

of n points in the plane with

distinct x- and y-coordinates. Describe a data structure that can answer the following query as
quickly as possible:

Given two numbers l and r, find the highest point in P inside the vertical slab l < x < r.
More formally, find the point (xi , yi) 2 P such that l < xi < r and yi is as large as
possible. Return NONE if the slab does not contain any points in P.

A query with the left slab returns the indicated point.
A query with the right slab returns NONE.

To receive full credit, your solution must include (a) a concise description of your data structure,
(b) a concise description of your query algorithm, (c) a proof that your query algorithm is correct,
(d) a bound on the size of your data structure, and (e) a bound on the running time of your query
algorithm. You do not need to describe or analyze an algorithm to construct your data structure.

Smaller data structures and faster query times are worth more points.

3

CS 473 Homework 1 (due September 10, 2012) Fall 2013

Starting with this homework, groups of up to three students may submit a single solution for
each numbered problem. Every student in the group receives the same grade.

Groups can be different for different problems.

1. Consider the following cruel and unusual sorting algorithm.

CRUEL(A[1 .. n]):
if n> 1

CRUEL(A[1 .. n/2])
CRUEL(A[n/2+ 1 .. n])
UNUSUAL(A[1 .. n])

UNUSUAL(A[1 .. n]):
if n= 2

if A[1]> A[2] hhthe only comparison!ii
swap A[1]$ A[2]

else
for i 1 to n/4 hhswap 2nd and 3rd quartersii

swap A[i + n/4]$ A[i + n/2]
UNUSUAL(A[1 .. n/2]) hhrecurse on left halfii
UNUSUAL(A[n/2+ 1 .. n]) hhrecurse on right halfii
UNUSUAL(A[n/4+ 1 .. 3n/4]) hhrecurse on middle halfii

Notice that the comparisons performed by the algorithm do not depend at all on the values in the
input array; such a sorting algorithm is called oblivious. Assume for this problem that the input
size n is always a power of 2.

(a) Prove that CRUEL correctly sorts any input array. [Hint: Consider an array that contains
n/4 1s, n/4 2s, n/4 3s, and n/4 4s. Why is considering this special case enough? What does
UNUSUAL actually do?]

(b) Prove that CRUEL would not always sort correctly if we removed the for-loop from UNUSUAL.

(c) Prove that CRUEL would not always sort correctly if we swapped the last two lines of UNUSUAL.

(d) What is the running time of UNUSUAL? Justify your answer.

(e) What is the running time of CRUEL? Justify your answer.

2. For this problem, a subtree of a binary tree means any connected subgraph. A binary tree is
complete if every internal node has two children, and every leaf has exactly the same depth.
Describe and analyze a recursive algorithm to compute the largest complete subtree of a given
binary tree. Your algorithm should return the root and the depth of this subtree.

The largest complete subtree of this binary tree has depth 2.

1

CS 473 Homework 1 (due September 10, 2012) Fall 2013

3. (a) Suppose we are given two sorted arrays A[1 .. n] and B[1 .. n]. Describe an algorithm to find
the median of the union of A and B in O(log n) time. Assume the arrays contain no duplicate
elements.

(b) Now suppose we are given three sorted arrays A[1 .. n], B[1 .. n], and C[1 .. n]. Describe an
algorithm to find the median element of A[B [C in O(log n) time.

?4. Extra credit; due September 17. (The “I don’t know” rule does not apply to extra credit problems.)

Bob Ratenbur, a new student in CS 225, is trying to write code to perform preorder, inorder,
and postorder traversal of binary trees. Bob understands the basic idea behind the traversal
algorithms, but whenever he tries to implement them, he keeps mixing up the recursive calls. Five
minutes before the deadline, Bob submitted code with the following structure:

PREORDER(v):
if v = NULL

return
else

print label(v)
ORDER(left(v))
ORDER(right(v))

INORDER(v):
if v = NULL

return
else

ORDER(left(v))
print label(v)

ORDER(right(v))

POSTORDER(v):
if v = NULL

return
else

ORDER(left(v))
ORDER(right(v))

print label(v)

Each represents either PRE, IN, or POST. Moreover, each of the following function calls appears
exactly once in Bob’s submitted code:

PREORDER(left(v)) INORDER(left(v)) POSTORDER(left(v))
PREORDER(right(v)) INORDER(right(v)) POSTORDER(right(v))

Thus, there are exactly 36 possibilities for Bob’s code. Unfortunately, Bob accidentally deleted his
source code after submitting the executable, so neither you nor he knows which functions were
called where.

Your task is to reconstruct a binary tree T from the output of Bob’s traversal algorithms, which
has been helpfully parsed into three arrays Pre[1 .. n], In[1 .. n], and Post[1 .. n]. Your algorithm
should return the unknown tree T . You may assume that the vertex labels of the unknown tree
are distinct, and that every internal node has exactly two children. For example, given the input

Pre[1 .. n] = [H A E C B I F G D]

In[1 .. n] = [A H D C E I F B G]

Post[1 .. n] = [A E I B F C D G H]

your algorithm should return the following tree:

H

A D

GC

E B

FI

2

CS 473 Homework 1 (due September 10, 2012) Fall 2013

In general, the traversal sequences may not give you enough information to reconstruct Bob’s
code; however, to produce the example sequences above, Bob’s code must look like this:

PREORDER(v):
if v = NULL

return
else

print label(v)
PREORDER(left(v))
POSTORDER(right(v))

INORDER(v):
if v = NULL

return
else

POSTORDER(left(v))
print label(v)
PREORDER(right(v))

POSTORDER(v):
if v = NULL

return
else

INORDER(left(v))
INORDER(right(v))
print label(v)

3

CS 473 Homework 2 (due September 17, 2013) Fall 2013

1. Suppose we are given an array A[1 .. n] of integers, some positive and negative, which we are
asked to partition into contiguous subarrays, which we call chunks. The value of any chunk is the
square of the sum of elements in that chunk; the value of a partition of A is the sum of the values
of its chunks.

For example, suppose A = [3,�1,4,�1,5,�9]. The partition [3,�1,4], [�1,5], [�9] has
three chunks with total value (3� 1+ 4)2+ (�1+ 5)2+ (�9)2 = 62+ 42+ 92 = 133, while the
partition [3,�1], [4,�1, 5,�9] has two chunks with total value (3� 1)2+ (4� 1+ 5� 9)2 = 5.

(a) Describe and analyze an algorithm that computes the minimum-value partition of a given
array of n numbers.

(b) Now suppose we also given an integer k > 0. Describe and analyze an algorithm that
computes the minimum-value partition of a given array of n numbers into at most k chunks.

2. Consider the following solitaire form of Scrabble. We begin with a fixed, finite sequence of tiles;
each tile contains a letter and a numerical value. At the start of the game, we draw the seven tiles
from the sequence and put them into our hand. In each turn, we form an English word from some
or all of the tiles in our hand, place those tiles on the table, and receive the total value of those
tiles as points. If no English word can be formed from the tiles in our hand, the game immediately
ends. Then we repeatedly draw the next tile from the start of the sequence until either (a) we
have seven tiles in our hand, or (b) the sequence is empty. (Sorry, no double/triple word/letter
scores, bingos, blanks, or passing.) Our goal is to obtain as many points as possible.

For example, suppose we are given the tile sequence

I2 N2 X8 A1 N2 A1 D3 U5 D3 I2 D3 K8 U5 B4 L2 A1 K8 H5 A1 N2 .

Then we can earn 68 points as follows:

• We initially draw I2 N2 X8 A1 N2 A1 D3 .

• Play the word N2 A1 I2 A1 D3 for 9 points, leaving N2 X8 in our hand.

• Draw the next five tiles U5 D3 I2 D3 K8 .

• Play the word U5 N2 D3 I2 D3 for 15 points, leaving K8 X8 in our hand.

• Draw the next five tiles U5 B4 L2 A1 K8 .

• Play the word B4 U5 L2 K8 for 19 points, leaving K8 X8 A1 in our hand.

• Draw the next three tiles H5 A1 N2 , emptying the list.

• Play the word A1 N2 K8 H5 for 16 points, leaving X8 A1 in our hand.

• Play the word A1 X8 for 9 points, emptying our hand and ending the game.

Design and analyze an algorithm to compute the maximum number of points that can be
earned from a given sequence of tiles. The input consists of two arrays Letter[1 ..n], containing
a sequence of letters between A and Z, and Value[A ..Z], where Value[i] is the value of letter i.
The output is a single number. Assume that you can find all English words that can be made from
any seven tiles, along with the point values of those words, in O(1) time.

3. Extra credit. Submit your answer to Homework 1 problem 4.

1

CS 473 Homework 3 (due September 24, 2013) Fall 2013

1. A standard method to improve the cache performance of search trees is to pack more search keys
and subtrees into each node. A B-tree is a rooted tree in which each internal node stores up to B
keys and pointers to up to B+ 1 children, each the root of a smaller B-tree. Specifically each node
v stores three fields:

• a positive integer v.d  B,

• a sorted array v.key[1 .. v.d], and

• an array v.child[0 .. v.d] of child pointers.

In particular, the number of child pointers is always exactly one more than the number of keys.

Each pointer v.child[i] is either NULL or a pointer to the root of a B-tree whose keys are all
larger than v.key[i] and smaller than v.key[i+ 1]. In particular, all keys in the leftmost subtree
v.child[0] are smaller than v.key[1], and all keys in the rightmost subtree v.child[v.d] are larger
than v.key[v.d].

Intuitively, you should have the following picture in mind:

[·•

✏✏

< key[1]< ·•

✏✏

< key[2]< ·•

✏✏

· · · ·•

✏✏

< key[d]< ·•

✏✏

]

T0 T1 T2 · · · Td�1 Td

Here Ti is the subtree pointed to by child[i].

The cost of searching for a key x in a B-tree is the number of nodes in the path from the root
to the node containing x as one of its keys. A 1-tree is just a standard binary search tree.

Fix an arbitrary positive integer B > 0. (I suggest B = 8.) Suppose we are given a sorted array
A[1, . . . , n] of search keys and a corresponding array F[1, . . . , n] of frequency counts, where F[i]
is the number of times that we will search for A[i].

Describe and analyze an efficient algorithm to find a B-tree that minimizes the total cost of
searching for n keys with a given array of frequencies.

• For 5 points, describe a polynomial-time algorithm for the special case B = 2.

• For 10 points, describe an algorithm for arbitrary B that runs in O(nB+c) time for some fixed
integer c.

• For 15 points, describe an algorithm for arbitrary B that runs in O(nc) time for some fixed
integer c that does not depend on B.

Like all other homework problems, 10 points is full credit; any points above 10 will be awarded as
extra credit.

A few comments about B-trees. Normally, B-trees are required to satisfy two additional con-
straints, which guarantee a worst-case search cost of O(logB n): Every leaf must have exactly the
same depth, and every node except possibly the root must contain at least B/2 keys. However, in
this problem, we are not interested in optimizing the worst-case search cost, but rather the total
cost of a sequence of searches, so we will not impose these additional constraints.

In most large database systems, the parameter B is chosen so that each node exactly fits in a
cache line. Since the entire cache line is loaded into cache anyway, and the cost of loading a cache

1

CS 473 Homework 3 (due September 24, 2013) Fall 2013

line exceeds the cost of searching within the cache, the running time is dominated by the number
of cache faults. This effect is even more noticeable if the data is too big to lie in RAM at all; then
the cost is dominated by the number of page faults, and B should be roughly the size of a page.

Finally, don’t worry about the cache/disk performance in your homework solutions; just analyze
the CPU time as usual. Designing algorithms with few cache misses or page faults is a interesting
pastime; simultaneously optimizing CPU time and cache misses and page faults is even more
interesting. But this kind of design and analysis requires tools we won’t see in this class.

2. Extra credit, because we screwed up the first version.

A k-2 coloring of a tree assigns each vertex a value from the set {1,2, . . . , k}, called its color,
such that the following constraints are satisfied:

• A node and its parent cannot have the same color or adjacent colors.

• A node and its grandparent cannot have the same color.

• Two nodes with the same parent cannot have the same color.

The last two rules can be written more simply as “Two nodes that are two edges apart cannot have
the same color.” Diagrammatically, if we write the names of the colors inside the vertices,

i j =) |i � j| � 2

i j =) i 6= j

For example, here is a valid 6-2 coloring of the complete binary tree with depth 3:

1

6

2

54

3

15

3

6

41

5

21

(a) Describe and analyze an algorithm that computes a 6-2 coloring of a given binary tree. The
existence of such an algorithm proves that every binary tree has a 6-2 coloring.

(b) Prove that not every binary tree has a 5-2 coloring.

(c) A ternary tree is a rooted tree where every node has at most three children. What is the
smallest integer k such that every ternary tree has a k-2 coloring? Prove your answer is
correct.

2

CS 473 Homework 4 (due October 8, 2013) Fall 2013

1. A meldable priority queue stores a set of values, called priorities, from some totally-ordered universe
(such as the integers) and supports the following operations:

• MAKEQUEUE: Return a new priority queue containing the empty set.

• FINDMIN(Q): Return the smallest element of Q (if any).

• DELETEMIN(Q): Remove the smallest element in Q (if any).

• INSERT(Q, x): Insert priority x into Q, if it is not already there.

• DECREASE(Q, x , y): Replace some element x 2 Q with a smaller priority y. (If y > x , the
operation fails.) The input is a pointer directly to the node in Q containing x .

• DELETE(Q, x): Delete the priority x 2 Q. The input is a pointer directly to the node in Q
containing x .

• MELD(Q1,Q2): Return a new priority queue containing all the elements of Q1 and Q2; this
operation destroys Q1 and Q2.

A simple way to implement such a data structure is to use a heap-ordered binary tree — each
node stores a priority, which is smaller than the priorities of its children, along with pointers to
its parent and at most two children. MELD can be implemented using the following randomized
algorithm:

MELD(Q1,Q2):
if Q1 is empty return Q2
if Q2 is empty return Q1

if priority(Q1)> priority(Q2)
swap Q1$ Q2

with probability 1/2
left(Q1) MELD(left(Q1),Q2)

else
right(Q1) MELD(right(Q1),Q2)

return Q1

(a) Prove that for any heap-ordered binary trees Q1 and Q2 (not just those constructed by the
operations listed above), the expected running time of MELD(Q1,Q2) is O(log n), where
n = |Q1|+ |Q2|. [Hint: How long is a random root-to-leaf path in an n-node binary tree if
each left/right choice is made uniformly and independently at random?]

(b) Show that each of the other meldable priority queue operations can be implemented with at
most one call to MELD and O(1) additional time. (This implies that every operation takes
O(log n) expected time.)

2. Recall that a priority search tree is a binary tree in which every node has both a search key and
a priority, arranged so that the tree is simultaneously a binary search tree for the keys and a
min-heap for the priorities. A treap is a priority search tree whose search keys are given by the
user and whose priorities are independent random numbers.

A heater is a priority search tree whose priorities are given by the user and whose search keys
are distributed uniformly and independently at random in the real interval [0,1]. Intuitively, a
heater is a sort of anti-treap.1

1There are those who think that life has nothing left to chance, a host of holy horrors to direct our aimless dance.

1

CS 473 Homework 4 (due October 8, 2013) Fall 2013

The following problems consider an n-node heater T . We identify nodes in T by their priority
rank; for example, “node 5” means the node in T with the 5th smallest priority. The min-heap
property implies that node 1 is the root of T . You may assume all search keys and priorities are
distinct. Finally, let i and j be arbitrary integers with 1 i < j  n.

(a) Prove that if we permute the set {1,2, . . . , n} uniformly at random, integers i and j are
adjacent with probability 2/n.

(b) Prove that node i is an ancestor of node j with probability 2/(i + 1). [Hint: Use part (a)!]

(c) What is the probability that node i is a descendant of node j? [Hint: Don’t use part (a)!]

(d) What is the exact expected depth of node j?
(e) Describe and analyze an algorithm to insert a new item into an n-node heater.

(f) Describe and analyze an algorithm to delete the smallest priority (the root) from an n-node
heater.

?3. Extra credit; due October 15. In the usual theoretical presentation of treaps, the priorities are
random real numbers chosen uniformly from the interval [0, 1]. In practice, however, computers
have access only to random bits. This problem asks you to analyze an implementation of treaps
that takes this limitation into account.

Suppose the priority of a node v is abstractly represented as an infinite sequence ⇡v[1 ..1] of
random bits, which is interpreted as the rational number

priority(v) =
1X

i=1

⇡v[i] · 2�i .

However, only a finite number `v of these bits are actually known at any given time. When a
node v is first created, none of the priority bits are known: `v = 0. We generate (or “reveal”)
new random bits only when they are necessary to compare priorities. The following algorithm
compares the priorities of any two nodes in O(1) expected time:

LARGERPRIORITY(v, w):
for i 1 to1

if i > `v
`v i; ⇡v[i] RANDOMBIT

if i > `w
`w i; ⇡w[i] RANDOMBIT

if ⇡v[i]> ⇡w[i]
return v

else if ⇡v[i]< ⇡w[i]
return w

Suppose we insert n items one at a time into an initially empty treap. Let L =
P

v `v denote
the total number of random bits generated by calls to LARGERPRIORITY during these insertions.

(a) Prove that E[L] = ⇥(n).
(b) Prove that E[`v] = ⇥(1) for any node v. [Hint: This is equivalent to part (a). Why?]

(c) Prove that E[`root] = ⇥(log n). [Hint: Why doesn’t this contradict part (b)?]

2

CS 473 Homework 5 (due October 15, 2013) Fall 2013

1. Recall that a standard (FIFO) queue maintains a sequence of items subject to the following
operations.

• PUSH(x): Add item x to the end of the sequence.

• PULL(): Remove and return the item at the beginning of the sequence.

• SIZE(): Return the current number of items in the sequence.

It is easy to implement a queue using a doubly-linked list, so that it uses O(n) space (where n is
the number of items in the queue) and the worst-case time for each of these operations is O(1).

Consider the following new operation, which removes every tenth element from the queue,
starting at the beginning, in ⇥(n) worst-case time.

DECIMATE():
n SIZE()
for i 0 to n� 1

if i mod 10= 0
PULL() hhresult discardedii

else
PUSH(PULL())

Prove that in any intermixed sequence of PUSH, PULL, and DECIMATE operations, the amortized
cost of each operation is O(1).

2. This problem is extra credit, because the original problem statement had several confusing small
errors. I believe these erors are corrected in the current revision.

Deleting an item from an open-addressed hash table is not as straightforward as deleting from
a chained hash table. The obvious method for deleting an item x simply empties the entry in the
hash table that contains x . Unfortunately, the obvious method doesn’t always work. (Part (a) of
this question asks you to prove this.)

Knuth proposed the following lazy deletion strategy. Every cell in the table stores both an item
and a label; the possible labels are EMPTY, FULL, and JUNK. The DELETE operation marks cells as JUNK
instead of actually erasing their contents. Then FIND pretends that JUNK cells are occupied, and
INSERT pretends that JUNK cells are actually empty. In more detail:

FIND(H, x):
for i 0 to m� 1

j hi(x)
if H.label[j] = FULL and H.item[j] = x

return j
else if H.label[j] = EMPTY

return NONE

INSERT(H, x):
for i 0 to m� 1

j hi(x)
if H.label[j] = FULL and H.item[j] = x

return hhalready thereii
if H.label[j] 6= FULL

H.item[j] x
H.label[j] FULL
return

DELETE(H, x):
j FIND(H, x)
if j 6= NONE

H.label[j] JUNK

1

CS 473 Homework 5 (due October 15, 2013) Fall 2013

Lazy deletion is always correct, but it is only efficient if we don’t perform too many deletions.
The search time depends on the fraction of non-EMPTY cells, not on the number of actual items
stored in the table; thus, even if the number of items stays small, the table may fill up with JUNK

cells, causing unsuccessful searches to scan the entire table. Less significantly, the data structure
may use significantly more space than necessary for the number of items it actually stores. To
avoid both of these issues, we use the following rebuilding rules:

• After each INSERT operation, if less than 1/4 of the cells are EMPTY, rebuild the hash table.

• After each DELETE operation, if less than 1/4 of the cells are FULL, rebuild the hash table.

To rebuild the hash table, we allocate a new hash table whose size is twice the number of FULL
cells (unless that number is smaller than some fixed constant), INSERT each item in a FULL cell in
the old hash table into the new hash table, and then discard the old hash table, as follows:

REBUILD(H):
count 0
for j 0 to H.size� 1

if H.label[j] = FULL
count count+ 1

H 0 new hash table of size max{2 · count, 32}
for j 0 to H.size� 1

if H.label[j] = FULL
INSERT(H 0, H.item[j])

discard H
return H 0

Finally, here are your actual homework questions!

(a) Describe a small example where the “obvious” deletion algorithm is incorrect; that is, show
that the hash table can reach a state where a search can return the wrong result. Assume
collisions are resolved by linear probing.

(b) Suppose we use Knuth’s lazy deletion strategy instead. Prove that after several INSERT and
DELETE operations into a table of arbitrary size m, it is possible for a single item x to be stored
in almost half of the table cells. (However, at most one of those cells can be labeled FULL.)

(c) For purposes of analysis,1suppose FIND and INSERT run in O(1) time when at least 1/4 of the
table cells are EMPTY. Prove that in any intermixed sequence of INSERT and DELETE operations,
using Knuth’s lazy deletion strategy, the amortized time per operation is O(1).

?3. Extra credit. Submit your answer to Homework 4 problem 3.

1In fact, FIND and INSERT run in O(1) expected time when at least 1/4 of the table cells are EMPTY, and therefore each INSERT

and DELETE takes O(1) expected amortized time. But probability doesn’t play any role whatsoever in the amortized analysis, so
we can safely ignore the word “expected”.

2

CS 473 Homework 6 (due October 23, 2013) Fall 2013

1. Suppose we want to maintain an array X [1..n] of bits, which are all initially subject to the
following operations.

• LOOKUP(i): Given an index i, return X [i].

• BLACKEN(i): Given an index i < n, set X [i] 1.

• NEXTWHITE(i): Given an index i, return the smallest index j � i such that X [j] = 0. (Because
we never change X [n], such an index always exists.)

If we use the array X [1..n], it is trivial to implement LOOKUP and BLACKEN in O(1) time and
NEXTWHITE in O(n) time. But you can do better! Describe data structures that support LOOKUP

in O(1) worst-case time and the other two operations in the following time bounds. (We want a
different data structure for each set of time bounds, not one data structure that satisfies all bounds
simultaneously!)

(a) The worst-case time for both BLACKEN and NEXTWHITE is O(log n).

(b) The amortized time for both BLACKEN and NEXTWHITE is O(log n). In addition, the worst-case
time for BLACKEN is O(1).

(c) The amortized time for BLACKEN is O(log n), and the worst-case time for NEXTWHITE is O(1).

(d) The worst-case time for BLACKEN is O(1), and the amortized time for NEXTWHITE is O(↵(n)).
[Hint: There is no WHITEN.]

2. Recall that a standard (FIFO) queue maintains a sequence of items subject to the following
operations:

• PUSH(x): Add item x to the back of the queue (the end of the sequence).

• PULL(): Remove and return the item at the front of the queue (the beginning of the sequence).

It is easy to implement a queue using a doubly-linked list and a counter, using O(n) space altogether,
so that each PUSH or PULL requires O(1) time.

(a) Now suppose we want to support the following operation instead of PULL:

• MULTIPULL(k): Remove the first k items from the front of the queue, and return the kth
item removed.

Suppose further that we implement MULTIPULL using the obvious algorithm:

MULTIPULL(k):
for i 1 to k

x PULL()
return x

Prove that in any intermixed sequence of PUSH and MULTIPULL operations, starting with an
empty queue, the amortized cost of each operation is O(1). You may assume that k is never
larger than the number of items in the queue.

(b) Now suppose we also want to support the following operation instead of PUSH:

• MULTIPUSH(x , k): Insert k copies of x into the back of the queue.

Suppose further that we implement MULTIPUSH using the obvious algorithm:

1

CS 473 Homework 6 (due October 23, 2013) Fall 2013

MULTIPUSH(k, x):
for i 1 to k

PUSH(x)

Prove that for any integers ` and n, there is a sequence of ` MULTIPUSH and MULTIPULL

operations that require ⌦(n`) time, where n is the maximum number of items in the queue
at any time. Such a sequence implies that the amortized cost of each operation is ⌦(n).

(c) Finally, describe a data structure that supports arbitrary intermixed sequences of MULTIPUSH

and MULTIPULL operations in O(1) amortized cost per operation. Like a standard queue, your
data structure must use only O(1) space per item. [Hint: Don’t use the obvious algorithms!]

3. In every cheesy romance movie there’s always that scene where the romantic couple, physically
separated and looking for one another, suddenly matches eyes and then slowly approach one
another with unwavering eye contact as the music rolls and in and the rain lifts and the sun shines
through the clouds and kittens and puppies. . . .

Suppose a romantic couple—in grand computer science tradition, named Alice and Bob—enters
a park from the northwest and southwest corners of the park, locked in dramatic eye contact.
However, they can’t just walk to one another in a straight line, because the paths of the park
zig-zag between the northwest and southwest entrances. Instead, Alice and Bob must traverse the
zig-zagging path so that their eyes are always locked perfectly in vertical eye-contact; thus, their
x-coordinates must always be identical.

We can describe the zigzag path as an array P[0 .. n] of points, which are the corners of the
path in order from the southwest endpoint to the northwest endpoint, satisfying the following
conditions:

• P[i].y > P[i � 1].y for every index i. That is, the path always moves upward.

• P[0].x = P[n].x = 0, and P[i].x > 0 for every index 1  i  n� 1. Thus, the ends of the
path are further to the left then any other point on the path.

Prove that Alice and Bob can always meet.1 [Hint: Describe a graph that models all possible
locations of the couple along the path. What are the vertices of this graph? What are the edges?
What can we say about the degrees of the vertices?]

q

w

q

w

q

w

q

w

q

w

q

w

1It follows that every cheesy romance movie (that reaches this scene) must have a happy, sappy ending.

2

CS 473 Homework 7 (due October 30, 2013) Fall 2013

1. Suppose we are given a directed acyclic graph G with labeled vertices. Every path in G has a
label, which is a string obtained by concatenating the labels of its vertices in order. Recall that a
palindrome is a string that is equal to its reversal.

Describe and analyze an algorithm to find the length of the longest palindrome that is the label
of a path in G. For example, given the graph below, your algorithm should return the integer 6,
which is the length of the palindrome HANNAH.

A

A

H

H

N

N

S

O

D

T

E

N

T

O

2. Let G be a connected directed graph that contains both directions of every edge; that is, if u�v is
an edge in G, its reversal v�u is also an edge in G. Consider the following non-standard traversal
algorithm.

SPAGHETTITRAVERSAL(G):
for all vertices v in G

unmark v
for all edges u�v in G

color u�v white
s any vertex in G
SPAGHETTI(s)

SPAGHETTI(v):
mark v hh“visit v”ii
if there is a white arc v�w

if w is unmarked
color w�v green

color v�w red hh“traverse v�w”ii
SPAGHETTI(w)

else if there is a green arc v�w
color v�w red hh“traverse v�w”ii
SPAGHETTI(w)

hhelse every arc v�w is red, so haltii

We informally say that this algorithm “visits” vertex v every time it marks v, and it “traverses”
edge v�w when it colors that edge red. Unlike our standard graph-traversal algorithms, SPAGHETTI

may (in fact, will) mark/visit each vertex more than once.

The following series of exercises leads to a proof that SPAGHETTI traverses each directed edge
of G exactly once. Most of the solutions are very short.

(a) Prove that no directed edge in G is traversed more than once.

(b) When the algorithm visits a vertex v for the kth time, exactly how many edges into v are
red, and exactly how many edges out of v are red? [Hint: Consider the starting vertex s
separately from the other vertices.]

1

CS 473 Homework 7 (due October 30, 2013) Fall 2013

(c) Prove each vertex v is visited at most deg(v) times, except the starting vertex s, which is
visited at most deg(s)+1 times. This claim immediately implies that SPAGHETTITRAVERSAL(G)
terminates.

(d) Prove that when SPAGHETTITRAVERSAL(G) ends, the last visited vertex is the starting vertex s.

(e) For every vertex v that SPAGHETTITRAVERSAL(G) visits, prove that all edges incident to v
(either in or out) are red when SPAGHETTITRAVERSAL(G) halts. [Hint: Consider the vertices
in the order that they are marked for the first time, starting with s, and prove the claim by
induction.]

(f) Prove that SPAGHETTITRAVERSAL(G) visits every vertex of G.

(g) Finally, prove that SPAGHETTITRAVERSAL(G) traverses every edge of G exactly once.

2

CS 473 Homework 8 (due November 5, 2013) Fall 2013

1. Let G be a directed graph with (possibly negative!) edge weights, and let s be an arbitrary vertex
of G. Suppose every vertex v 6= s stores a pointer pred(v) to another vertex in G.

Describe and analyze an algorithm to determine whether these predecessor pointers define
a single-source shortest path tree rooted at s. Do not assume that the graph G has no negative
cycles.

[Hint: There is a similar problem in head-banging, where you’re given distances instead of
predecessor pointers.]

2. Let G be a directed graph with positive edge weights, and let s and t be an arbitrary vertices
of G. Describe an algorithm to determine the number of different shortest paths in G from s to t.
Assume that you can perform arbitrary arithmetic operations in O(1) time. [Hint: Which edges
of G belong to shortest paths from s to t?]

3. Describe and analyze and algorithm to find the second smallest spanning tree of a given undirected
graph G with weighted edges, that is, the spanning tree of G with smallest total weight except for
the minimum spanning tree.

1

CS 473 Homework 9 (due November 19, 2013) Fall 2013

1. You’re organizing the First Annual UIUC Computer Science 72-Hour Dance Exchange, to be held
all day Friday, Saturday, and Sunday. Several 30-minute sets of music will be played during the
event, and a large number of DJs have applied to perform. You need to hire DJs according to the
following constraints.

• Exactly k sets of music must be played each day, and thus 3k sets altogether.

• Each set must be played by a single DJ in a consistent music genre (ambient, bubblegum,
dubstep, horrorcore, hyphy, trip-hop, Nitzhonot, Kwaito, J-pop, Nashville country, . . .).

• Each genre must be played at most once per day.

• Each candidate DJ has given you a list of genres they are willing to play.

• Each DJ can play at most three sets during the entire event.

Suppose there are n candidate DJs and g different musical genres available. Describe and analyze
an efficient algorithm that either assigns a DJ and a genre to each of the 3k sets, or correctly
reports that no such assignment is possible.

2. Suppose you are given an n⇥ n checkerboard with some of the squares deleted. You have a large
set of dominos, just the right size to cover two squares of the checkerboard. Describe and analyze
an algorithm to determine whether one can tile the board with dominos—each domino must cover
exactly two undeleted squares, and each undeleted square must be covered by exactly one domino.

Your input is a two-dimensional array Deleted[1 .. n, 1 .. n] of bits, where Deleted[i, j] = TRUE if
and only if the square in row i and column j has been deleted. Your output is a single bit; you do
not have to compute the actual placement of dominos. For example, for the board shown above,
your algorithm should return TRUE.

3. Suppose we are given an array A[1 .. m][1 .. n] of non-negative real numbers. We want to round A
to an integer matrix, by replacing each entry x in A with either bxc or dxe, without changing the
sum of entries in any row or column of A. For example:

2
64

1.2 3.4 2.4
3.9 4.0 2.1
7.9 1.6 0.5

3
75 7�!
2
64

1 4 2
4 4 2
8 1 1

3
75

Describe and analyze an efficient algorithm that either rounds A in this fashion, or reports correctly
that no such rounding is possible.

1

CS 473 Homework 10 (due December 10, 2013) Fall 2013

1. For any integer k, the problem k-COLOR asks whether the vertices of a given graph G can be
colored using at most k colors so that neighboring vertices does not have the same color.

(a) Prove that k-COLOR is NP-hard, for every integer k � 3.

(b) Now fix an integer k � 3. Suppose you are given a magic black box that can determine in
polynomial time whether an arbitrary graph is k-colorable; the box returns TRUE if the given
graph is k-colorable and FALSE otherwise. The input to the magic black box is a graph. Just a
graph. Vertices and edges. Nothing else.

Describe and analyze a polynomial-time algorithm that either computes a proper k-
coloring of a given graph G or correctly reports that no such coloring exists, using this magic
black box as a subroutine.

2. A boolean formula is in conjunctive normal form (or CNF) if it consists of a conjuction (AND) or
several terms, each of which is the disjunction (OR) of one or more literals. For example, the
formula

(x _ y _ z)^ (y _ z)^ (x _ y _ z)

is in conjunctive normal form. The problem CNF-SAT asks whether a boolean formula in conjunc-
tive normal form is satisfiable. 3SAT is the special case of CNF-SAT where every clause in the input
formula must have exactly three literals; it follows immediately that CNF-SAT is NP-hard.

Symmetrically, a boolean formula is in disjunctive normal form (or DNF) if it consists of a
disjunction (OR) or several terms, each of which is the conjunction (AND) of one or more literals.
For example, the formula

(x ^ y ^ z)_ (y ^ z)_ (x ^ y ^ z)

is in disjunctive normal form. The problem DNF-SAT asks whether a boolean formula in disjunctive
normal form is satisfiable.

(a) Describe a polynomial-time algorithm to solve DNF-SAT.

(b) Describe a reduction from CNF-SAT to DNF-SAT.

(c) Why do parts (a) and (b) not imply that P=NP?

3. The 42-PARTITION problem asks whether a given set S of n positive integers can be partitioned into
subsets A and B (meaning A[B = S and A\ B = ?) such that

X
a2A

a = 42
X
b2B

b

For example, we can 42-partition the set {1,2,34,40,52} into A = {34,40,52} and B = {1,2},
since
P

A= 126= 42 · 3 and
P

B = 3. But the set {4, 8,15, 16,23, 42} cannot be 42-partitioned.

(a) Prove that 42-PARTITION is NP-hard.

(b) Let M denote the largest integer in the input set S. Describe an algorithm to solve 42-
PARTITION in time polynomial in n and M . For example, your algorithm should return TRUE

when S = {1, 2,34, 40,52} and FALSE when S = {4,8, 15,16, 23, 42}.
(c) Why do parts (a) and (b) not imply that P=NP?

1

CS 473: Undergraduate Algorithms, Fall 2013

Headbanging 0: Induction!

August 28 and 29

1. Prove that any non-negative integer can be represented as the sum of distinct powers of 2. (“Write
it in binary” is not a proof; it’s just a restatement of what you have to prove.)

2. Prove that every integer (positive, negative, or zero) can be written in the form
∑

i±3i , where the
exponents i are distinct non-negative integers. For example:

42= 34− 33− 32− 31 25= 33− 31+ 30 17= 33− 32− 30

3. Recall that a full binary tree is either an isolated leaf, or an internal node with a left subtree and a
right subtree, each of which is a full binary tree. Equivalently, a binary tree is full if every internal
node has exactly two children. Give at least three different proofs of the following fact: In every
full binary tree, the number of leaves is exactly one more than the number of internal nodes.

Take-home points:
• Induction is recursion. Recursion is induction.

• All induction is strong/structural induction. There is absolutely no point in using
a weak induction hypothesis. None. Ever.

• To prove that all snarks are boojums, start with an arbitrary snark and remove
some tentacles. Do not start with a smaller snark and try to add tentacles.
Snarks don’t like that.

• Every induction proof requires an exhaustive case analysis. Write down the
cases. Make sure they’re exhaustive.

• Do the most general cases first. Whatever is left over are the base cases.

• The empty set is the best base case.

Khelm is Warsaw. Warsaw is Khelm. Khelm is Warsaw. Zay gezunt!
Warsaw is Khelm. Khelm is Warsaw. Warsaw is Khelm. For gezunt!

— Golem (feat. Amanda Palmer), “Warsaw is Khelm”, Fresh Off Boat (2006)

CS 473 Headbanging 1 (September 3–4) Fall 2013

1. An inversion in an array A[1 .. n] is a pair of indices (i, j) such that i < j and A[i] > A[j]. The
number of inversions in an n-element array is between 0 (if the array is sorted) and

�n
2

�
(if the

array is sorted backward).

Describe and analyze a divide-and-conquer algorithm to count the number of inversions in an
n-element array in O(n log n) time. Assume all the elements of the input array are distinct.

2. Suppose you are given two sets of n points, one set {p1, p2, . . . , pn} on the line y = 0 and the other
set {q1, q2, . . . , qn} on the line y = 1. Create a set of n line segments by connect each point pi to
the corresponding point qi. Describe and analyze a divide-and-conquer algorithm to determine
how many pairs of these line segments intersect, in O(n log n) time. [Hint: Use your solution to
problem 1.]

Assume a reasonable representation for the input points, and assume the x-coordinates of the
input points are distinct. For example, for the input shown below, your algorithm should return
the number 10.

q1 q4 q7 q3q5 q2 q6

p1 p4p7 p3 p5p2p6
Ten intersecting pairs of segments with endpoints on parallel lines.

3. Now suppose you are given two sets {p1, p2, . . . , pn} and {q1, q2, . . . , qn} of n points on the unit
circle. Connect each point pi to the corresponding point qi. Describe and analyze a divide-and-
conquer algorithm to determine how many pairs of these line segments intersect in O(n log2 n)
time. [Hint: Use your solution to problem 2.]

Assume a reasonable representation for the input points, and assume all input points are
distinct. For example, for the input shown below, your algorithm should return the number 10.

q1

q4

q7

q3 q5
q2

q6

p1

p4

p7

p3

p5

p2

p6

Ten intersecting pairs of segments with endpoints on a circle.

4. To think about later: Solve problem 3 in O(n log n) time.

1

CS 473 Headbanging 2 (September 10–11) Fall 2013

1. A longest common subsequence of a set of strings {Ai} is a longest string that is a subsequence of Ai
for each i. For example, alrit is a longest common subsequence of strings

algorithm and altruistic.

Given two strings A[1..n] and B[1..n], describe and analyze a dynamic programming algorithm
that computes the length of a longest common subsequence of the two strings in O(n2) time.

2. Describe and analyze a dynamic programming algorithm that computes the length of a longest
common subsequence of three strings A[1..n], B[1..n], and C[1..n] in O(n3) time. [Hint: Try not
to use your solution to problem 1 directly.]

3. A lucky-10 number is a string D[1..n] of digits from 1 to 9 (no zeros), such that the i-th digit and
the last i-th digit sum up to 10; in another words, D[i] + D[n− i + 1] = 10 for all i. For example,

3141592648159697 and 11599

are both lucky-10 numbers. Given a string of digits D[1..n], describe and analyze a dynamic
programming algorithm that computes the length of a longest lucky-10 subsequence of the string.
[Hint: Try to use your solution to problem 1 directly.]

4. To think about later: Can you solve problem 1 in O(n) space?

1

CS 473 Headbanging 3 (September 17–18) Fall 2013

1. A vertex cover of a graph is a subset S of the vertices such that every vertex v either belongs to S
or has a neighbor in S. In other words, the vertices in S cover all the edges. Finding the minimum
size of a vertex cover is N P-hard, but in trees it can be found using dynamic programming.

Given a tree T and non-negative weight w(v) for each vertex v, describe an algorithm comput-
ing the minimum weight of a vertex cover of T .

2. Suppose you are given an unparenthesized mathematical expression containing n numbers, where
the only operators are + and −; for example:

1+ 3− 2− 5+ 1− 6+ 7

You can change the value of the expression by adding parentheses in different positions. For
example:

1+ 3− 2− 5+ 1− 6+ 7=−1

(1+ 3− (2− 5)) + (1− 6) + 7= 9

(1+ (3− 2))− (5+ 1)− (6+ 7) =−17

Design an algorithm that, given a list of integers separated by + and − signs, determines the
maximum possible value the expression can take by adding parentheses.

You can only insert parentheses immediately before and immediately after numbers; in particu-
lar, you are not allowed to insert implicit multiplication as in 1+ 3(−2)(−5) + 1− 6+ 7= 33.

3. Fix an arbitrary sequence c1 < c2 < · · ·< ck of coin values, all in cents. We have an infinite number
of coins of each denomination. Describe a dynamic programming algorithm to determine, given an
arbitrary non-negative integer x , the least number of coins whose total value is x . For simplicity,
you may assume that c1 = 1.

To think about later after learning “greedy algorithms":

(a) Describe a greedy algorithm to make change consisting of quarters, dimes, nickels, and
pennies. Prove that your algorithm yields an optimal solution.

(b) Suppose that the available coins have the values c0, c1, . . . , ck for some integers c > 1 and
k ≥ 1. Show that the greedy algorithm always yields an optimal solution.

(c) Describe a set of 4 coin values for which the greedy algorithm does not yield an optimal
solution.

1

CS 473 Headbanging 4 (September 24–25) Fall 2013

Note: All the questions in this session are taken from past CS473 midterms.

1. (Fall 2006) Multiple Choice: Each of the questions on this page has one of the following five
answers: For each question, write the letter that corresponds to your answer.

A: Θ(1) B: Θ(log n) C: Θ(n) D: Θ(n log n) E: Θ(n)

(a) What is 5
n
+ n

5
?

(b) What is
∑n

i=1
n
i
?

(c) What is
∑n

i=1
i
n
?

(d) How many bits are required to represent the nth Fibonacci number in binary?

(e) What is the solution to the recurrence T (n) = 2T (n/4) +Θ(n)?
(f) What is the solution to the recurrence T (n) = 16T (n/4) +Θ(n)?
(g) What is the solution to the recurrence T (n) = T (n− 1) + 1

n2 ?

(h) What is the worst-case time to search for an item in a binary search tree?

(i) What is the worst-case running time of quicksort?

(j) What is the running time of the fastest possible algorithm to solve Sudoku puzzles? A Sudoku
puzzle consists of a 9× 9 grid of squares, partitioned into nine 3× 3 sub-grids; some of the
squares contain digits between 1 and 9. The goal of the puzzle is to enter digits into the
blank squares, so that each digit between 1 and 9 appears exactly once in each row, each
column, and each 3× 3 sub-grid. The initial conditions guarantee that the solution is unique.

2. (Spring 2010) Let T be a rooted tree with integer weights on its edges, which could be positive,
negative, or zero. The weight of a path in T is the sum of the weights of its edges. Describe and
analyze an algorithm to compute the minimum weight of any path from a node in T down to one
of its descendants. It is not necessary to compute the actual minimum-weight path; just its weight.
For example, given the tree shown below, your algorithm should return the number -12.

3. (Fall 2006) Suppose you are given an array A[1..n] of n distinct integers, sorted in increasing order.
Describe and analyze an algorithm to determine whether there is an index i such that A[i] = i, in
o(n) time. [Hint: Yes, that’s little-oh of n. What can you say about the sequence A[i]− i?]

1

CS 473 Headbanging 4 (September 24–25) Fall 2013

CS 473 Midterm 1 Questions — Version 1 Spring 2010

2. Let T be a rooted tree with integer weights on its edges, which could be positive, negative, or zero.
The weight of a path in T is the sum of the weights of its edges. Describe and analyze an algorithm
to compute the minimum weight of any path from a node in T down to one of its descendants. It
is not necessary to compute the actual minimum-weight path; just its weight. For example, given
the tree shown below, your algorithm should return the number −12.

57 –1

0–5 6

12 2–4

–53 –4

–5

–4

2

–3 0

4 6 –7

–10

–5 1

The minimum-weight downward path in this tree has weight −12.

3. Describe and analyze efficient algorithms to solve the following problems:

(a) Given a set of n integers, does it contain two elements a, b such that a+ b = 0?

(b) Given a set of n integers, does it contain three elements a, b, c such that a+ b = c?

4. A common supersequence of two strings A and B is another string that includes both the characters
of A in order and the characters of B in order. Describe and analyze and algorithm to compute the
length of the shortest common supersequence of two strings A[1 .. m] and B[1 .. n]. You do not
need to compute an actual supersequence, just its length.

For example, if the input strings are ANTHROHOPOBIOLOGICAL and PRETERDIPLOMATICALLY,
your algorithm should output 31, because a shortest common supersequence of those two strings
is PREANTHEROHODPOBIOPLOMATGICALLY.

5. [Taken directly from HBS0.] Recall that the Fibonacci numbers Fn are recursively defined as
follows: F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for every integer n ≥ 2. The first few Fibonacci
numbers are 0,1, 1,2, 3, 5, 8, 13, 21,34, 55,

Prove that any non-negative integer can be written as the sum of distinct non-consecutive
Fibonacci numbers. That is, if any Fibonacci number Fn appears in the sum, then its neighbors
Fn−1 and Fn+1 do not. For example:

88= 55+ 21+ 8+ 3+ 1 = F10+ F8+ F6+ F4+ F2

42= 34+ 8 = F9+ F6

17= 13+ 3+ 1 = F7+ F4+ F2

2

4. (Spring 2010 and Spring 2004) Describe and analyze efficient algorithms to solve the following
problems:

(a) Given a set of n integers, does it contain two elements a, b such that a+ b = 0?

(b) Given a set of n integers, does it contain three elements a, b, c such that a+ b = c?

2

CS 473 Headbanging 5 (October 1–2) Fall 2013

1. What is the exact expected number of leaves in a treap with n nodes?

2. Recall question 5 from Midterm 1:

Suppose you are given a set P of n points in the plane. A point p ∈ P is maximal in P if no other
point in P is both above and to the right of P. Intuitively, the maximal points define a “staircase”
with all the other points of P below it.

A set of ten points, four of which are maximal.

Describe and analyze an algorithm to compute the number of maximal points in P in O(n log n)
time. For example, given the ten points shown above, your algorithm should return the integer 4.

Suppose the points in P are generated independently and uniformly at random in the unit square
[0,1]2. What is the exact expected number of maximal points in P?

3. Suppose you want to write an app for your new Pebble smart watch that monitors the global
Twitter stream and selects a small sample of random tweets. You will not know when the stream
ends until your app attempts to read the next tweet and receives the error message FAILWHALE.
The Pebble has only a small amount of memory, far too little to store the entire stream.

(a) Describe an algorithm that, as soon as the stream ends, returns a single tweet chosen
uniformly at random from the stream. Prove your algorithm is correct. (You may assume
that the stream contains at least one tweet.)

(b) Now fix an arbitrary positive integer k. Describe an algorithm that picks k tweets uniformly
at random from the stream. Prove your algorithm is correct. (You may assume that the
stream contains at least k tweets.)

1

CS 473 Headbanging 5 (October 8–9) Fall 2013

Recall the following elementary data structures from CS 225.

• A stack supports the following operations.

– PUSH pushes an element on top of the stack.

– POP removes the top element from a stack.

– ISEMPTY checks if a stack is empty.

• A queue supports the following operations.

– PUSH adds an element to the back of the queue.

– PULL removes an element from the front of the queue.

– ISEMPTY checks if a queue is empty.

• A deque, or double-ended queue, supports the following operations.

– PUSH adds an element to the back of the queue.

– PULL removes an element from the back of the queue.

– CUT adds an element from the front of the queue.

– POP removes an element from the front of the queue.

– ISEMPTY checks if a queue is empty.

Suppose you have a stack implementation that supports all stack operations in constant time.

1. Describe how to implement a queue using two stacks and O(1) additional memory, so that each
queue operation runs in O(1) amortized time.

2. Describe how to implement a deque using three stacks and O(1) additional memory, so that each
deque operation runs in O(1) amortized time.

1

CS 473 Headbanging 7 (October 15–16) Fall 2013

1. Let P be a set of n points in the plane. Recall from the midterm that the staircase of P is the set of
all points in the plane that have at least one point in P both above and to the right.

(a) Describe and analyze a data structure that stores the staircase of a set of points, and an
algorithm ABOVE?(x , y) that returns TRUE if the point (x , y) is above the staircase, or FALSE

otherwise. Your data structure should use O(n) space, and your ABOVE? algorithm should
run in O(log n) time.

(b) Describe and analyze a data structure that maintains the staircase of a set of points as new
points are inserted. Specifically, your data structure should support a function INSERT(x , y)
that adds the point (x , y) to the underlying point set and returns TRUE or FALSE to indicate
whether the staircase of the set has changed. Your data structure should use O(n) space, and
your INSERT algorithm should run in O(log n) amortized time.

2. An ordered stack is a data structure that stores a sequence of items and supports the following
operations.

• ORDEREDPUSH(x) removes all items smaller than x from the beginning of the sequence and
then adds x to the beginning of the sequence.

• POP deletes and returns the first item in the sequence (or NULL if the sequence is empty).

Suppose we implement an ordered stack with a simple linked list, using the obvious ORDEREDPUSH

and POP algorithms. Prove that if we start with an empty data structure, the amortized cost of
each ORDEREDPUSH or POP operation is O(1).

3. Consider the following solution for the union-find problem, called union-by-weight. Each set
leader x̄ stores the number of elements of its set in the field weight(x̄). Whenever we UNION two
sets, the leader of the smaller set becomes a new child of the leader of the larger set (breaking ties
arbitrarily).

MAKESET(x)
parent(x)← x
weight(x)← 1

FIND(x)
while x 6= parent(x)

x ← parent(x)
return x

UNION(x , y)
x̄ ← FIND(x)
ȳ ← FIND(y)
if weight(x̄)> weight(ȳ)

parent(ȳ)← x̄
weight(x̄)← weight(x̄) +weight(ȳ)

else
parent(x̄)← ȳ
weight(x̄)← weight(x̄) +weight(ȳ)

Prove that if we use union-by-weight, the worst-case running time of FIND(x) is O(log n), where n
is the cardinality of the set containing x .

1

CS 473 Headbanging 8 (October 22–23 Fall 2013

1. Let G be an undirected graph.

(a) Suppose we start with two coins on two arbitrarily chosen nodes. At every step, each coin
must move to an adjacent node. Describe an algorithm to compute the minimum number of
steps to reach a configuration that two coins are on the same node.

(b) Now suppose there are three coins, numbered 0, 1, and 2. Again we start with an arbitrary
coin placement with all three coins facing up. At each step, we move each coin to an adjacent
node at each step. Moreover, for every integer i, we flip coin i mod 3 at the ith step. Describe
an algorithm to compute the minimum number of steps to reach a configuration that all three
coins are on the same node and all facing up. What is the running time of your algorithm?

2. Let G be a directed acyclic graph with a unique source s and a unique sink t.

(a) A Hamiltonian path in G is a directed path in G that contains every vertex in G. Describe an
algorithm to determine whether G has a Hamiltonian path.

(b) Suppose several nodes in G are marked to be important; also an integer k is given. Design an
algorithm which computes all the nodes that can reach t through at least k important nodes.

(c) Suppose the edges in G have real weights. Describe an algorithm to find a path from s to t
with maximum total weight.

(d) Suppose the vertices of G have labels from a fixed finite alphabet, and let A[1..`] be a
string over the same alphabet. Any directed path in G has a label, which is obtained by
concatenating the labels of its vertices. Describe an algorithm to find the longest path in G
whose labels are a subsequence of A.

3. Let G be a directed graph with a special source that has an edge to each other node in graph,
and denote scc(G) as the strong component graph of G. Let S and S′ be two strongly connected
components in G with S→ S′ an arc in scc(G). (That is, if there is an arc between node u ∈ S and
v ∈ S′, then it must be u→ v.) Consider a fixed depth-first search performed on G starting at s;
we define post(·) as the post-order numbering of the search.

(a) Prove or disprove that we have post(u)> post(u′) for any u ∈ S and u′ ∈ S′.
(b) Prove or disprove that we have maxu∈S post(u)>maxu′∈S′ post(u′).

1

CS 473 Headbanging 9 (October 29–30) Fall 2013

1. Consider a path between two vertices s and t in an undirected weighted graph G. The bottleneck
length of this path is the maximum weight of any edge in the path. The bottleneck distance between
s and t is the minimum bottleneck length of any path from s to t. (If there are no paths from s to
t, the bottleneck distance between s and t is∞.)

s

t

1 11

7

128

5
10

9

2

3
6

4

Describe an algorithm to compute the bottleneck distance between every pair of vertices in an
arbitrary undirected weighted graph. Assume that no two edges have the same weight.

2. Let G be a directed graph with (possibly negative) edge weights, and let s be an arbitrary vertex of
G. Suppose for each vertex v we are given a real number d(v). Describe and analyze an algorithm
to determine whether the numbers d(v) on vertices are the shortest path distances from s to each
vertex v. Do not assume that the graph G has no negative cycles.

3. Mulder and Scully have computed, for every road in the United States, the exact probability that
someone driving on that road won’t be abducted by aliens. Agent Mulder needs to drive from
Langley, Virginia to Area 51, Nevada. What rout should hs take so that he has the least chance of
being abducted?

More formally, you are given a directed graph G, possibly with cycles, where every edge e
has an independent safety probability p(e). The safety of a path is the product of the safety
probabilities of its edges. Design and analyze an algorithm to determine the safest path from a
given start vertex s to a given target vertex t.

0.2

0.7

0.50.9

0.1

0.5
Langley, VA

Area 51, AZ

Memphis, TN

Las Vegas, NV

For example, with the probabilities shown above, if Mulder tries to drive directly from Langley to
Area 51, he has a 50% chance of getting there without being abducted. If he stops in Memphis, he
has a 0.7× 0.9 = 63% chance of arriving safely. If he stops first in Memphis and then in Las Vegas,
he has a 1− 0.7× 0.1× 0.5= 96.5% chance of begin abducted!1

1That’s how they got Elvis, you know.

1

CS 473 Headbanging 10 (November 5–6) Fall 2013

Almost all these review problems from from past midterms.

1. [Fall 2002, Spring 2004] Suppose we want to maintain a set X of numbers, under the following
operations:

• INSERT(x): Add x to the set (if it isn’t already there).

• PRINT&DELETEBETWEEN(a, b): Print every element x ∈ X such that a ≤ x ≤ b, in order from
smallest to largest, and then delete those elements from X .

For example, if the current set is {1, 5, 3, 4, 8}, then PRINT&DELETEBETWEEN(4, 6) prints the numbers
4 and 5 and changes the set to {1, 3, 8}.

Describe and analyze a data structure that supports these two operations, each in O(log n)
amortized time, where n is the maximum number of elements in X .

2. [Spring 2004] Consider a random walk on a path with vertices numbered 1, 2, . . . , n from left to
right. We start at vertex 1. At each step, we flip a coin to decide which direction to walk, moving
one step left or one step right with equal probability. The random walk ends when we fall off one
end of the path, either by moving left from vertex 1 or by moving right from vertex n.

Prove that the probability that the walk ends by falling off the left end of the path is exactly
n/(n+ 1). [Hint: Set up a recurrence and verify that n/(n+ 1) satisfies it.]

3. [Fall 2006] Prove or disprove each of the following statements.

(a) Let G be an arbitrary undirected graph with arbitrary distinct weights on the edges. The
minimum spanning tree of G includes the lightest edge in every cycle in G.

(b) Let G be an arbitrary undirected graph with arbitrary distinct weights on the edges. The
minimum spanning tree of G excludes the heaviest edge in every cycle in G.

4. [Fall 2012] Let G = (V, E) be a connected undirected graph. For any vertices u and v, let dG(u, v)
denote the length of the shortest path in G from u to v. For any sets of vertices A and B, let
dG(A, B) denote the length of the shortest path in G from any vertex in A to any vertex in B:

dG(A, B) =min
u∈A

min
v∈B

dG(u, v).

Describe and analyze a fast algorithm to compute dG(A, B), given the graph G and subsets A and B
as input. You do not need to prove that your algorithm is correct.

5. Let G and H be directed acyclic graphs, whose vertices have labels from some fixed alphabet, and
let A[1..`] be a string over the same alphabet. Any directed path in G has a label, which is a string
obtained by concatenating the labels of its vertices.

(a) Describe an algorithm to find the longest string that is both a label of a directed path in G
and the label of a directed path in H.

(b) Describe an algorithm to find the longest string that is both a subsequence of the label of a
directed path in G and subsequence of the label of a directed path in H.

1

CS 473 Headbanging 11 (November 12–13) Fall 2013

1. The Island of Sodor is home to a large number of towns and villages, connected by an extensive
rail network. Recently, several cases of a deadly contagious disease (either swine flu or zombies;
reports are unclear) have been reported in the village of Ffarquhar. The controller of the Sodor
railway plans to close down certain railway stations to prevent the disease from spreading to
Tidmouth, his home town. No trains can pass through a closed station. To minimize expense
(and public notice), he wants to close down as few stations as possible. However, he cannot close
the Ffarquhar station, because that would expose him to the disease, and he cannot close the
Tidmouth station, because then he couldn’t visit his favorite pub.

Describe and analyze an algorithm to find the minimum number of stations that must be closed
to block all rail travel from Ffarquhar to Tidmouth. The Sodor rail network is represented by an
undirected graph, with a vertex for each station and an edge for each rail connection between two
stations. Two special vertices f and t represent the stations in Ffarquhar and Tidmouth.

2. Given an undirected graph G = (V, E), with three vertices u, v, and w, describe and analyze an
algorithm to determine whether there is a path from u to w that passes through v.

3. Suppose you have already computed a maximum flow f ∗ in a flow network G with integer edge
capacities.

(a) Describe and analyze an algorithm to update the maximum flow after the capacity of a single
edge is increased by 1.

(b) Describe and analyze an algorithm to update the maximum flow after the capacity of a single
edge is decreased by 1.

Both algorithms should be significantly faster than recomputing the maximum flow from scratch.

1

CS 473 Headbanging 12 (November 19–20) Fall 2013

1. An American graph is a directed graph with each vertex colored red, white, or blue. An American
Hamiltonian path is a Hamiltonian path that cycles between red, white, and blue vertices; that is,
every edge goes from red to white, or white to blue, or blue to red. The AMERICANHAMILTONIANPATH

problem asks whether there is an American Hamiltonian path in an American graph.

(a) Prove that AMERICANHAMILTONIANPATH is NP-complete by reducing from HAMILTONIANPATH.

(b) In the opposite direction, reduce AMERICANHAMILTONIANPATH to HAMILTONIANPATH.

2. Given a graph G, the DEG17SPANNINGTREE problem asks whether G has a spanning tree in which
each vertex of the spanning tree has degree at most 17. Prove that DEG17SPANNINGTREE is
NP-complete.

3. Two graphs are isomorphic if one can be transformed into the other by relabeling the vertices.
Consider the following related decision problems:

• GRAPHISOMORPHISM: Given two graphs G and H, determine whether G and H are isomorphic.

• EVENGRAPHISOMORPHISM: Given two graphs G and H, such that every vertex of G and H have
even degree, determine whether G and H are isomorphic.

• SUBGRAPHISOMORPHISM: Given two graphs G and H, determine whether G is isomorphic to a
subgraph of H.

(a) Describe a polynomial time reduction from GRAPHISOMORPHISM to EVENGRAPHISOMORPHISM.

(b) Describe a polynomial time reduction from GRAPHISOMORPHISM to SUBGRAPHISOMORPHISM.

1

CS 473 Headbanging 13 (December 3–4) Fall 2013

1. Prove that the following problem is NP-hard.

SETCOVER: Given a collection of sets {S1, . . . , Sm}, find the smallest sub-collection of Si ’s that
contains all the elements of

⋃
i Si .

2. Given an undirected graph G and a subset of vertices S, a Steiner tree of S in G is a subtree of G
that contains every vertex in S. If S contains every vertex of G, a Steiner tree is just a spanning
tree; if S contains exactly two vertices, any path between them is a Steiner tree.

Given a graph G, a vertex subset S, and an integer k, the Steiner tree problem requires us to
decide whether there is a Steiner tree of S in G with at most k edges. Prove that the Steiner tree
problem is NP-hard. [Hint: Reduce from VERTEXCOVER, or SETCOVER, or 3SAT.]

3. Let G be a directed graph whose edges are colored red and white. A Canadian Hamiltonian path is
a Hamiltonian path whose edges are alternately red and white. The CANADIANHAMILTONIANPATH

problem ask us to find a Canadian Hamiltonian path in a graph G. (Two weeks ago we looked for
Hamiltonian paths that cycled through colors on the vertices instead of edges.)

(a) Prove that CANADIANHAMILTONIANPATH is NP-Complete.

(b) Reduce CANADIANHAMILTONIANPATH to HAMILTONIANPATH.

1

CS 473 Midterm 1 Questions — Version A Fall 2013

This exam lasts 120 minutes.
Write your answers in the separate answer booklet.

Please return this question sheet and your cheat sheet with your answers.

1. Each of these ten questions has one of the following five answers:

A: Θ(1) B: Θ(log n) C: Θ(n) D: Θ(n log n) E: Θ(n2)

(a) What is
n5− 3n3− 5n+ 4

4n3− 2n2+ n− 7
?

(b) What is
n∑

i=1

i?

(c) What is
n∑

i=1

Ç
n

i
?

(d) How many bits are required to write the integer n10 in binary?

(e) What is the solution to the recurrence E(n) = E(n/2) + E(n/4) + E(n/8) + 16 n?

(f) What is the solution to the recurrence F(n) = 6F(n/6) + 6n?

(g) What is the solution to the recurrence G(n) = 9G(dn/3e+ 1) + n?

(h) The total path length of a binary tree is the sum of the depths of all nodes. What is the total
path length of an n-node binary tree in the worst case?

(i) Consider the following recursive function, defined in terms of a fixed array X [1 .. n]:

WTF(i, j) =





0 if i > j

1 if i = j

max





2 · �X [i] 6= X [j]
�
+WTF(i+ 1, j− 1)

1+WTF(i+ 1, j)
1+WTF(i, j− 1)



 otherwise

How long does it take to compute WTF(1, n) using dynamic programming?

(j) Voyager 1 recently became the first made-made object to reach interstellar space. Currently
the spacecraft is about 18 billion kilometers (roughly 60,000 light seconds) from Earth,
traveling outward at approximately 17 kilometers per second (approximately 1/18000 of
the speed of light). Voyager carries a golden record containing over 100 digital images abd
approximately one hour of sound recordings. In digital form, the recording would require
about 1 gigabyte. Voyager can transmit data back to Earth at approximately 1400 bits per
second. Suppose the engineers at JPL sent instructions to Voyager 1 to send the complete
contents of the Golden Record back to Earth; how many seconds would they have to wait to
receive the entire record?

1

CS 473 Midterm 1 Questions — Version A Fall 2013

2. You are a visitor at a political convention (or perhaps a faculty meeting) with n delegates; each
delegate is a member of exactly one political party. It is impossible to tell which political party
any delegate belongs to; in particular, you will be summarily ejected from the convention if you
ask. However, you can determine whether any pair of delegates belong to the same party or not
simply by introducing them to each other—members of the same party always greet each other
with smiles and friendly handshakes; members of different parties always greet each other with
angry stares and insults.

Suppose more than half of the delegates belong to the same political party. Describe and
analyze an efficient algorithm that identifies all members of this majority party.

3. Recall that a tree is a connected undirected graph with no cycles. Prove that in any tree, the
number of nodes is exactly one more than the number of edges.

4. Next spring break, you and your friends decide to take a road trip, but before you leave, you
decide to figure out exactly how much money to bring for gasoline. Suppose you compile a list of
all gas stations along your planned route, containing the following information:

• A sorted array Dist[0 .. n], where Dist[0] = 0 and Dist[i] is the number of miles from the
beginning of your route to the ith gas station. Your route ends at the nth gas station.

• A second array Price[1 .. n], where Price[i] is the price of one gallon of gasoline at the ith
gas station. (Unlike in real life, these prices do not change over time.)

You start the trip with a full tank of gas. Whenever you buy gas, you must completely fill your tank.
Your car holds exactly 10 gallons of gas and travels exactly 25 miles per gallon; thus, starting with
a full tank, you can travel exactly 250 miles before your car dies. Finally, Dist[i+1]< Dist[i]+250
for every index i, so the trip is possible.

Describe and analyze an algorithm to determine the minimum amount of money you must
spend on gasoline to guarantee that you can drive the entire route.

5. Suppose you are given a set P of n points in the plane. A point p ∈ P is maximal in P if no other
point in P is both above and to the right of P. Intuitively, the maximal points define a “staircase”
with all the other points of P below it.

A set of ten points, four of which are maximal.

Describe and analyze an algorithm to compute the number of maximal points in P in O(n log n)
time. For example, given the ten points shown above, your algorithm should return the integer 4.

2

CS 473 Midterm 1 Questions — Version B Fall 2013

This exam lasts 120 minutes.
Write your answers in the separate answer booklet.

Please return this question sheet and your cheat sheet with your answers.

1. Each of these ten questions has one of the following five answers:

A: Θ(1) B: Θ(log n) C: Θ(n) D: Θ(n log n) E: Θ(n2)

(a) What is
n5− 3n3− 5n+ 4

3n4− 2n2+ n− 7
?

(b) What is
n∑

i=1

n

i
?

(c) What is
n∑

i=1

i

n
?

(d) How many bits are required to write the integer 10n in binary?

(e) What is the solution to the recurrence E(n) = E(n/3) + E(n/4) + E(n/5) + n/6?

(f) What is the solution to the recurrence F(n) = 16 F(n/4+ 2) + n?

(g) What is the solution to the recurrence G(n) = G(n/2) + 2G(n/4) + n?

(h) The total path length of a binary tree is the sum of the depths of all nodes. What is the total
path length of a perfectly balanced n-node binary tree?

(i) Consider the following recursive function, defined in terms of two fixed arrays A[1 .. n] and
B[1 .. n]:

WTF(i, j) =





0 if i > j

max




(A[i]− B[j])2+WTF(i+ 1, j− 1)

A[i]2+WTF(i+ 1, j)
B[i]2+WTF(i, j− 1)



 otherwise

How long does it take to compute WTF(1, n) using dynamic programming?

(j) Voyager 1 recently became the first made-made object to reach interstellar space. Currently
the spacecraft is about 18 billion kilometers (roughly 60,000 light seconds) from Earth,
traveling outward at approximately 17 kilometers per second (approximately 1/18000 of
the speed of light). Voyager carries a golden record containing over 100 digital images and
approximately one hour of sound recordings. In digital form, the recording would require
about 1 gigabyte. Voyager can transmit data back to Earth at approximately 1400 bits per
second. Suppose the engineers at JPL sent instructions to Voyager 1 to send the complete
contents of the Golden Record back to Earth; how many seconds would they have to wait to
receive the entire record?

1

CS 473 Midterm 1 Questions — Version B Fall 2013

2. Suppose we are given an array A[0 .. n+ 1] with fencepost values A[0] = A[n+ 1] = −∞. We
say that an element A[x] is a local maximum if it is less than or equal to its neighbors, or more
formally, if A[x − 1]≤ A[x] and A[x]≥ A[x + 1]. For example, there are five local maxima in the
following array:

−∞ 6 7© 2 1 3 7© 5 4 9© 9© 3 4 8© 6 −∞

We can obviously find a local maximum in O(n) time by scanning through the array. Describe and
analyze an algorithm that returns the index of one local maximum in O(log n) time. [Hint: With
the given boundary conditions, the array must have at least one local maximum. Why?]

3. Prove that in any binary tree, the number of nodes with no children (leaves) is exactly one more
than the number of nodes with two children. (Remember that a binary tree can have nodes with
only one child.)

4. A string x is a supersequence of a string y if we can obtain x by inserting zero or more letters
into y, or equivalently, if y is a subsequence of x . For example, the string DYNAMICPROGRAMMING

is a supersequence of the string DAMPRAG.

A palindrome is any string that is exactly the same as its reversal, like I, DAD, HANNAH,
AIBOHPHOBIA (fear of palindromes), or the empty string.

Describe and analyze an algorithm to find the length of the shortest supersequence of a given
string that is also a palindrome.

For example, the 11-letter string EHECADACEHE is the shortest palindrome supersequence of
HEADACHE, so given the string HEADACHE as input, your algorithm should output the number 11.

5. Suppose you are given a set P of n points in the plane. A point p ∈ P is maximal in P if no other
point in P is both above and to the right of P. Intuitively, the maximal points define a “staircase”
with all the other points of P below it.

A set of ten points, four of which are maximal.

Describe and analyze an algorithm to compute the number of maximal points in P in O(n log n)
time. For example, given the ten points shown above, your algorithm should return the integer 4.

2

CS 473 Midterm 2 Questions — Version γ Fall 2013

This exam lasts 120 minutes.
Write your answers in the separate answer booklet.

Please return this question sheet and your cheat sheet with your answers.

1. Clearly indicate the following spanning trees in the weighted graph pictured below. Some of these
subproblems have more than one correct answer.

(a) A depth-first spanning tree rooted at s

(b) A breadth-first spanning tree rooted at s

(c) A shortest-path tree rooted at s

(d) A minimum spanning tree

(e) A maximum spanning tree

s 8 4

1

1

7

5

2

3

2

54

2 6

4

3

2. A polygonal path is a sequence of line segments joined end-to-end; the endpoints of these
line segments are called the vertices of the path. The length of a polygonal path is the sum
of the lengths of its segments. A polygonal path with vertices (x1, y1), (x2, y2), . . . , (xk, yk) is
monotonically increasing if x i < x i+1 and yi < yi+1 for every index i—informally, each vertex of
the path is above and to the right of its predecessor.

A monotonically increasing polygonal path with seven vertices through a set of points

Suppose you are given a set S of n points in the plane, represented as two arrays X [1 .. n] and
Y [1 .. n]. Describe and analyze an algorithm to compute the length of the maximum-length mono-
tonically increasing path with vertices in S. Assume you have a subroutine LENGTH(x , y, x ′, y ′)
that returns the length of the segment from (x , y) to (x ′, y ′).

1

CS 473 Midterm 2 Questions — Version γ Fall 2013

3. Suppose you are maintaining a circular array X [0 .. n− 1] of counters, each taking a value from
the set {0, 1, 2}. The following algorithm increments one of the counters; if the counter overflows,
the algorithm resets it 0 and recursively increments its two neighbors.

INCREMENT(i):
X [i]← X [i] + 1
if X [i] = 3

X [i]← 0
INCREMENT((i− 1)mod n)
INCREMENT((i+ 1)mod n)

(a) Suppose n= 5 and X = [2, 2,2, 2,2]. What does X contain after we call INCREMENT(3)?

(b) Suppose all counters are initially 0. Prove that INCREMENT runs in O(1) amortized time.

4. A looped tree is a weighted, directed graph built from a binary tree by adding an edge from every
leaf back to the root. Every edge has non-negative weight.

5 8

17 0 1

23 9 14

42416 7

A looped tree.

(a) How much time would Dijkstra’s algorithm require to compute the shortest path from an
arbitrary vertex s to another arbitrary vertex t, in a looped tree with n vertices?

(b) Describe and analyze a faster algorithm. Your algorithm should compute the actual shortest
path, not just its length.

5. Consider the following algorithm for finding the smallest element in an unsorted array:

RANDOMMIN(A[1 .. n]):
min←∞
for i← 1 to n in random order

if A[i]<min
min← A[i] (?)

return min

Assume the elements of A are all distinct.

(a) In the worst case, how many times does RANDOMMIN execute line (?)?

(b) What is the probability that line (?) is executed during the last iteration of the for loop?

(c) What is the exact expected number of executions of line (?)?

2

CS 473 Final Exam Questions Fall 2013

This exam lasts 180 minutes.
Write your answers in the separate answer booklet.

Please return this question handout and your cheat sheets with your answers.

1. Suppose you are given a sorted array of n distinct numbers that has been rotated k steps, for some
unknown integer k between 1 and n− 1. That is, you are given an array A[1 .. n] such that the
prefix A[1 .. k] is sorted in increasing order, the suffix A[k+1 .. n] is sorted in increasing order, and
A[n]< A[1]. For example, you might be given the following 16-element array (where k = 10):

9 13 16 18 19 23 28 31 37 42 −4 0 2 5 7 8

Describe and analyze an algorithm to determine if the given array contains a given number x .
For example, given the previous array and the number 17 as input, your algorithm should return
FALSE. The index k is NOT part of the input.

2. You are hired as a cyclist for the Giggle Highway View project, which will provide street-level
images along the entire US national highway system. As a pilot project, you are asked to ride the
Giggle Highway-View Fixed-Gear Carbon-Fiber Bicycle from “the Giggleplex” in Portland, Oregon
to “Giggleburg” in Williamsburg, Brooklyn, New York.

You are a hopeless caffeine addict, but like most Giggle employees you are also a coffee snob;
you only drink independently roasted organic shade-grown single-origin espresso. After each
espresso shot, you can bike up to L miles before suffering a caffeine-withdrawal migraine.

Giggle helpfully provides you with a map of the United States, in the form of an undirected
graph G, whose vertices represent coffee shops that sell independently roasted organic shade-
grown single-origin espresso, and whose edges represent highway connections between them.
Each edge e is labeled with the length `(e) of the corresponding stretch of highway. Naturally,
there are espresso stands at both Giggle offices, represented by two specific vertices s and t in the
graph G.

(a) Describe and analyze an algorithm to determine whether it is possible to bike from the
Giggleplex to Giggleburg without suffering a caffeine-withdrawal migraine.

(b) You discover that by wearing a more expensive fedora, you can increase the distance L
that you can bike between espresso shots. Describe and analyze and algorithm to find the
minimum value of L that allows you to bike from the Giggleplex to Giggleburg without
suffering a caffeine-withdrawal migraine.

1

CS 473 Final Exam Questions Fall 2013

3. Suppose you are given a collection of up-trees representing a partition of the set {1,2, . . . , n}
into subsets. You have no idea how these trees were constructed. You are also given an array
node[1 .. n], where node[i] is a pointer to the up-tree node containing element i. Your task is to
create a new array label[1 .. n] using the following algorithm:

LABELEVERYTHING:
for i← 1 to n

label[i]← FIND(node[i])

Recall that there are two natural ways to implement FIND: simple pointer-chasing and pointer-
chasing with path compression. Pseudocode for both methods is shown below.

FIND(x):
while x 6= parent(x)

x ← parent(x)
return x

FIND(x):
if x 6= parent(x)

parent(x)← FIND(parent(x))
return parent(x)

Without path compression With path compression

(a) What is the worst-case running time of LABELEVERYTHING if we implement FIND without path
compression?

(b) Prove that if we implement FIND using path compression, LABELEVERYTHING runs in O(n)
time in the worst case.

4. Congratulations! You have successfully conquered Camelot, transforming the former battle-scarred
kingdom with an anarcho-syndicalist commune, where citizens take turns to act as a sort of
executive-officer-for-the-week, but with all the decisions of that officer ratified at a special bi-
weekly meeting, by a simple majority in the case of purely internal affairs, but by a two-thirds
majority, in the case of more major. . . .

As a final symbolic act, you order the Round Table (surprisingly, an actual circular table) to be
split into pizza-like wedges and distributed to the citizens of Camelot as trophies. Each citizen has
submitted a request for an angular wedge of the table, specified by two angles—for example, Sir
Robin the Brave might request the wedge from 23.17◦ to 42◦. Each citizen will be happy if and
only if they receive precisely the wedge that they requested. Unfortunately, some of these ranges
overlap, so satisfying all the citizens’ requests is simply impossible. Welcome to politics.

Describe and analyze an algorithm to find the maximum number of requests that can be
satisfied.

2

CS 473 Final Exam Questions Fall 2013

5. The NSA has established several monitoring stations around the country, each one conveniently
hidden in the back of a Starbucks. Each station can monitor up to 42 cell-phone towers, but
can only monitor cell-phone towers within a 20-mile radius. To ensure that every cell-phone
call is recorded even if some stations malfunction, the NSA requires each cell-phone tower to be
monitored by at least 3 different stations.

Suppose you know that there are n cell-phone towers and m monitoring stations, and you
are given a function DISTANCE(i, j) that returns the distance between the ith tower and the jth
station in O(1) time. Describe and analyze an algorithm that either computes a valid assignment
of cell-phone towers to monitoring stations, or reports correctly that there is no such assignment
(in which case the NSA will build another Starbucks).

6. Consider the following closely related problems:

• HAMILTONIANPATH: Given an undirected graph G, determine whether G contains a path that
visits every vertex of G exactly once.

• HAMILTONIANCYCLE: Given an undirected graph G, determine whether G contains a cycle that
visits every vertex of G exactly once.

Describe a polynomial-time reduction from HAMILTONIANPATH to HAMILTONIANCYCLE. Prove your
reduction is correct. [Hint: A polynomial-time reduction is allowed to call the black-box subroutine
more than once.]

7. An array X [1 .. n] of distinct integers is wobbly if it alternates between increasing and decreasing:
X [i]< X [i+ 1] for every odd index i, and X [i]> X [i+ 1] for every even index i. For example,
the following 16-element array is wobbly:

12 13 0 16 13 31 5 7 −1 23 8 10 −4 37 17 42

Describe and analyze an algorithm that permutes the elements of a given array to make the array
wobbly.

3

You may use the following algorithms as black boxes:

RANDOM(k): Given any positive integer k, return an integer chosen independently and uniformly at random
from the set {1,2, . . . , k} in O(1) time.

ORLINMAXFLOW(V, E, c, s , t): Given a directed graph G = (V, E), a capacity function c : E → R+, and
vertices s and t, return a maximum (s, t)-flow in G in O(VE) time. If the capacities are integral, so is
the returned maximum flow.

Any other algorithm that we described in class.

You may assume the following problems are NP-hard:

CIRCUITSAT: Given a boolean circuit, are there any input values that make the circuit output TRUE?

PLANARCIRCUITSAT: Given a boolean circuit drawn in the plane so that no two wires cross, are there any
input values that make the circuit output TRUE?

3SAT: Given a boolean formula in conjunctive normal form, with exactly three literals per clause, does the
formula have a satisfying assignment?

MAXINDEPENDENTSET: Given an undirected graph G, what is the size of the largest subset of vertices in G
that have no edges among them?

MAXCLIQUE: Given an undirected graph G, what is the size of the largest complete subgraph of G?

MINVERTEXCOVER: Given an undirected graph G, what is the size of the smallest subset of vertices that
touch every edge in G?

MINSETCOVER: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subcollection whose union is S?

MINHITTINGSET: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subset of S that intersects every subset Si?

3COLOR: Given an undirected graph G, can its vertices be colored with three colors, so that every edge
touches vertices with two different colors?

HAMILTONIANCYCLE: Given a graph G, is there a cycle in G that visits every vertex exactly once?

HAMILTONIANPATH: Given a graph G, is there a path in G that visits every vertex exactly once?

TRAVELINGSALESMAN: Given a graph G with weighted edges, what is the minimum total weight of any
Hamiltonian path/cycle in G?

STEINERTREE: Given an undirected graph G with some of the vertices marked, what is the minimum number
of edges in a subtree of G that contains every marked vertex?

SUBSETSUM: Given a set X of positive integers and an integer k, does X have a subset whose elements
sum to k?

PARTITION: Given a set X of positive integers, can X be partitioned into two subsets with the same sum?

3PARTITION: Given a set X of 3n positive integers, can X be partitioned into n three-element subsets, all
with the same sum?

DRAUGHTS: Given an n× n international draughts configuration, what is the largest number of pieces that
can (and therefore must) be captured in a single move?

DOGE: Such N. Many P. Wow.

CS 473 Conflict Final Exam Questions Fall 2013

This exam lasts 180 minutes.
Write your answers in the separate answer booklet.

Please return this question handout and your cheat sheets with your answers.

1. Suppose you are given a sorted array of n distinct numbers that has been rotated k steps, for some
unknown integer k between 1 and n− 1. That is, you are given an array A[1 .. n] such that the
prefix A[1 .. k] is sorted in increasing order, the suffix A[k+1 .. n] is sorted in increasing order, and
A[n]< A[1]. Describe and analyze an algorithm to compute the unknown integer k.

For example, given the following array as input, your algorithm should output the integer 10.

9 13 16 18 19 23 28 31 37 42 −4 0 2 5 7 8

2. You are hired as a cyclist for the Giggle Highway View project, which will provide street-level
images along the entire US national highway system. As a pilot project, you are asked to ride the
Giggle Highway-View Fixed-Gear Carbon-Fiber Bicycle from “the Giggleplex” in Portland, Oregon
to “Giggleburg” in Williamsburg, Brooklyn, New York.

You are a hopeless caffeine addict, but like most Giggle employees you are also a coffee snob;
you only drink independently roasted organic shade-grown single-origin espresso. After each
espresso shot, you can bike up to L miles before suffering a caffeine-withdrawal migraine.

Giggle helpfully provides you with a map of the United States, in the form of an undirected
graph G, whose vertices represent coffee shops that sell independently roasted organic shade-
grown single-origin espresso, and whose edges represent highway connections between them.
Each edge e is labeled with the length `(e) of the corresponding stretch of highway. Naturally,
there are espresso stands at both Giggle offices, represented by two specific vertices s and t in the
graph G.

(a) Describe and analyze an algorithm to determine whether it is possible to bike from the
Giggleplex to Giggleburg without suffering a caffeine-withdrawal migraine.

(b) When you report to your supervisor (whom Giggle recently hired away from competitor
Yippee!) that the ride is impossible, she demands to look at your map. “Oh, I see the problem;
there are no Starbucks on this map!” As you look on in horror, she hands you an updated
graph G′ that includes a vertex for every Starbucks location in the United States, helpfully
marked in Starbucks Green (Pantone® 3425 C).

Describe and analyze an algorithm to find the minimum number of Starbucks locations you
must visit to bike from the Giggleplex to Giggleburg without suffering a caffeine-withdrawal
migraine. More formally, your algorithm should find the minimum number of green vertices
on any path in G′ from s to t that uses only edges of length at most L.

1

CS 473 Conflict Final Exam Questions Fall 2013

3. Suppose you are given a collection of up-trees representing a partition of the set {1,2, . . . , n}
into subsets. You have no idea how these trees were constructed. You are also given an array
node[1 .. n], where node[i] is a pointer to the up-tree node containing element i. Your task is to
create a new array label[1 .. n] using the following algorithm:

LABELEVERYTHING:
for i← 1 to n

label[i]← FIND(node[i])

Recall that there are two natural ways to implement FIND: simple pointer-chasing and pointer-
chasing with path compression. Pseudocode for both methods is shown below.

FIND(x):
while x 6= parent(x)

x ← parent(x)
return x

FIND(x):
if x 6= parent(x)

parent(x)← FIND(parent(x))
return parent(x)

Without path compression With path compression

(a) What is the worst-case running time of LABELEVERYTHING if we implement FIND without path
compression?

(b) Prove that if we implement FIND using path compression, LABELEVERYTHING runs in O(n)
time in the worst case.

4. Congratulations! You have successfully conquered Camelot, transforming the former battle-scarred
kingdom with an anarcho-syndicalist commune, where citizens take turns to act as a sort of
executive-officer-for-the-week, but with all the decisions of that officer ratified at a special bi-
weekly meeting, by a simple majority in the case of purely internal affairs, but by a two-thirds
majority, in the case of more major. . . .

As a final symbolic act, you order the Round Table (surprisingly, an actual circular table) to be
split into pizza-like wedges and distributed to the citizens of Camelot as trophies. Each citizen
has submitted a request for an angular wedge of the table, specified by two angles—for example,
Sir Robin the Brave might request the wedge from 17◦ to 42◦. Each citizen will be happy if and
only if they receive precisely the wedge that they requested. Unfortunately, some of these ranges
overlap, so satisfying all the citizens’ requests is simply impossible. Welcome to politics.

Describe and analyze an algorithm to find the maximum number of requests that can be
satisfied.

2

CS 473 Conflict Final Exam Questions Fall 2013

5. The NSA has established several monitoring stations around the country, each one conveniently
hidden in the back of a Starbucks. Each station can monitor up to 42 cell-phone towers, but
can only monitor cell-phone towers within a 20-mile radius. To ensure that every cell-phone
call is recorded even if some stations malfunction, the NSA requires each cell-phone tower to be
monitored by at least 3 different stations.

Suppose you know that there are n cell-phone towers and m monitoring stations, and you
are given a function DISTANCE(i, j) that returns the distance between the ith tower and the jth
station in O(1) time. Describe and analyze an algorithm that either computes a valid assignment
of cell-phone towers to monitoring stations, or reports correctly that there is no such assignment
(in which case the NSA will build another Starbucks).

6. Consider the following closely related problems:

• HAMILTONIANPATH: Given an undirected graph G, determine whether G contains a path that
visits every vertex of G exactly once.

• HAMILTONIANCYCLE: Given an undirected graph G, determine whether G contains a cycle that
visits every vertex of G exactly once.

Describe a polynomial-time reduction from HAMILTONIANCYCLE to HAMILTONIANPATH. Prove your
reduction is correct. [Hint: A polynomial-time reduction is allowed to call the black-box subroutine
more than once.]

7. An array X [1 .. n] of distinct integers is wobbly if it alternates between increasing and decreasing:
X [i]< X [i+ 1] for every odd index i, and X [i]> X [i+ 1] for every even index i. For example,
the following 16-element array is wobbly:

12 13 0 16 13 31 5 7 −1 23 8 10 −4 37 17 42

Describe and analyze an algorithm that permutes the elements of a given array to make the array
wobbly.

3

You may use the following algorithms as black boxes:

RANDOM(k): Given any positive integer k, return an integer chosen independently and uniformly at random
from the set {1,2, . . . , k} in O(1) time.

ORLINMAXFLOW(V, E, c, s , t): Given a directed graph G = (V, E), a capacity function c : E → R+, and
vertices s and t, return a maximum (s, t)-flow in G in O(VE) time. If the capacities are integral, so is
the returned maximum flow.

Any other algorithm that we described in class.

You may assume the following problems are NP-hard:

CIRCUITSAT: Given a boolean circuit, are there any input values that make the circuit output TRUE?

PLANARCIRCUITSAT: Given a boolean circuit drawn in the plane so that no two wires cross, are there any
input values that make the circuit output TRUE?

3SAT: Given a boolean formula in conjunctive normal form, with exactly three literals per clause, does the
formula have a satisfying assignment?

MAXINDEPENDENTSET: Given an undirected graph G, what is the size of the largest subset of vertices in G
that have no edges among them?

MAXCLIQUE: Given an undirected graph G, what is the size of the largest complete subgraph of G?

MINVERTEXCOVER: Given an undirected graph G, what is the size of the smallest subset of vertices that
touch every edge in G?

MINSETCOVER: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subcollection whose union is S?

MINHITTINGSET: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subset of S that intersects every subset Si?

3COLOR: Given an undirected graph G, can its vertices be colored with three colors, so that every edge
touches vertices with two different colors?

HAMILTONIANCYCLE: Given a graph G, is there a cycle in G that visits every vertex exactly once?

HAMILTONIANPATH: Given a graph G, is there a path in G that visits every vertex exactly once?

TRAVELINGSALESMAN: Given a graph G with weighted edges, what is the minimum total weight of any
Hamiltonian path/cycle in G?

STEINERTREE: Given an undirected graph G with some of the vertices marked, what is the minimum number
of edges in a subtree of G that contains every marked vertex?

SUBSETSUM: Given a set X of positive integers and an integer k, does X have a subset whose elements
sum to k?

PARTITION: Given a set X of positive integers, can X be partitioned into two subsets with the same sum?

3PARTITION: Given a set X of 3n positive integers, can X be partitioned into n three-element subsets, all
with the same sum?

DRAUGHTS: Given an n× n international draughts configuration, what is the largest number of pieces that
can (and therefore must) be captured in a single move?

DOGE: Such N. Many P. Wow.

