CS 373U: Combinatorial Algorithms, Spring 2004

Homework 3
Due Friday, March 12, 2004 at noon

Name:
Net ID: Alias:
Name:
Net ID: Alias:
Name:
Net ID: Alias:

e For each numbered problem, if you use more than one page, staple all those pages together.
Please do not staple your entire homework together. This will allow us to more
easily distribute the problems to the graders. Remember to print the name and NetID of
every member of your group, as well as the assignment and problem numbers, on every page
you submit. You do not need to turn in this cover page.

e This homework is challenging. You might want to start early.

# 112113 1] 4| 5 | 6% | Total

Score
Grader




CS 373U Homework 3 (due March 12, 2004) Spring 2004

1. Let S be a set of n points in the plane. A point p in S is called Pareto-optimal if no other
point in S is both above and to the right of p.

(a) Describe and analyze a deterministic algorithm that computes the Pareto-optimal points
in S in O(nlogn) time.

(b) Suppose each point in S is chosen independently and uniformly at random from the unit
square [0, 1] x [0,1]. What is the ezact expected number of Pareto-optimal points in S?

2. Suppose we have an oracle RANDOM(k) that returns an integer chosen independently and
uniformly at random from the set {1,...,k}, where k is the input parameter; RANDOM is our
only source of random bits. We wish to write an efficient function RANDOMPERMUTATION(n)
that returns a permutation of the integers (1,...,n) chosen uniformly at random.

(a) Consider the following implementation of RANDOMPERMUTATION.

RANDOMPERMUTATION(n):
fori=1ton
w[i] < NULL
fori=1ton
j < RANDOM(n)
while (7[j] = NULL)
j < RANDOM(n)
mlj] —i
return 7

Prove that this algorithm is correct. Analyze its expected runtime.

(b) Consider the following partial implementation of RANDOMPERMUTATION.

RANDOMPERMUTATION(n):
fori =1ton
Ali] < RANDOM(n)
7« SOMEFUNCTION(A)
return m

Prove that if the subroutine SOMEF UNCTION is deterministic, then this algorithm cannot
be correct. [Hint: There is a one-line proof.]

(c) Consider a correct implementation of RANDOMPERMUTATION(n) with the following
property: whenever it calls RANDOM(k), the argument k is at most m. Prove that

this algorithm always calls RANDOM at least Q(?Olggnf ) times.

(d) Describe and analyze an implementation of RANDOMPERMUTATION that runs in ex-
pected worst-case time O(n).



CS 373U Homework 3 (due March 12, 2004) Spring 2004

3. A meldable priority queue stores a set of keys from some totally-ordered universe (such as the
integers) and supports the following operations:
e MAKEQUEUE: Return a new priority queue containing the empty set.
e FINDMIN(Q®): Return the smallest element of @ (if any).
e DELETEMIN(Q®): Remove the smallest element in @ (if any).
e INSERT(Q,x): Insert element x into @, if it is not already there.

e DECREASEKEY(Q,x,y): Replace an element = € @) with a smaller key y. (If y > z, the
operation fails.) The input is a pointer directly to the node in @) containing x.

e DELETE(Q, z): Delete the element € ). The input is a pointer directly to the node
in @) containing x.

e MELD(Q1,Q@2): Return a new priority queue containing all the elements of Q1 and Qo;
this operation destroys Q1 and Q2.

A simple way to implement such a data structure is to use a heap-ordered binary tree, where
each node stores a key, along with pointers to its parent and two children. MELD can be
implemented using the following randomized algorithm:

MELD(Q1, Q2):
if @1 is empty return Q2
if Q9 is empty return @y
if key(Q1) > key(Q2)
swap Q1 < Q2
with probability 1/2
left(Q1) «— MELD(left(Q1), Q2)

else
right(Q1) < MELD(right(Q1), Q2)

return @

(a) Prove that for any heap-ordered binary trees (1 and Q2 (not just those constructed by
the operations listed above), the expected running time of MELD(Q1,@2) is O(logn),
where n = |Q1| + |Q2|. [Hint: How long is a random root-to-leaf path in an n-node
binary tree if each left/right choice is made with equal probability?]

(b) [Extra credit] Prove that MELD(Q1, @2) runs in O(logn) time with high probability.

(c) Show that each of the other meldable priority queue operations cab be implemented with
at most one call to MELD and O(1) additional time. (This implies that every operation
takes O(logn) time with high probability.)



CS 373U Homework 3 (due March 12, 2004) Spring 2004

4. A majority tree is a complete binary tree with depth n, where every leaf is labeled either 0
or 1. The wvalue of a leaf is its label; the value of any internal node is the majority of the
values of its three children. Consider the problem of computing the value of the root of a
majority tree, given the sequence of 3" leaf labels as input. For example, if n = 2 and the
leaves are labeled 1,0,0,0,1,0,1,1,1, the root has value 0.

A majority tree with depth n = 2.

(a) Prove that any deterministic algorithm that computes the value of the root of a majority
tree must examine every leaf. [Hint: Consider the special case n = 1. Recurse.]

(b) Describe and analyze a randomized algorithm that computes the value of the root in
worst-case expected time O(c") for some constant ¢ < 3. [Hint: Consider the special
case n = 1. Recurse.]

5. Suppose n lights labeled 0,...,n —1 are placed clockwise around a circle. Initially, each light
is set to the off position. Consider the following random process.

Li1GHTTHECIRCLE(n):
k0
turn on light 0
while at least one light is off
with probability 1/2
k«— (k+1) modn
else
k<« (k—1) modn
if light £ is off, turn it on

Let p(i,n) be the probability that light ¢ is the last to be turned on by LIGHTTHECIRCLE(n, 0).
For example, p(0,2) = 0 and p(1,2) = 1. Find an exact closed-form expression for p(i,n) in
terms of n and i. Prove your answer is correct.

6. [Extra Credit] Let G be a bipartite graph on n vertices. Each vertex v has an associated
set C'(v) of 1g 2n colors with which v is compatible. We wish to find a coloring of the vertices
in G so that every vertex v is assigned a color from its set C'(v) and no edge has the same
color at both ends. Describe and analyze a randomized algorithm that computes such a
coloring in expected worst-case time O(nlog?n). [Hint: For any events A and B, Pr[AUB] <
Pr[A] + Pr[B].]



