
CS 473 Homework 0 (due January 27, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 0

Due in class at 11:00am, Tuesday, January 27, 2009

• This homework tests your familiarity with prerequisite material—big-Oh notation, elementary
algorithms and data structures, recurrences, graphs, and most importantly, induction—to help
you identify gaps in your background knowledge. You are responsible for filling those gaps.
The early chapters of any algorithms textbook should be sufficient review, but you may also want
consult your favorite discrete mathematics and data structures textbooks. If you need help, please
ask in office hours and/or on the course newsgroup.

• Each student must submit individual solutions for this homework. For all future homeworks,
groups of up to three students may submit a single, common solution.

• Please carefully read the course policies linked from the course web site. If you have any questions,
please ask during lecture or office hours, or post your question to the course newsgroup. In
particular:

– Submit five separately stapled solutions, one for each numbered problem, with your name
and NetID clearly printed on each page. Please do not staple everything together.

– You may use any source at your disposal—paper, electronic, or human—but you must write
your solutions in your own words, and you must cite every source that you use.

– Unless explicitly stated otherwise, every homework problem requires a proof.

– Answering “I don’t know” to any homework or exam problem (except for extra credit
problems) is worth 25% partial credit.

– Algorithms or proofs containing phrases like “and so on” or “repeat this process for all n”,
instead of an explicit loop, recursion, or induction, will receive 0 points.

Write the sentence “I understand the course policies." at the top of your solution to problem 1.

1. Professor George O’Jungle has a 27-node binary tree, in which every node is labeled with a unique
letter of the Roman alphabet or the character &. Preorder and postorder traversals of the tree visit
the nodes in the following order:

• Preorder: I Q J H L E M V O T S B R G Y Z K C A & F P N U D W X

• Postorder: H E M L J V Q S G Y R Z B T C P U D N F W & X A K O I

(a) List the nodes in George’s tree in the order visited by an inorder traversal.

(b) Draw George’s tree.

1

CS 473 Homework 0 (due January 27, 2009) Spring 2009

2. (a) [5 pts] Solve the following recurrences. State tight asymptotic bounds for each function in
the formΘ(f (n)) for some recognizable function f (n). Assume reasonable but nontrivial base
cases. If your solution requires a particular base case, say so. Do not submit proofs—just a
list of five functions—but you should do them anyway, just for practice.

A(n) = 10A(n/5) + n

B(n) = 2B
��

n+ 3

4

��

+ 5n6/7− 8

r

n

log n
+ 9
�

log10 n
�

− 11

C(n) = 3C(n/2) + C(n/3) + 5C(n/6) + n2

D(n) = max
0<k<n

(D(k) + D(n− k) + n)

E(n) =
E(n− 1) E(n− 3)

E(n− 2)
[Hint: Write out the first 20 terms.]

(b) [5 pts] Sort the following functions from asymptotically smallest to asymptotically largest,
indicating ties if there are any. Do not submit proofs—just a sorted list of 16 functions—but
you should do them anyway, just for practice.

Write f (n) � g(n) to indicate that f (n) = o(g(n)), and write f (n) ≡ g(n) to mean
f (n) = Θ(g(n)). We use the notation lg n= log2 n.

n lg n
p

n 3n

p

lg n lg
p

n 3
p

n p
3n

3lg n lg(3n) 3lg
p

n 3
p

lg n

p

3lg n lg(3
p

n) lg
p

3n
p

lg(3n)

3. Suppose you are given a pointer to the head of singly linked list. Normally, each node in the list
has a pointer to the next element, and the last node’s pointer is NULL. Unfortunately, your list
might have been corrupted (by a bug in somebody else’s code, of course), so that some node’s
pointer leads back to an earlier node in the list.

Top: A standard singly-linked list. Bottom: A corrupted singly linked list.

Describe an algorithm1 that determines whether the linked list is corrupted or not. Your algorithm
must not modify the list. For full credit, your algorithm should run in O(n) time, where n is the
number of nodes in the list, and use O(1) extra space (not counting the list itself).

1Since you understand the course policies, you know what this phrase means. Right?

2

CS 473 Homework 0 (due January 27, 2009) Spring 2009

4. (a) Prove that any integer (positive, negative, or zero) can be written in the form
∑

i±3i , where
the exponents i are distinct non-negative integers. For example:

42= 34− 33− 32− 31

25= 33− 31+ 30

17= 33− 32− 30

(b) Prove that any integer (positive, negative, or zero) can be written in the form
∑

i(−2)i,
where the exponents i are distinct non-negative integers. For example:

42= (−2)6+ (−2)5+ (−2)4+ (−2)0

25= (−2)6+ (−2)5+ (−2)3+ (−2)0

17= (−2)4+ (−2)0

[Hint: Don’t use weak induction. In fact, never use weak induction.]

5. An arithmetic expression tree is a binary tree where every leaf is labeled with a variable, every
internal node is labeled with an arithmetic operation, and every internal node has exactly two
children. For this problem, assume that the only allowed operations are + and ×. Different leaves
may or may not represent different variables.

Every arithmetic expression tree represents a function, transforming input values for the leaf
variables into an output value for the root, by following two simple rules: (1) The value of any
+-node is the sum of the values of its children. (2) The value of any ×-node is the product of the
values of its children.

Two arithmetic expression trees are equivalent if they represent the same function; that is,
the same input values for the leaf variables always leads to the same output value at both roots.
An arithmetic expression tree is in normal form if the parent of every +-node (if any) is another
+-node.

×
x +

y z

+

×
x z

×
y x

×
x+

yz

Three equivalent expression trees. Only the third is in normal form.

Prove that for any arithmetic expression tree, there is an equivalent arithmetic expression tree
in normal form.

3

CS 473 Homework 0 (due January 27, 2009) Spring 2009

?6. [Extra credit] You may be familiar with the story behind the famous Tower of Hanoï puzzle:

At the great temple of Benares, there is a brass plate on which three vertical diamond shafts are
fixed. On the shafts are mounted n golden disks of decreasing size. At the time of creation, the
god Brahma placed all of the disks on one pin, in order of size with the largest at the bottom.
The Hindu priests unceasingly transfer the disks from peg to peg, one at a time, never placing a
larger disk on a smaller one. When all of the disks have been transferred to the last pin, the
universe will end.

Recently the temple at Benares was relocated to southern California, where the monks are
considerably more laid back about their job. At the “Towers of Hollywood”, the golden disks have
been replaced with painted plywood, and the diamond shafts have been replaced with Plexiglas.
More importantly, the restriction on the order of the disks has been relaxed. While the disks are
being moved, the bottom disk on any pin must be the largest disk on that pin, but disks further up
in the stack can be in any order. However, after all the disks have been moved, they must be in
sorted order again.

The Towers of Hollywood. The sixth move leaves the disks out of order.

Describe an algorithm that moves a stack of n disks from one pin to the another using the
smallest possible number of moves. Exactly how many moves does your algorithm perform? [Hint:
The Hollywood monks can bring about the end of the universe considerably faster than their
Benaresian counterparts.]

4

CS 473 Homework 1 (due February 3, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 1

Due Tuesday, February 3, 2009 at 11:59:59pm.

• Groups of up to three students may submit a single, common solution for this and all future
homeworks. Please clearly write every group member’s name and NetID on every page of your
submission.

1. The traditional Devonian/Cornish drinking song “The Barley Mow” has the following pseudolyrics,
where container[i] is the name of a container that holds 2i ounces of beer. One version of the song
uses the following containers: nipperkin, gill pot, half-pint, pint, quart, pottle, gallon, half-anker,
anker, firkin, half-barrel, barrel, hogshead, pipe, well, river, and ocean. (Every container in this list
is twice as big as its predecessor, except that a firkin is actually 2.25 ankers, and the last three
units are just silly.)

BARLEYMOW(n):
“Here’s a health to the barley-mow, my brave boys,”
“Here’s a health to the barley-mow!”

“We’ll drink it out of the jolly brown bowl,”
“Here’s a health to the barley-mow!”
“Here’s a health to the barley-mow, my brave boys,”
“Here’s a health to the barley-mow!”

for i← 1 to n
“We’ll drink it out of the container[i], boys,”
“Here’s a health to the barley-mow!”
for j← i downto 1

“The container[j],”
“And the jolly brown bowl!”
“Here’s a health to the barley-mow!”
“Here’s a health to the barley-mow, my brave boys,”
“Here’s a health to the barley-mow!”

(a) Suppose each container name container[i] is a single word, and you can sing four words
a second. How long would it take you to sing BARLEYMOW(n)? (Give a tight asymptotic
bound.) [Hint: Is ‘barley-mow’ one word or two? Does it matter?]

(b) If you want to sing this song for n> 20, you’ll have to make up your own container names.
To avoid repetition, these names will get progressively longer as n increases1. Suppose
container[n] has Θ(log n) syllables, and you can sing six syllables per second. Now how long
would it take you to sing BARLEYMOW(n)? (Give a tight asymptotic bound.)

(c) Suppose each time you mention the name of a container, you actually drink the corresponding
amount of beer: one ounce for the jolly brown bowl, and 2i ounces for each container[i].
Assuming for purposes of this problem that you are at least 21 years old, exactly how many
ounces of beer would you drink if you sang BARLEYMOW(n)? (Give an exact answer, not just
an asymptotic bound.)

1“We’ll drink it out of the hemisemidemiyottapint, boys!”

1

CS 473 Homework 1 (due February 3, 2009) Spring 2009

2. For this problem, a subtree of a binary tree means any connected subgraph; a binary tree is complete
if every leaf has exactly the same depth. Describe and analyze a recursive algorithm to compute
the largest complete subtree of a given binary tree. Your algorithm should return the root and the
depth of this subtree.

The largest complete subtree of this binary tree has depth 2.

3. (a) Describe and analyze a recursive algorithm to reconstruct a binary tree, given its preorder
and postorder node sequences (as in Homework 0, problem 1).

(b) Describe and analyze a recursive algorithm to reconstruct a binary tree, given its preorder
and inorder node sequences.

2

CS 473 Homework 10 (Practice only) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 10

Due Tuesday, May 5, 2009 at 11:59:59pm

• Groups of up to three students may submit a single, common solution. Please clearly write every
group member’s name and NetID on every page of your submission.

• This homework is optional. If you submit solutions, they will be graded, and your overall
homework grade will be the average of ten homeworks (Homeworks 0–10, dropping the lowest).
If you do not submit solutions, your overall homework grade will be the average of nine homeworks
(Homeworks 0–9, dropping the lowest).

1. Suppose you are given a magic black box that can determine in polynomial time, given an
arbitrary graph G, the number of vertices in the largest complete subgraph of G. Describe and
analyze a polynomial-time algorithm that computes, given an arbitrary graph G, a complete
subgraph of G of maximum size, using this magic black box as a subroutine.

2. PLANARCIRCUITSAT is a special case of CIRCUITSAT where the input circuit is drawn ‘nicely’ in the
plane — no two wires cross, no two gates touch, and each wire touches only the gates it connects.
(Not every circuit can be drawn this way!) As in the general CIRCUITSAT problem, we want to
determine if there is an input that makes the circuit output TRUE?

Prove that PLANARCIRCUITSAT is NP-complete. [Hint: XOR.]

3. For each problem below, either describe a polynomial-time algorithm or prove that the problem is
NP-complete.

(a) A double-Eulerian circuit in an undirected graph G is a closed walk that traverses every edge
in G exactly twice. Given a graph G, does G have a double-Eulerian circuit?

(b) A double-Hamiltonian circuit in an undirected graph G is a closed walk that visits every vertex
in G exactly twice. Given a graph G, does G have a double-Hamiltonian circuit?

1

CS 473 Homework 2 (due February 10, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 2

Written solutions due Tuesday, February 10, 2009 at 11:59:59pm.

• Roughly 1/3 of the students will give oral presentations of their solutions to the TAs. Please check
Compass to check whether you are supposed give an oral presentation for this homework.
Please see the course web page for further details.

• Groups of up to three students may submit a common solution. Please clearly write every group
member’s name and NetID on every page of your submission.

• Please start your solution to each numbered problem on a new sheet of paper. Please don’t staple
solutions for different problems together.

• For this homework only: These homework problems ask you to describe recursive backtracking
algorithms for various problems. Don’t use memoization or dynamic programming to make your
algorithms more efficient; you’ll get to do that on HW3. Don’t analyze the running times of your
algorithms. The only things you should submit for each problem are (1) a description of your
recursive algorithm, and (2) a brief justification for its correctness.

1. A basic arithmetic expression is composed of characters from the set {1,+,×} and parentheses.
Almost every integer can be represented by more than one basic arithmetic expression. For
example, all of the following basic arithmetic expression represent the integer 14:

1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1

((1+ 1)× (1+ 1+ 1+ 1+ 1)) + ((1+ 1)× (1+ 1))

(1+ 1)× (1+ 1+ 1+ 1+ 1+ 1+ 1)

(1+ 1)× (((1+ 1+ 1)× (1+ 1)) + 1)

Describe a recursive algorithm to compute, given an integer n as input, the minimum number of
1’s in a basic arithmetic expression whose value is n. The number of parentheses doesn’t matter,
just the number of 1’s. For example, when n= 14, your algorithm should return 8, for the final
expression above.

2. A sequence A = 〈a1, a2, . . . , an〉 is bitonic if there is an index i with 1 < i < n, such that the
prefix 〈a1, a2, . . . , ai〉 is strictly increasing and the suffix 〈ai , ai+1, . . . , an〉 is strictly decreasing. In
particular, a bitonic sequence must contain at least three elements.

Describe a recursive algorithm to compute, given a sequence A, the length of the longest bitonic
subsequence of A.

1

CS 473 Homework 2 (due February 10, 2009) Spring 2009

3. A palindrome is a string that reads the same forwards and backwards, like x, pop, noon, redivider,
or amanaplanacatahamayakayamahatacanalpanama. Any string can be broken into sequence of
palindromes. For example, the string bubbaseesabanana (‘Bubba sees a banana.’) can be broken
into palindromes in several different ways; for example:

bub + baseesab + anana

b + u + bb + a + sees + aba + nan + a

b + u + bb + a + sees + a + b + anana

b + u + b + b + a + s + e + e + s + a + b + a + n + a + n + a

Describe a recursive algorithm to compute the minimum number of palindromes that make up a
given input string. For example, given the input string bubbaseesabanana, your algorithm would
return the integer 3.

2

CS 473 Homework 3 (due February 17, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 3

Written solutions due Tuesday, February 17, 2009 at 11:59:59pm.

1. Redo Homework 2, but now with dynamic programming!

(a) Describe and analyze an efficient algorithm to compute the minimum number of 1’s in a
basic arithmetic expression whose value is a given positive integer.

(b) Describe and analyze an efficient algorithm to compute the length of the longest bitonic
subsequence of a given input sequence.

(c) Describe and analyze an efficient algorithm to compute the minimum number of palindromes
that make up a given input string.

Please see Homework 2 for more detailed descriptions of each problem. Solutions for Home-
work 2 will be posted Friday, after the HW2 oral presentations. You may (and should!) use
anything from those solutions without justification.

2. Let T be a rooted tree with integer weights on its edges, which could be positive, negative, or
zero. Design an algorithm to find the minimum-length path from a node in T down to one of its
descendants. The length of a path is the sum of the weights of its edges. For example, given the
tree shown below, your algorithm should return the number −12. For full credit, your algorithm
should run in O(n) time.

57 –1

0–5 6

12 2–4

–53 –4

–5

–4

2

–3 0

4 6 –7

–10

–5 1

The minimum-weight downward path in this tree has weight −12.

3. Describe and analyze an efficient algorithm to compute the longest common subsequence of
three given strings. For example, given the input strings EPIDEMIOLOGIST, REFRIGERATION, and
SUPERCALIFRAGILISTICEXPIALODOCIOUS, your algorithm should return the number 5, because
the longest common subsequence is EIEIO.

1

CS 473 Homework 3½ (Practice only) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 3½

Practice only

1. After graduating from UIUC, you are hired by a mobile phone company to plan the placement of
new cell towers along a long, straight, nearly-deserted highway out west. Each cell tower can
transmit the same fixed distance from its location. Federal law requires that any building along
the highway must be within the broadcast range of at least one tower. On the other hand, your
company wants to build as few towers as possble. Given the locations of the buildings, where
should you build the towers?

More formally, suppose you are given a set X = {x1, x2, . . . , xn} of points on the real number
line. Describe an algorithm to compute the minimum number of intervals of length 1 that can
cover all the points in X . For full credit, your algorithm should run in O(n log n) time.

A set of points that can be covered by four unit intervals.

2. (a) The left spine of a binary tree is a path starting at the root and following only left-child
pointers down to a leaf. What is the expected number of nodes in the left spine of an n-node
treap?

(b) What is the expected number of leaves in an n-node treap? [Hint: What is the probability
that in an n-node treap, the node with kth smallest search key is a leaf?]

(c) Prove that the expected number of proper descendants of any node in a treap is exactly equal
to the expected depth of that node.

3. Death knocks on your door one cold blustery morning and challenges you to a game. Death knows
that you are an algorithms student, so instead of the traditional game of chess, Death presents you
with a complete binary tree with 4n leaves, each colored either black or white. There is a token at
the root of the tree. To play the game, you and Death will take turns moving the token from its
current node to one of its children. The game will end after 2n moves, when the token lands on a
leaf. If the final leaf is black, you die; if it’s white, you will live forever. You move first, so Death
gets the last turn.

∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧

∨ ∨ ∨

∨

1

CS 473 Homework 3½ (Practice only) Spring 2009

You can decide whether it’s worth playing or not as follows. Imagine that the nodes at even
levels (where it’s your turn) are OR gates, the nodes at odd levels (where it’s Death’s turn) are
AND gates. Each gate gets its input from its children and passes its output to its parent. White and
black stand for TRUE and FALSE. If the output at the top of the tree is TRUE, then you can win and
live forever! If the output at the top of the tree is FALSE, you should challenge Death to a game of
Twister instead.

(a) Describe and analyze a deterministic algorithm to determine whether or not you can win.
[Hint: This is easy!]

(b) Unfortunately, Death won’t give you enough time to look at every node in the tree. Describe
a randomized algorithm that determines whether you can win in O(3n) expected time. [Hint:
Consider the case n= 1.]

?(c) Describe a randomized algorithm that determines whether you can win in O(cn) expected
time, for some constant c < 3. [Hint: You may not need to change your algorithm from
part (b) at all!]

2

CS 473 Homework 4 (due March 2, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 3

Written solutions due Tuesday, March 2, 2009 at 11:59:59pm.

1. A meldable priority queue stores a set of keys from some totally-ordered universe (such as the
integers) and supports the following operations:

• MAKEQUEUE: Return a new priority queue containing the empty set.

• FINDMIN(Q): Return the smallest element of Q (if any).

• DELETEMIN(Q): Remove the smallest element in Q (if any).

• INSERT(Q, x): Insert element x into Q, if it is not already there.

• DECREASEKEY(Q, x , y): Replace an element x ∈ Q with a smaller key y. (If y > x , the
operation fails.) The input is a pointer directly to the node in Q containing x .

• DELETE(Q, x): Delete the element x ∈ Q. The input is a pointer directly to the node in Q
containing x .

• MELD(Q1,Q2): Return a new priority queue containing all the elements of Q1 and Q2; this
operation destroys Q1 and Q2.

A simple way to implement such a data structure is to use a heap-ordered binary tree, where
each node stores a key, along with pointers to its parent and two children. MELD can be imple-
mented using the following randomized algorithm:

MELD(Q1,Q2):
if Q1 is empty return Q2
if Q2 is empty return Q1

if key(Q1)> key(Q2)
swap Q1↔Q2

with probability 1/2
left(Q1)←MELD(left(Q1),Q2)

else
right(Q1)←MELD(right(Q1),Q2)

return Q1

(a) Prove that for any heap-ordered binary trees Q1 and Q2 (not just those constructed by the
operations listed above), the expected running time of MELD(Q1,Q2) is O(log n), where n is
the total number of nodes in both trees. [Hint: How long is a random root-to-leaf path in an
n-node binary tree if each left/right choice is made with equal probability?]

(b) Show that each of the other meldable priority queue operations can be implemented with at
most one call to MELD and O(1) additional time. (This implies that every operation takes
O(log n) expected time.)

1

CS 473 Homework 4 (due March 2, 2009) Spring 2009

2. Recall that a priority search tree is a binary tree in which every node has both a search key and
a priority, arranged so that the tree is simultaneously a binary search tree for the keys and a
min-heap for the priorities. A heater is a priority search tree in which the priorities are given by
the user, and the search keys are distributed uniformly and independently at random in the real
interval [0, 1]. Intuitively, a heater is the ‘opposite’ of a treap.

The following problems consider an n-node heater T whose node priorities are the integers
from 1 to n. We identify nodes in T by their priorities; thus, ‘node 5’ means the node in T with
priority 5. The min-heap property implies that node 1 is the root of T . Finally, let i and j be
integers with 1≤ i < j ≤ n.

(a) Prove that in a random permutation of the (i+ 1)-element set {1, 2, . . . , i, j}, elements i and
j are adjacent with probability 2/(i+ 1).

(b) Prove that node i is an ancestor of node j with probability 2/(i+ 1). [Hint: Use part (a)!]

(c) What is the probability that node i is a descendant of node j? [Hint: Don’t use part (a)!]

(d) What is the exact expected depth of node j?

3. Let P be a set of n points in the plane. The staircase of P is the set of all points in the plane that
have at least one point in P both above and to the right.

A set of points in the plane and its staircase (shaded).

(a) Describe an algorithm to compute the staircase of a set of n points in O(n log n) time.

(b) Describe and analyze a data structure that stores the staircase of a set of points, and an
algorithm ABOVE?(x , y) that returns TRUE if the point (x , y) is above the staircase, or FALSE

otherwise. Your data structure should use O(n) space, and your ABOVE? algorithm should
run in O(log n) time.

TRUE

FALSE

Two staircase queries.

2

CS 473 Homework 5 (due March 9, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 5

Written solutions due Tuesday, March 9, 2009 at 11:59:59pm.

1. Remember the difference between stacks and queues? Good.

(a) Describe how to implement a queue using two stacks and O(1) additional memory, so that
the amortized time for any enqueue or dequeue operation is O(1). The only access you have
to the stacks is through the standard methods PUSH and POP.

(b) A quack is an abstract data type that combines properties of both stacks and queues. It can
be viewed as a list of elements written left to right such that three operations are possible:

• Push: add a new item to the left end of the list;
• Pop: remove the item on the left end of the list;
• Pull: remove the item on the right end of the list.

Implement a quack using three stacks and O(1) additional memory, so that the amortized
time for any push, pop, or pull operation is O(1). Again, you are only allowed to access the
stacks through the standard methods PUSH and POP.

2. In a dirty binary search tree, each node is labeled either clean or dirty. The lazy deletion scheme
used for scapegoat trees requires us to purge the search tree, keeping all the clean nodes and
deleting all the dirty nodes, as soon as half the nodes become dirty. In addition, the purged tree
should be perfectly balanced.

Describe and analyze an algorithm to purge an arbitrary n-node dirty binary search tree in
O(n) time, using at most O(log n) space (in addition to the tree itself). Don’t forget to include the
recursion stack in your space bound. An algorithm that uses Θ(n) additional space in the worst
case is worth half credit.

3. Some applications of binary search trees attach a secondary data structure to each node in the
tree, to allow for more complicated searches. Maintaining these secondary structures usually
complicates algorithms for keeping the top-level search tree balanced.

Let T be an arbitrary binary tree. Suppose every node v in T stores a secondary structure
of size O(size(v)), which can be built in O(size(v)) time, where size(v) denotes the number of
descendants of v. Performing a rotation at any node v now requires O(size(v)) time, because we
have to rebuild one of the secondary structures.

(a) [1 pt] Overall, how much space does this data structure use in the worst case?

(b) [1 pt] How much space does this structure use if the primary search tree T is perfectly
balanced?

(c) [2 pts] Suppose T is a splay tree. Prove that the amortized cost of a splay (and therefore of
a search, insertion, or deletion) is Ω(n). [Hint: This is easy!]

1

CS 473 Homework 5 (due March 9, 2009) Spring 2009

(d) [3 pts] Now suppose T is a scapegoat tree, and that rebuilding the subtree rooted at v
requires Θ(size(v) log size(v)) time (because we also have to rebuild the secondary structures
at every descendant of v). What is the amortized cost of inserting a new element into T?

(e) [3 pts] Finally, suppose T is a treap. What’s the worst-case expected time for inserting a new
element into T?

2

CS 473 Homework 6 (due March 17, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 6

Written solutions due Tuesday, March 17, 2009 at 11:59:59pm.

1. Let G be an undirected graph with n nodes. Suppose that G contains two nodes s and t, such that
every path from s to t contains more than n/2 edges.

(a) Prove that G must contain a vertex v that lies on every path from s to t.
(b) Describe an algorithm that finds such a vertex v in O(V + E) time.

2. Suppose you are given a graph G with weighted edges and a minimum spanning tree T of G.

(a) Describe an algorithm to update the minimum spanning tree when the weight of a single
edge e is decreased.

(b) Describe an algorithm to update the minimum spanning tree when the weight of a single
edge e is increased.

In both cases, the input to your algorithm is the edge e and its new weight; your algorithms should
modify T so that it is still a minimum spanning tree. [Hint: Consider the cases e ∈ T and e 6∈ T
separately.]

3. (a) Describe and analyze an algorithm to compute the size of the largest connected component
of black pixels in an n× n bitmap B[1 .. n, 1 .. n].
For example, given the bitmap below as input, your algorithm should return the number 9,
because the largest conected black component (marked with white dots on the right) contains
nine pixels.

9

(b) Design and analyze an algorithm BLACKEN(i, j) that colors the pixel B[i, j] black and returns
the size of the largest black component in the bitmap. For full credit, the amortized running
time of your algorithm (starting with an all-white bitmap) must be as small as possible.
For example, at each step in the sequence below, we blacken the pixel marked with an X.
The largest black component is marked with white dots; the number underneath shows the
correct output of the BLACKEN algorithm.

9 14 14 16 17

(c) What is the worst-case running time of your BLACKEN algorithm?

1

CS 473 Homework 6½ (practice only) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 6½

Practice only—do not submit solutions

1. In class last Tuesday, we discussed Ford’s generic shortest-path algorithm—relax arbitrary tense
edges until no edge is tense. This problem asks you to fill in part of the proof that this algorithm is
correct.

(a) Prove that after every call to RELAX, for every vertex v, either dist(v) =∞ or dist(v) is the
total weight of some path from s to v.

(b) Prove that for every vertex v, when the generic algorithm halts, either pred(v) = NULL and
dist(v) =∞, or dist(v) is the total weight of the predecessor chain ending at v:

s→·· ·→pred(pred(v))→pred(v)→v.

2. Describe a modification of Shimbel’s shortest-path algorithm that actually computes a negative-
weight cycle if any such cycle is reachable from s, or a shortest-path tree rooted at s if there is no
such cycle. Your modified algorithm should still run in O(V E) time.

3. After graduating you accept a job with Aerophobes- R-Us, the leading traveling agency for people
who hate to fly. Your job is to build a system to help customers plan airplane trips from one city to
another. All of your customers are afraid of flying (and by extension, airports), so any trip you
plan needs to be as short as possible. You know all the departure and arrival times of all the flights
on the planet.

Suppose one of your customers wants to fly from city X to city Y . Describe an algorithm to
find a sequence of flights that minimizes the total time in transit—the length of time from the
initial departure to the final arrival, including time at intermediate airports waiting for connecting
flights. [Hint: Modify the input data and apply Dijkstra’s algorithm.]

1

CS 473 Homework 6¾ (practice only) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 6¾

Practice only—do not submit solutions

1. Mulder and Scully have computed, for every road in the United States, the exact probability that
someone driving on that road won’t be abducted by aliens. Agent Mulder needs to drive from
Langley, Virginia to Area 51, Nevada. What route should he take so that he has the least chance of
being abducted?

More formally, you are given a directed graph G = (V, E), where every edge e has an indepen-
dent safety probability p(e). The safety of a path is the product of the safety probabilities of its
edges. Design and analyze an algorithm to determine the safest path from a given start vertex s to
a given target vertex t.

0.2

0.7

0.50.9

0.1

0.5
Langley, VA

Area 51, AZ

Memphis, TN

Las Vegas, NV

For example, with the probabilities shown above, if Mulder tries to drive directly from Langley to
Area 51, he has a 50% chance of getting there without being abducted. If he stops in Memphis, he
has a 0.7× 0.9 = 63% chance of arriving safely. If he stops first in Memphis and then in Las Vegas,
he has a 1− 0.7× 0.1× 0.5= 96.5% chance of being abducted! (That’s how they got Elvis, you
know.)

2. Let G = (V, E) be a directed graph with weighted edges; edge weights could be positive, negative,
or zero. Suppose the vertices of G are partitioned into k disjoint subsets V1, V2, . . . , Vk; that is,
every vertex of G belongs to exactly one subset Vi . For each i and j, let δ(i, j) denote the minimum
shortest-path distance between any vertex in Vi and any vertex in Vj:

δ(i, j) =min{dist(u, v) | u ∈ Vi and v ∈ Vj}.

Describe an algorithm to compute δ(i, j) for all i and j in time O(V E+ kE log E). The output from
your algorithm is a k× k array.

1

CS 473 Homework 6¾ (practice only) Spring 2009

3. Recall1 that a deterministic finite automaton (DFA) is formally defined as a tuple M = (Σ,Q, q0, F,δ),
where the finite set Σ is the input alphabet, the finite set Q is the set of states, q0 ∈Q is the start
state, F ⊆ Q is the set of final (accepting) states, and δ : Q ×Σ→ Q is the transition function.
Equivalently, a DFA is a directed (multi-)graph with labeled edges, such that each symbol in Σ is
the label of exactly one edge leaving any vertex. There is a special ‘start’ vertex q0, and a subset of
the vertices are marked as ‘accepting states’. Any string in Σ∗ describes a unique walk starting
at q0.

Stephen Kleene2 proved that the language accepted by any DFA is identical to the language
described by some regular expression. This problem asks you to develop a variant of the Floyd-
Warshall all-pairs shortest path algorithm that computes a regular expression that is equivalent to
the language accepted by a given DFA.

Suppose the input DFA M has n states, numbered from 1 to n, where (without loss of generality)
the start state is state 1. Let L(i, j, r) denote the set of all words that describe walks in M from
state i to state j, where every intermediate state lies in the subset {1, 2, . . . , r}; thus, the language
accepted by the DFA is exactly

⋃

q∈F

L(1, q, n).

Let R(i, j, r) be a regular expression that describes the language L(i, j, r).

(a) What is the regular expression R(i, j, 0)?

(b) Write a recurrence for the regular expression R(i, j, r) in terms of regular expressions of the
form R(i′, j′, r − 1).

(c) Describe a polynomial-time algorithm to compute R(i, j, n) for all states i and j. (Assume
that you can concatenate two regular expressions in O(1) time.)

1No, really, you saw this in CS 273/373.
2Pronounced ‘clay knee’, not ‘clean’ or ‘clean-ee’ or ‘clay-nuh’ or ‘dimaggio’.

2

CS 473 Homework 7 (due April 14, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 7

Due Tuesday, April 14, 2009 at 11:59:59pm.

• Groups of up to three students may submit a single, common solution for this and all future
homeworks. Please clearly write every group member’s name and NetID on every page of your
submission.

1. A graph is bipartite if its vertices can be colored black or white such that every edge joins vertices
of two different colors. A graph is d-regular if every vertex has degree d. A matching in a graph is
a subset of the edges with no common endpoints; a matching is perfect if it touches every vertex.

(a) Prove that every regular bipartite graph contains a perfect matching.

(b) Prove that every d-regular bipartite graph is the union of d perfect matchings.

2. Let G = (V, E) be a directed graph where for each vertex v, the in-degree of v and out-degree of v
are equal. Let u and v be two vertices G, and suppose G contains k edge-disjoint paths from u
to v. Under these conditions, must G also contain k edge-disjoint paths from v to u? Give a proof
or a counterexample with explanation.

3. A flow f is called acyclic if the subgraph of directed edges with positive flow contains no directed
cycles. A flow is positive if its value is greater than 0.

(a) A path flow assigns positive values only to the edges of one simple directed path from s to t.
Prove that every positive acyclic flow can be written as the sum of a finite number of path
flows.

(b) Describe a flow in a directed graph that cannot be written as the sum of path flows.

(c) A cycle flow assigns positive values only to the edges of one simple directed cycle. Prove that
every flow can be written as the sum of a finite number of path flows and cycle flows.

(d) Prove that for any flow f , there is an acyclic flow with the same value as f . (In particular,
this implies that some maximum flow is acyclic.)

1

CS 473 Homework 8 (due April 21, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 8

Due Tuesday, April 21, 2009 at 11:59:59pm.

• Groups of up to three students may submit a single, common solution for this and all future
homeworks. Please clearly write every group member’s name and NetID on every page of your
submission.

1. A cycle cover of a given directed graph G = (V, E) is a set of vertex-disjoint cycles that cover all the
vertices. Describe and analyze an efficient algorithm to find a cycle cover for a given graph, or
correctly report that non exists. [Hint: Use bipartite matching!]

2. Suppose we are given an array A[1 .. m][1 .. n] of non-negative real numbers. We want to round A
to an integer matrix, by replacing each entry x in A with either bxc or dxe, without changing the
sum of entries in any row or column of A. For example:







1.2 3.4 2.4
3.9 4.0 2.1
7.9 1.6 0.5






7−→







1 4 2
4 4 2
8 1 1







Describe an efficient algorithm that either rounds A in this fashion, or reports correctly that no
such rounding is possible.

3. Ad-hoc networks are made up of cheap, low-powered wireless devices. In principle1, these networks
can be used on battlefields, in regions that have recently suffered from natural disasters, and in
other hard-to-reach areas. The idea is that several simple devices could be distributed randomly
in the area of interest (for example, dropped from an airplane), and then they would somehow
automatically configure themselves into an efficiently functioning wireless network.

The devices can communicate only within a limited range. We assume all the devices are
identical; there is a distance D such that two devices can communicate if and only if the distance
between them is at most D.

We would like our ad-hoc network to be reliable, but because the devices are cheap and
low-powered, they frequently fail. If a device detects that it is likely to fail, it should transmit all its
information to some other backup device within its communication range. To improve reliability,
we require each device x to have k potential backup devices, all within distance D of x; we call
these k devices the backup set of x . Also, we do not want any device to be in the backup set of
too many other devices; otherwise, a single failure might affect a large fraction of the network.

Suppose we are given the communication distance D, parameters b and k, and an array
d[1 .. n, 1 .. n] of distances, where d[i, j] is the distance between device i and device j. Describe
and analyze an algorithm that either computes a backup set of size k for each of the n devices,
such that that no device appears in more than b backup sets, or correctly reports that no good
collection of backup sets exists.

1but not so much in practice

1

CS 473 Homework 9 (due April 28, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 9

Due Tuesday, April 28, 2009 at 11:59:59pm.

• Groups of up to three students may submit a single, common solution for this and all future
homeworks. Please clearly write every group member’s name and NetID on every page of your
submission.

1. Death knocks on your door one cold blustery morning and challenges you to a game. Death knows
that you are an algorithms student, so instead of the traditional game of chess, Death presents you
with a complete binary tree with 4n leaves, each colored either black or white. There is a token at
the root of the tree. To play the game, you and Death will take turns moving the token from its
current node to one of its children. The game will end after 2n moves, when the token lands on a
leaf. If the final leaf is black, you die; if it is white, you will live forever. You move first, so Death
gets the last turn.

∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧

∨ ∨ ∨

∨

You can decide whether it is worth playing or not as follows. Imagine that the nodes at even
levels (where it is your turn) are OR gates, the nodes at odd levels (where it is Death’s turn) are
AND gates. Each gate gets its input from its children and passes its output to its parent. White and
black leaves stand represent TRUE and FALSE inputs, respectively. If the output at the top of the
tree is TRUE, then you can win and live forever! If the output at the top of the tree is FALSE, you
should challenge Death to a game of Twister instead.

(a) Describe and analyze a deterministic algorithm to determine whether or not you can win.
[Hint: This is easy.]

(b) Prove that every deterministic algorithm must examine every leaf of the tree in the worst case.
Since there are 4n leaves, this implies that any deterministic algorithm must take Ω(4n) time
in the worst case. Use an adversary argument; in other words, assume that Death cheats.

(c) [Extra credit] Describe a randomized algorithm that runs in O(3n) expected time.

2. We say that an array A[1 .. n] is k-sorted if it can be divided into k blocks, each of size n/k, such
that the elements in each block are larger than the elements in earlier blocks, and smaller than
elements in later blocks. The elements within each block need not be sorted.

For example, the following array is 4-sorted:

1 2 4 3 7 6 8 5 10 11 9 12 15 13 16 14

1

CS 473 Homework 9 (due April 28, 2009) Spring 2009

(a) Describe an algorithm that k-sorts an arbitrary array in time O(n log k).

(b) Prove that any comparison-based k-sorting algorithm requires Ω(n log k) comparisons in the
worst case.

(c) Describe an algorithm that completely sorts an already k-sorted array in time O(n log(n/k)).

(d) Prove that any comparison-based algorithm to completely sort a k-sorted array requires
Ω(n log(n/k)) comparisons in the worst case.

In all cases, you can assume that n/k is an integer.

3. UIUC has just finished constructing the new Reingold Building, the tallest dormitory on campus. In
order to determine how much insurance to buy, the university administration needs to determine
the highest safe floor in the building. A floor is consdered safe if a drunk student an egg can fall
from a window on that floor and land without breaking; if the egg breaks, the floor is considered
unsafe. Any floor that is higher than an unsafe floor is also considered unsafe. The only way to
determine whether a floor is safe is to drop an egg from a window on that floor.

You would like to find the lowest unsafe floor L by performing as few tests as possible;
unfortunately, you have only a very limited supply of eggs.

(a) Prove that if you have only one egg, you can find the lowest unsafe floor with L tests. [Hint:
Yes, this is trivial.]

(b) Prove that if you have only one egg, you must perform at least L tests in the worst case. In
other words, prove that your algorithm from part (a) is optimal. [Hint: Use an adversary
argument.]

(c) Describe an algorithm to find the lowest unsafe floor using two eggs and only O(
p

L) tests.
[Hint: Ideally, each egg should be dropped the same number of times. How many floors can
you test with n drops?]

(d) Prove that if you start with two eggs, you must perform at least Ω(
p

L) tests in the worst
case. In other words, prove that your algorithm from part (c) is optimal.

?(e) [Extra credit!] Describe an algorithm to find the lowest unsafe floor using k eggs, using as
few tests as possible, and prove your algorithm is optimal for all values of k.

2

CS 473 Head-Banging Session 0 (January 20–21, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Head Banging Session 0

January 20 and 21, 2009

1. Solve the following recurrences. If base cases are provided, find an exact closed-form solution.
Otherwise, find a solution of the form Θ(f (n)) for some function f .

• Warmup: You should be able to solve these almost as fast as you can write down the answers.

(a) A(n) = A(n− 1) + 1, where A(0) = 0.

(b) B(n) = B(n− 5) + 2, where B(0) = 17.

(c) C(n) = C(n− 1) + n2

(d) D(n) = 3 D(n/2) + n2

(e) E(n) = 4 E(n/2) + n2

(f) F(n) = 5 F(n/2) + n2

• Real practice:

(a) A(n) = A(n/3) + 3A(n/5) + A(n/15) + n

(b) B(n) = min
0<k<n

(B(k) + B(n− k) + n)

(c) C(n) = max
n/4<k<3n/4

(C(k) + C(n− k) + n)

(d) D(n) = max
0<k<n

�

D(k) + D(n− k) + k(n− k)
�

, where D(1) = 0

(e) E(n) = 2E(n− 1) + E(n− 2), where E(0) = 1 and E(1) = 2

(f) F(n) =
1

F(n− 1) F(n− 2)
, where F(0) = 1 and F(2) = 2

?(g) G(n) = n G(
p

n) + n2

2. The Fibonacci numbers Fn are defined recursively as follows: F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2
for every integer n≥ 2. The first few Fibonacci numbers are 0,1, 1,2, 3,5, 8,13, 21,34, 55,

Prove that any non-negative integer can be written as the sum of distinct non-consecutive
Fibonacci numbers. That is, if any Fibonacci number Fn appears in the sum, then its neighbors
Fn−1 and Fn+1 do not. For example:

88= 55+ 21+ 8+ 3+ 1 = F10+ F8+ F6+ F4+ F2

42= 34+ 8 = F9+ F6

17= 13+ 3+ 1 = F7+ F4+ F2

1

CS 473 Head-Banging Session 0 (January 20–21, 2009) Spring 2009

3. Whenever groups of pigeons gather, they instinctively establish a pecking order. For any pair
of pigeons, one pigeon always pecks the other, driving it away from food or potential mates.
The same pair of pigeons always chooses the same pecking order, even after years of separation,
no matter what other pigeons are around. Surprisingly, the overall pecking order can contain
cycles—for example, pigeon A pecks pigeon B, which pecks pigeon C, which pecks pigeon A.

Prove that any finite set of pigeons can be arranged in a row from left to right so that every
pigeon pecks the pigeon immediately to its left. Pretty please.

2

CS 473 Head-Banging 1 (January 27 and 28, 2009) Spring 2009

1. An inversion in an array A[1 .. n] is a pair of indices (i, j) such that i < j and A[i] > A[j]. The
number of inversions in an n-element array is between 0 (if the array is sorted) and

�n
2

�

(if the
array is sorted backward).

Describe and analyze an algorithm to count the number of inversions in an n-element array in
O(n log n) time.

2. (a) Prove that the following algorithm actually sorts its input.

STOOGESORT(A[0 .. n− 1]) :
if n= 2 and A[0]> A[1]

swap A[0]↔ A[1]
else if n> 2

m= d2n/3e
STOOGESORT(A[0 .. m− 1])
STOOGESORT(A[n−m .. n− 1])
STOOGESORT(A[0 .. m− 1])

(b) Would STOOGESORT still sort correctly if we replaced m= d2n/3e with m= b2n/3c? Justify
your answer.

(c) State a recurrence (including base case(s)) for the number of comparisons executed by
STOOGESORT.

(d) Solve this recurrence. [Hint: Ignore the ceiling.]

(e) To think about on your own: Prove that the number of swaps executed by STOOGESORT is
at most
�n

2

�

.

3. Consider the following restricted variants of the Tower of Hanoi puzzle. In each problem, the
needles are numbered 0, 1, and 2, and your task is to move a stack of n disks from needle 1 to
needle 2.

(a) Suppose you are forbidden to move any disk directly between needle 1 and needle 2; every
move must involve needle 0. Describe an algorithm to solve this version of the puzzle using
as few moves as possible. Exactly how many moves does your algorithm make?

(b) Suppose you are only allowed to move disks from needle 0 to needle 2, from needle 2 to
needle 1, or from needle 1 to needle 0. Equivalently, Suppose the needles are arranged
in a circle and numbered in clockwise order, and you are only allowed to move disks
counterclockwise. Describe an algorithm to solve this version of the puzzle using as few
moves as possible. Exactly how many moves does your algorithm make?

10 32 4

65 87

The first eight moves in a counterclockwise Towers of Hanoi solution

1

CS 473 Head-Banging 1 (January 27 and 28, 2009) Spring 2009

Æ(c) Finally, suppose you are forbidden to move any disk directly from needle 1 to 2, but any
other move is allowed. Describe an algorithm to solve this version of the puzzle using as few
moves as possible. Exactly how many moves does your algorithm make?
[Hint: This version is considerably harder than the other two.]

2

CS 473 HBS 10 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 10

1. Consider the following problem, called BOX-DEPTH: Given a set of n axis-aligned rectangles in the
plane, how big is the largest subset of these rectangles that contain a common point?

(a) Describe a polynomial-time reduction from BOX-DEPTH to MAX-CLIQUE.

(b) Describe and analyze a polynomial-time algorithm for BOX-DEPTH. [Hint: O(n3) time should
be easy, but O(n log n) time is possible.]

(c) Why don’t these two results imply that P = N P?

2. Suppose you are given a magic black box that can determine in polynomial time, given an arbitrary
weighted graph G, the length of the shortest Hamiltonian cycle in G. Describe and analyze a
polynomial-time algorithm that computes, given an arbitrary weighted graph G, the shortest
Hamiltonian cycle in G, using this magic black box as a subroutine.

3. Prove that the following problems are NP-complete.

(a) Given an undirected graph G, does G have a spanning tree in which every node has degree
at most 17?

(b) Given an undirected graph G, does G have a spanning tree with at most 42 leaves?

1

CS 473 HBS 11 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 11

1. You step in a party with a camera in your hand. Each person attending the party has some friends
there. You want to have exactly one picture of each person in your camera. You want to use the
following protocol to collect photos. At each step, the person that has the camera in his hand takes
a picture of one of his/her friends and pass the camera to him/her. Of course, you only like the
solution if it finishes when the camera is in your hand. Given the friendship matrix of the people
in the party, design a polynomial algorithm that decides whether this is possible, or prove that this
decision problem is NP-hard.

2. A boolean formula is in disjunctive normal form (DNF) if it is a disjunctions (OR) of several clauses,
each of which is the conjunction (AND) of several literals, each of which is either a variable or its
negation. For example:

(a ∧ b ∧ c)∨ (ā ∧ b)∨ (c̄ ∧ x)

Given a DNF formula give a polynomial algorithm to check whether it is satisfiable or not. Why
this does not imply P = N P.

3. Prove that the following problems are NP-complete.

(a) Given an undirected graph G, does G have a spanning tree in which every node has degree
at most 17?

(b) Given an undirected graph G, does G have a spanning tree with at most 42 leaves?

1

CS 473 HBS 2 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 2

1. Consider two horizontal lines l1 and l2 in the plane. There are n points on l1 with x-coordinates
A= a1, a2, . . . , an and there are n points on l2 with x-coordinates B = b1, b2, . . . , bn. Design an
algorithm to compute, given A and B, a largest set S of non-intersecting line segments subject to
the following restrictions:

(a) Any segment in S connects ai to bi for some i(1≤ i ≤ n).

(b) Any two segments in S do not intersect.

2. Consider a 2n x2n chess board with one (arbitrarily chosen) square removed. Prove that any such
chessboard can be tiled without gaps or overlaps by L-shaped pieces of 3 squares each. Can you
give an algorithm to do the tiling?

3. Given a string of letters Y = y1 y2 . . . yn, a segmentation of Y is a partition of its letters into
contiguous blocks of letters (also called words). Each word has a quality that can be computed by
a given oracle (e.g. you can call quality("meet") to get the quality of the word "meet"). The quality
of a segmentation is equal to the sum over the qualities of its words. Each call to the oracle takes
linear time in terms of the argument; that is quality(S) takes O(|S|).

Using the given oracle, give an algorithm that takes a string Y and computes a segmentation
of maximum total quality.

1

CS 473 HBS 3 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 3

1. Change your recursive solutions for the following problems to efficient algorithms (Hint: use
dynamic programming!).

(a) Consider two horizontal lines l1 and l2 in the plane. There are n points on l1 with
x-coordinates A = a1, a2, . . . , an and there are n points on l2 with x-coordinates B =
b1, b2, . . . , bn. Design an algorithm to compute, given A and B, a largest set S of non-
intersecting line segments subject to the following restrictions:

i. Any segment in S connects ai to bi for some i(1≤ i ≤ n).
ii. Any two segments in S do not intersect.

(b) Given a string of letters Y = y1 y2 . . . yn, a segmentation of Y is a partition of its letters
into contiguous blocks of letters (also called words). Each word has a quality that can be
computed by a given oracle (e.g. you can call quality("meet") to get the quality of the word
"meet"). The quality of a segmentation is equal to the sum over the qualities of its words.
Each call to the oracle takes linear time in terms of the argument; that is quality(S) takes
O(|S|).
Using the given oracle, give an algorithm that takes a string Y and computes a segmentation
of maximum total quality.

2. Give a polynomial time algorithm which given two strings A and B returns the longest sequence S
that is a subsequence of A and B.

3. Consider a rooted tree T . Assume the root has a message to send to all nodes. At the beginning
only the root has the message. If a node has the message, it can forward it to one of its children at
each time step. Design an algorithm to find the minimum number of time steps required for the
message to be delivered to all nodes.

1

CS 473 HBS 3.5 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 3.5

1. Say you are given n jobs to run on a machine. Each job has a start time and an end time. If a job is
chosen to be run, then it must start at its start time and end at its end time. Your goal is to accept
as many jobs as possible, regardless of the job lengths, subject to the constraint that the processor
can run at most one job at any given point in time. Provide an algorithm to do this with a running
time that is polynomial in n. You may assume for simplicity that no two jobs have the same start
or end times, but the start time and end time of two jobs can overlap.

2. Describe and analyze an algorithm that chooses one element uniformly at random from a data
stream, without knowing the length of the stream in advance. Your algorithm should spend O(1)
time per stream element and use O(1) space (not counting the stream itself).

3. Design and analyze an algorithm that return a permutation of the integers {1,2, ..., n} chosen
uniformly at random.

1

CS 473 HBS 4 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 4

1. Let x and y be two elements of a set S whose ranks differ by exactly r. Prove that in a treap for S,
the expected length of the unique path from x to y is O(log r)

2. Consider the problem of making change for n cents using the least number of coins.

(a) Describe a greedy algorithm to make change consisting of quarters, dimes, nickels, and
pennies. Prove that your algorithm yields an optimal solution.

(b) Suppose that the available coins have the values c0, c1, . . . , ck for some integers c > 1 and
k ≥ 1. Show that the greedy algorithm always yields an optimal solution.

(c) Give a set of 4 coin values for which the greedy algorithm does not yield an optimal solution,
show why.

(d) Give a dynamic programming algorithm that yields an optimal solution for an arbitrary set of
coin values.

3. A heater is a sort of dual treap, in which the priorities of the nodes are given, but their search
keys are generate independently and uniformly from the unit interval [0,1]. You can assume
all priorities and keys are distinct. Describe algorithms to perform the operations INSERT and
DELETEMIN in a heater. What are the expected worst-case running times of your algorithms? In
particular, can you express the expected running time of INSERT in terms of the priority rank of
the newly inserted item?

1

CS 473 HBS 5 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 5

1. Recall that the staircase of a set of points consists of the points with no other point both above
and to the right. Describe a method to maintain the staircase as new points are added to the set.
Specifically, describe and analyze a data structure that stores the staircase of a set of points, and
an algorithm INSERT(x , y) that adds the point (x , y) to the set and returns TRU E or FALSE to
indicate whether the staircase has changed. Your data structure should use O(n) space, and your
INSERT algorithm should run in O(log n) amortized time.

2. In some applications, we do not know in advance how much space we will require. So, we start
the program by allocating a (dynamic) table of some fixed size. Later, as new objects are inserted,
we may have to allocate a larger table and copy the previous table to it. So, we may need more
than O(1) time for copying. In addition, we want to keep the table size small enough, avoiding a
very large table to keep only few items. One way to manage a dynamic table is by the following
rules:

(a) Double the size of the table if an item is inserted into a full table

(b) Halve the table size if a deletion causes the table to become less than 1/4 full

Show that, in such a dynamic table we only need O(1) amortized time, per operation.

3. Consider a stack data structure with the following operations:

• PUSH(x): adds the element x to the top of the stack

• POP: removes and returns the element that is currently on top of the stack (if the stack is
non-empty)

• SEARCH(x): repeatedly removes the element on top of the stack until x is found or the stack
becomes empty

What is the amortized cost of an operation?

1

CS 473 HBS 6 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 6

1. Let G be a connected graph and let v be a vertex in G. Show that T is both a DFS tree and a BFS
tree rooted at v, then G = T .

2. An Euler tour of a graph G is a walk that starts from a vertex v, visits every edge of G exactly once
and gets back to v. Prove that G has an Euler tour if and only if all the vertices of G has even
degrees. Can you give an efficient algorithm to find an Euler tour of such a graph.

3. You are helping a group of ethnographers analyze some oral history data they have collected by
interviewing members of a village to learn about the lives of people lived there over the last two
hundred years. From the interviews, you have learned about a set of people, all now deceased,
whom we will denote P1, P2, . . . , Pn. The ethnographers have collected several facts about the
lifespans of these people, of one of the following forms:

(a) Pi died before Pj was born.

(b) Pi and Pj were both alive at some moment.

Naturally, the ethnographers are not sure that their facts are correct; memories are not so good,
and all this information was passed down by word of mouth. So they’d like you to determine
whether the data they have collected is at least internally consistent, in the sense that there could
have existed a set of people for which all the facts they have learned simultaneously hold.

Describe and analyze and algorithm to answer the ethnographers’ problem. Your algorithm
should either output possible dates of birth and death that are consistent with all the stated facts,
or it should report correctly that no such dates exist.

1

CS 473 HBS 6.5 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 6.5

1. (a) Describe and analyze and algorithm to find the second smallest spanning tree of a given
graph G, that is, the spanning tree of G with smallest total weight except for the minimum
spanning tree.

?(b) Describe and analyze an efficient algorithm to compute, given a weighted undirected graph G
and an integer k, the k smallest spanning trees of G.

2. A looped tree is a weighted, directed graph built from a binary tree by adding an edge from every
leaf back to the root. Every edge has a non-negative weight.

5 8

17 0 1

23 9 14

424

16

7

(a) How much time would Dijkstra’s algorithm require to compute the shortest path between
two vertices u and v in a looped tree with n nodes?

(b) Describe and analyze a faster algorithm.

3. Consider a path between two vertices s and t in an undirected weighted graph G. The bottleneck
length of this path is the maximum weight of any edge in the path. The bottleneck distance between
s and t is the minimum bottleneck length of any path from s to t. (If there are no paths from s
to t, the bottleneck distance between s and t is∞.)

s

t

1 11

7

128

5
10

9

2

3
6

4

The bottleneck distance between s and t is 5.

Describe and analyze an algorithm to compute the bottleneck distance between every pair of
vertices in an arbitrary undirected weighted graph. Assume that no two edges have the same
weight.

1

CS 473 HBS 6.55 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 6.55

1. Suppose you are given a directed graph G = (V, E) with non-negative edge lengths; `(e) is the
length of e ∈ E. You are interested in the shortest path distance between two given locations/nodes
s and t. It has been noticed that the existing shortest path distance between s and t in G is not
satisfactory and there is a proposal to add exactly one edge to the graph to improve the situation.
The candidate edges from which one has to be chosen is given by E′ = {e1, e2, . . . , ek} and you
can assume that E ∪ E′ = ;. The length of the ei is αi ≥ 0. Your goal is figure out which of these
k edges will result in the most reduction in the shortest path distance from s to t. Describe an
algorithm for this problem that runs in time O((m+ n) log n+ k) where m = |E| and n = |V |. Note
that one can easily solve this problem in O(k(m+ n) log n) by running Dijkstra’s algorithm k times,
one for each Gi where Gi is the graph obtained by adding ei to G.

2. Let G be an undirected graph with non-negative edge weights. Let s and t be two vertices such
that the shortest path between s and t in G contains all the vertices in the graph. For each edge e,
let G\e be the graph obtained from G by deleting the edge e. Design an O(E log V) algorithm that
finds the shortest path distance between s and t in G\e for all e. [Note that you need to output E
distances, one for each graph G\e]

3. Given a Directed Acyclic Graph (DAG) and two vertices s and t you want to determine if there is
an s to t path that includes at least k vertices.

1

CS 473 HBS 7 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 7

1. Let G = (V, E) be a directed graph with non-negative capacities. Give an efficient algorithm to
check whether there is a unique max-flow on G?

2. Let G = (V, E) be a graph and s, t ∈ V be two specific vertices of G. We call (S, T = V\S) an
(s, t)-cut if s ∈ S and t ∈ T . Moreover, it is a minimum cut if the sum of the capacities of the edges
that have one endpoint in S and one endpoint in T equals the maximum (s, t)-flow. Show that,
both intersection and union of two min-cuts is a min-cut itself.

3. Let G = (V, E) be a graph. For each edge e let d(e) be a demand value attached to it. A flow is
feasible if it sends more than d(e) through e. Assume you have an oracle that is capable of solving
the maximum flow problem. Give efficient algorithms for the following problems that call the
oracle at most once.

(a) Find a feasible flow.

(b) Find a feasible flow of minimum possible value.

1

CS 473 HBS 8 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 8

1. A box i can be specified by the values of its sides, say (i1, i2, i3). We know all the side lengths
are larger than 10 and smaller than 20 (i.e. 10 < i1, i2, i3 < 20). Geometrically, you know what
it means for one box to nest in another: It is possible if you can rotate the smaller so that it fits
inside the larger in each dimension. Of course, nesting is recursive, that is if i nests in j and j
nests in k then i nests in k. After doing some nesting operations, we say a box is visible if it is not
nested in any other one. Given a set of boxes (each specified by the lengthes of their sides) the
goal is to find a set of nesting operations to minimize the number of visible boxes. Design and
analyze an efficient algorithm to do this.

2. Let the number of papers submitted to a conference be n and the number of available reviewers be
m. Each reviewer has a list of papers that he/she can review and each paper should be reviewed
by three different persons. Also, each reviewer can review at most 5 papers. Design and analyze
an algorithm to make the assignment or decide no feasible assignment exists.

3. Back in the euphoric early days of the Web, people liked to claim that much of the enormous
potential in a company like Yahoo! was in the "eyeballs" - the simple fact that it gets millions of
people looking at its pages every day. And further, by convincing people to register personal data
with the site, it can show each user an extremely targeted advertisement whenever he or she visits
the site, in away that TV networks or magazines could not hope to match. So if the user has told
Yahoo! that he is a 20-year old computer science major from Cornell University, the site can throw
up a banner ad for apartments in Ithaca, NY; on the other hand, if he is a 50-year-old investment
banker from Greenwich, Connecticut, the site can display a banner ad pitching Lincoln Town Cars
instead.

But deciding on which ads to show to which people involves some serious computation behind
the scenes. Suppose that the managers of a popular Web site have identified k distinct demographic
groups G1, G2, . . . , Gk. (These groups can overlap; for example G1 can be equal to all residents of
New York State, and G2 can be equal to all people with a degree in computer science.) The site
has contracts with m different advertisers, to show a certain number of copies of their ads to users
of the site. Here is what the contract with the i th advertiser looks like:

(a) For a subset X i ⊂ {G1, . . . , Gk} of the demographic groups, advertiser i wants its ads shown
only to users who belong to at least one of the demographic groups in the set X i

(b) For a number ri , advertiser i wants its ads shown to at least ri users each minute.

Now, consider the problem of designing a good advertising policy - a way to show a single ad
to each user of the site. Suppose at a given minute, there are n users visiting the site. Because
we have registration information on each of these users, we know that user j(for j = 1,2, . . . , n)
belongs to a subset U j ⊂ {G1, . . . , Gk} of the demographic groups. The problem is: is there a
way to show a single ad to each user so that the site’s contracts with each of the m advertisers is
satisfied for this minute? (That is, for each i = 1, 2, . . . , m, at least ri of the n users, each belonging
to at least one demographic group in X i , are shown an ad provided by advertiser i.)

Give an efficient algorithm to decide if this is possible, and if so, to actually choose an ad to
show each user.

1

CS 473 HBS 9 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 9

1. Prove that any algorithm to merge two sorted arrays, each of size n, requires at least 2n− 1
comparisons.

2. Suppose you want to determine the largest number in an n-element set X = {x1, x2, . . . , xn},
where each element x i is an integer between 1 and 2m− 1. Describe an algorithm that solves this
problem in O(n+m) steps, where at each step, your algorithm compares one of the elements x i
with a constant. In particular, your algorithm must never actually compare two elements of X !
[Hint: Construct and maintain a nested set of ‘pinning intervals’ for the numbers that you have
not yet removed from consideration, where each interval but the largest is either the upper half or
lower half of the next larger block.]

3. Let P be a set of n points in the plane. The staircase of P is the set of all points in the plane
that have at least one point in P both above and to the right. Prove that computing the staircase
requires at least Ω(n log n) comparisons in two ways,

(a) Reduction from sorting.

(b) Directly.

1

CS 473 Midterm 1 Questions (February 24, 2008) Spring 2009

You have 90 minutes to answer four of the five questions.
Write your answers in the separate answer booklet.
You may take the question sheet with you when you leave.

1. Each of these ten questions has one of the following five answers:

A: Θ(1) B: Θ(log n) C: Θ(n) D: Θ(n log n) E: Θ(n2)

Choose the correct answer for each question. Each correct answer is worth +1 point; each incorrect
answer is worth −1/2 point; each “I don’t know" is worth +1/4 point. Your score will be rounded
to the nearest non-negative integer.

(a) What is
n
∑

i=1

n

i
?

(b) What is

È

n
∑

i=1
i ?

(c) How many digits are required to write 3n in decimal?

(d) What is the solution to the recurrence D(n) = D(n/π) +
p

2 ?

(e) What is the solution to the recurrence E(n) = E(n−
p

2) +π?

(f) What is the solution to the recurrence F(n) = 4F(n/2) + 3n ?

(g) What is the worst-case time to search for an item in a binary search tree?

(h) What is the worst-case running time of quicksort?

(i) Let H[1 .. n, 1 .. n] be a fixed array of numbers. Consider the following recursive function:

Glub(i, j) =







0 if i = 0

∞ if i > n or j = 0

max
�

Glub(i− 1, j), H[i, j] +Glub(i+ 1, j− 1)
	

otherwise

How long does it take to compute Glub(n, n) using dynamic programming?

(j) What is the running time of the fastest possible algorithm to solve KenKen puzzles?
A KenKen puzzle is a 6× 6 grid, divided into regions called cages. Each cage is labeled

with a numerical value and an arithmetic operation: +, −, ×, or ÷. (The operation can be
omitted if the cage consists of a single cell.) The goal is to place an integer between 1 and 6
in each grid cell, so that no number appears twice in any row or column, and the numbers
inside each cage can be combined using only that cage’s operation to obtain that cage’s value.
The solution is guaranteed to be unique.

6+ 96 × 90×

30× 12×

25× 1– 3–

2÷ 6

72× 9+ 3+ 13+

6+ 96 × 90×

30× 12×

25× 1– 3–

2÷ 6

72× 9+ 3+ 13+

1 3 4 2 5 6
5 2 6 4 1 3
6 5 2 3 4 1
2 1 5 6 3 4
4 6 3 1 2 5
3 4 1 5 6 2

A Kenken puzzle and its solution

1

CS 473 Midterm 1 Questions (February 24, 2008) Spring 2009

2. (a) Suppose A[1 .. n] is an array of n distinct integers, sorted so that A[1]< A[2]< · · ·< A[n].
Each integer A[i] could be positive, negative, or zero. Describe an efficient algorithm that
either computes an index i such that A[i] = i or correctly reports that no such index exists.
An algorithm that runs in Θ(n) time is worth at most 3 points.

(b) Now suppose A[1 .. n] is a sorted array of n distinct positive integers. Describe an even faster
algorithm that either computes an index i such that A[i] = i or correctly reports that no such
index exists. [Hint: This is really easy!]

3. Moby Selene is a solitaire game played on a row of n squares. Each square contains four positive
integers. The player begins by placing a token on the leftmost square. On each move, the player
chooses one of the numbers on the token’s current square, and then moves the token that number
of squares to the right. The game ends when the token moves past the rightmost square. The
object of the game is to make as many moves as possible before the game ends.

25
63

2
1

7
8

6
107
93 8

9 4
4 8

36
1

8
4

3
2
6

10
7

1
2
8

4 1
2
6

7 3
94
8

92
75 5 9

7 2 1
3

4
5

A Moby Selene puzzle that allows six moves. (This is not the longest legal sequence of moves.)

(a) Prove that the obvious greedy strategy (always choose the smallest number) does not give
the largest possible number of moves for every Moby Selene puzzle.

(b) Describe and analyze an efficient algorithm to find the largest possible number of legal moves
for a given Moby Selene puzzle.

4. Consider the following algorithm for finding the largest element in an unsorted array:

RANDOMMAX(A[1 .. n]):
max←∞
for i← 1 to n in random order

if A[i]>max
max← A[i] (?)

return max

(a) In the worst case, how many times does RANDOMMAX execute line (?)?

(b) What is the exact probability that line (?) is executed during the last iteration of the for loop?

(c) What is the exact expected number of executions of line (?)? (A correct Θ() bound is worth
half credit.)

5. This question is taken directly from HBS 0. Whenever groups of pigeons gather, they instinctively
establish a pecking order. For any pair of pigeons, one pigeon always pecks the other, driving it
away from food or potential mates. The same pair of pigeons always chooses the same pecking
order, even after years of separation, no matter what other pigeons are around. Surprisingly, the
overall pecking order can contain cycles—for example, pigeon A pecks pigeon B, which pecks
pigeon C , which pecks pigeon A.

Prove that any finite set of pigeons can be arranged in a row from left to right so that every
pigeon pecks the pigeon immediately to its left. Pretty please.

2

CS 473 Midterm 2 Questions (April 7, 2009) Spring 2009

You have 90 minutes to answer four of the five questions.
Write your answers in the separate answer booklet.
You may take the question sheet with you when you leave.

1. Recall that a tree is a connected graph with no cycles. A graph is bipartite if we can color its
vertices black and white, so that every edge connects a white vertex to a black vertex.

(a) Prove that every tree is bipartite.

(b) Describe and analyze a fast algorithm to determine whether a given graph is bipartite.

2. Describe and analyze an algorithm SHUFFLE(A[1 .. n]) that randomly permutes the input array A,
so that each of the n! possible permutations is equally likely. You can assume the existence of
a subroutine RANDOM(k) that returns a random integer chosen uniformly between 1 and k in
O(1) time. For full credit, your SHUFFLE algorithm should run in O(n) time. [Hint: This problem
appeared in HBS 3½.]

3. Let G be an undirected graph with weighted edges.

(a) Describe and analyze an algorithm to compute the maximum weight spanning tree of G.

(b) A feedback edge set of G is a subset F of the edges such that every cycle in G contains at
least one edge in F . In other words, removing every edge in F makes G acyclic. Describe and
analyze a fast algorithm to compute the minimum weight feedback edge set of G.

[Hint: Don’t reinvent the wheel!]

4. Let G = (V, E) be a connected directed graph with non-negative edge weights, let s and t be
vertices of G, and let H be a subgraph of G obtained by deleting some edges. Suppose we want to
reinsert exactly one edge from G back into H, so that the shortest path from s to t in the resulting
graph is as short as possible. Describe and analyze an algorithm to choose the best edge to reinsert.
For full credit, your algorithm should run in O(E log V) time. [Hint: This problem appeared in
HBS 6¾.]

5. Describe and analyze an efficient data structure to support the following operations on an array
X [1 .. n] as quickly as possible. Initially, X [i] = 0 for all i.

• Given an index i such that X [i] = 0, set X [i] to 1.

• Given an index i, return X [i].

• Given an index i, return the smallest index j ≥ i such that X [j] = 0, or report that no such
index exists.

For full credit, the first two operations should run in worst-case constant time, and the amortized
cost of the third operation should be as small as possible.

1

CS 473 Final Exam Questions (May 14, 2009) Spring 2009

You have 180 minutes to answer six of the seven questions.
Write your answers in the separate answer booklet.

You may take the question sheet with you when you leave.

1. SUBSETSUM and PARTITION are two closely related NP-hard problems, defined as follows.

SUBSETSUM: Given a set X of positive integers and a positive integer k, does X have a subset
whose elements sum up to k?

PARTITION: Given a set Y of positive integers, can Y be partitioned into two subsets whose sums
are equal?

(a) [2 pts] Prove that PARTITION and SUBSETSUM are both in NP.

(b) [1 pt] Suppose you already know that SUBSETSUM is NP-hard. Which of the following
arguments could you use to prove that PARTITION is NP-hard? You do not need to justify
your answer — just answer 1© or 2©.

1© Given a set X and an integer k, construct a set Y in polynomial time, such that
PARTITION(Y) is true if and only if SUBSETSUM(X , k) is true.

2© Given a set Y , construct a set X and an integer k in polynomial time, such that
PARTITION(Y) is true if and only if SUBSETSUM(X , k) is true.

(c) [3 pts] Describe and analyze a polynomial-time reduction from PARTITION to SUBSETSUM.
You do not need to prove that your reduction is correct.

(d) [4 pts] Describe and analyze a polynomial-time reduction from SUBSETSUM to PARTITION.
You do not need to prove that your reduction is correct.

2. (a) [4 pts] For any node v in a binary tree, let size(v) denote the number of nodes in the subtree
rooted at v. Let k be an arbitrary positive number. Prove that every binary tree with at least k
nodes contains a node v such that k ≤ size(v)≤ 2k.

(b) [2 pts] Removing any edge from an n-node binary tree T separates it into two smaller binary
trees. An edge is called a balanced separator if both of these subtrees have at least n/3
nodes (and therefore at most 2n/3 nodes). Prove that every binary tree with more than one
node has a balanced separator. [Hint: Use part (a).]

(c) [4 pts] Describe and analyze an algorithm to find a balanced separator in a given binary
tree. [Hint: Use part (a).]

Removing a balanced separator from a binary tree.

1

CS 473 Final Exam Questions (May 14, 2009) Spring 2009

3. Racetrack (also known as Graph Racers and Vector Rally) is a two-player paper-and-pencil racing
game that Jeff played on the bus in 5th grade.1 The game is played with a track drawn on a sheet
of graph paper. The players alternately choose a sequence of grid points that represent the motion
of a car around the track, subject to certain constraints explained below.

Each car has a position and a velocity, both with integer x- and y-coordinates. The initial
position is a point on the starting line, chosen by the player; the initial velocity is always (0, 0). At
each step, the player optionally increments or decrements either or both coordinates of the car’s
velocity; in other words, each component of the velocity can change by at most 1 in a single step.
The car’s new position is then determined by adding the new velocity to the car’s previous position.
The new position must be inside the track; otherwise, the car crashes and that player loses the
race. The race ends when the first car reaches a position on the finish line.

Suppose the racetrack is represented by an n× n array of bits, where each 0 bit represents a
grid point inside the track, each 1 bit represents a grid point outside the track, the ‘starting line’ is
the first column, and the ‘finish line’ is the last column.

Describe and analyze an algorithm to find the minimum number of steps required to move a
car from the starting line to the finish line of a given racetrack. [Hint: Build a graph. What are the
vertices? What are the edges? What problem is this?]

velocity position

(0, 0) (1,5)
(1, 0) (2,5)
(2,−1) (4,4)
(3, 0) (7,4)
(2, 1) (9,5)
(1, 2) (10,7)
(0, 3) (10,10)
(−1, 4) (9,14)
(0, 3) (9,17)
(1, 2) (10,19)
(2, 2) (12,21)
(2, 1) (14,22)
(2, 0) (16,22)
(1,−1) (17,21)
(2,−1) (19,20)
(3, 0) (22,20)
(3, 1) (25,21)

ST
A
RT

FIN
ISH

A 16-step Racetrack run, on a 25× 25 track.

4. A palindrome is any string that is exactly the same as its reversal, like I, or DEED, or RACECAR,
or AMANAPLANACATACANALPANAMA. Describe and analyze an algorithm to find the length of the
longest subsequence of a given string that is also a palindrome.

For example, the longest palindrome subsequence of MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM
is MHYMRORMYHM, so given that string as input, your algorithm should output the number 11.

1The actual game is a bit more complicated than the version described here.

2

CS 473 Final Exam Questions (May 14, 2009) Spring 2009

5. The Island of Sodor is home to a large number of towns and villages, connected by an extensive
rail network. Recently, several cases of a deadly contagious disease (either swine flu or zombies;
reports are unclear) have been reported in the village of Ffarquhar. The controller of the Sodor
railway plans to close down certain railway stations to prevent the disease from spreading to
Tidmouth, his home town. No trains can pass through a closed station. To minimize expense
(and public notice), he wants to close down as few stations as possible. However, he cannot close
the Ffarquhar station, because that would expose him to the disease, and he cannot close the
Tidmouth station, because then he couldn’t visit his favorite pub.

Describe and analyze an algorithm to find the minimum number of stations that must be closed
to block all rail travel from Ffarquhar to Tidmouth. The Sodor rail network is represented by an
undirected graph, with a vertex for each station and an edge for each rail connection between two
stations. Two special vertices f and t represent the stations in Ffarquhar and Tidmouth.

For example, given the following input graph, your algorithm should return the number 2.

f t

6. A multistack consists of an infinite series of stacks S0, S1, S2, . . . , where the ith stack Si can hold up
to 3i elements. Whenever a user attempts to push an element onto any full stack Si , we first pop
all the elements off Si and push them onto stack Si+1 to make room. (Thus, if Si+1 is already full,
we first recursively move all its members to Si+2.) Moving a single element from one stack to the
next takes O(1) time.

×9

×3

Making room for one new element in a multistack.

(a) In the worst case, how long does it take to push one more element onto a multistack
containing n elements?

(b) Prove that the amortized cost of a push operation is O(log n), where n is the maximum
number of elements in the multistack.

7. Recall the problem 3COLOR: Given a graph, can we color each vertex with one of 3 colors, so that
every edge touches two different colors? We proved in class that 3COLOR is NP-hard.

Now consider the related problem 12COLOR: Given a graph, can we color each vertex with one
of twelve colors, so that every edge touches two different colors? Prove that 12COLOR is NP-hard.

3

You may assume the following problems are NP-hard:

CIRCUITSAT: Given a boolean circuit, are there any input values that make the circuit output True?

PLANARCIRCUITSAT: Given a boolean circuit drawn in the plane so that no two wires cross, are there any
input values that make the circuit output True?

3SAT: Given a boolean formula in conjunctive normal form, with exactly three literals per clause, does the
formula have a satisfying assignment?

MAXINDEPENDENTSET: Given an undirected graph G, what is the size of the largest subset of vertices in G
that have no edges among them?

MAXCLIQUE: Given an undirected graph G, what is the size of the largest complete subgraph of G?

MINVERTEXCOVER: Given an undirected graph G, what is the size of the smallest subset of vertices that
touch every edge in G?

MINSETCOVER: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subcollection whose union is S?

MINHITTINGSET: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subset of S that intersects every subset Si?

3COLOR: Given an undirected graph G, can its vertices be colored with three colors, so that every edge
touches vertices with two different colors?

HAMILTONIANCYCLE: Given a graph G, can is there a cycle in G that visits every vertex once?

HAMILTONIANPATH: Given a graph G, can is there a path in G that visits every vertex once?

DOUBLEHAMILTONIANCYCLE: Given a graph G, can is there a closed walk in G that visits every vertex twice?

DOUBLEHAMILTONIANPATH: Given a graph G, can is there an open walk in G that visits every vertex twice?

MINDEGREESPANNINGTREE: Given an undirected graph G, what is the minimum degree of any spanning
tree of G?

MINLEAVESSPANNINGTREE: Given an undirected graph G, what is the minimum number of leaves in any
spanning tree of G?

TRAVELINGSALESMAN: Given a graph G with weighted edges, what is the minimum cost of any Hamiltonian
path/cycle in G?

LONGESTPATH: Given a graph G with weighted edges and two vertices s and t, what is the length of the
longest simple path from s to t in G?

SUBSETSUM: Given a set X of positive integers and an integer k, does X have a subset whose elements
sum to k?

PARTITION: Given a set X of positive integers, can X be partitioned into two subsets with the same sum?

3PARTITION: Given a set X of n positive integers, can X be partitioned into n/3 three-element subsets, all
with the same sum?

MINESWEEPER: Given a Minesweeper configuration and a particular square x , is it safe to click on x?

TETRIS: Given a sequence of N Tetris pieces and a partially filled n× k board, is it possible to play every
piece in the sequence without overflowing the board?

SUDOKU: Given an n× n Sudoku puzzle, does it have a solution?

KENKEN: Given an n× n Ken-Ken puzzle, does it have a solution?

