
CS 473 HBS 6.55 Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
HBS 6.55

1. Suppose you are given a directed graph G = (V, E) with non-negative edge lengths; `(e) is the
length of e ∈ E. You are interested in the shortest path distance between two given locations/nodes
s and t. It has been noticed that the existing shortest path distance between s and t in G is not
satisfactory and there is a proposal to add exactly one edge to the graph to improve the situation.
The candidate edges from which one has to be chosen is given by E′ = {e1, e2, . . . , ek} and you
can assume that E ∪ E′ = ;. The length of the ei is αi ≥ 0. Your goal is figure out which of these
k edges will result in the most reduction in the shortest path distance from s to t. Describe an
algorithm for this problem that runs in time O((m+ n) log n+ k) where m = |E| and n = |V |. Note
that one can easily solve this problem in O(k(m+ n) log n) by running Dijkstra’s algorithm k times,
one for each Gi where Gi is the graph obtained by adding ei to G.

2. Let G be an undirected graph with non-negative edge weights. Let s and t be two vertices such
that the shortest path between s and t in G contains all the vertices in the graph. For each edge e,
let G\e be the graph obtained from G by deleting the edge e. Design an O(E log V) algorithm that
finds the shortest path distance between s and t in G\e for all e. [Note that you need to output E
distances, one for each graph G\e]

3. Given a Directed Acyclic Graph (DAG) and two vertices s and t you want to determine if there is
an s to t path that includes at least k vertices.

1

