CS 473 Homework 4 (due March 2, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 3

Written solutions due Tuesday, March 2, 2009 at 11:59:59pm.

1. A meldable priority queue stores a set of keys from some totally-ordered universe (such as the
integers) and supports the following operations:
e MAKEQUEUE: Return a new priority queue containing the empty set.
e FINDMIN(Q): Return the smallest element of Q (if any).
e DELETEMIN(Q): Remove the smallest element in Q (if any).
e INSERT(Q, x): Insert element x into Q, if it is not already there.

e DECrREASEKEY(Q, x,y): Replace an element x € Q with a smaller key y. (If y > x, the
operation fails.) The input is a pointer directly to the node in Q containing x.

e DrLETE(Q, x): Delete the element x € Q. The input is a pointer directly to the node in Q
containing x.

e MELD(Qq,Q,): Return a new priority queue containing all the elements of Q; and Q,; this
operation destroys Q; and Q5.

A simple way to implement such a data structure is to use a heap-ordered binary tree, where
each node stores a key, along with pointers to its parent and two children. MELD can be imple-
mented using the following randomized algorithm:

MELD(Q1,Q5):
if Q, is empty return Q,
if Q, is empty return Q,

if key(Q1) > key(Q3)
swap Q; < Q,
with probability 1/2
left(Q,) < MELD(left(Q), Q2)

else
right(Q,) < MEeLD(right(Q;),Q,)

return Q,

(a) Prove that for any heap-ordered binary trees Q; and Q, (not just those constructed by the
operations listed above), the expected running time of MELD(Q1,Q,) is O(logn), where n is
the total number of nodes in both trees. [Hint: How long is a random root-to-leaf path in an
n-node binary tree if each left/right choice is made with equal probability?]

(b) Show that each of the other meldable priority queue operations can be implemented with at
most one call to MELD and O(1) additional time. (This implies that every operation takes
O(logn) expected time.)



CS 473 Homework 4 (due March 2, 2009) Spring 2009

2. Recall that a priority search tree is a binary tree in which every node has both a search key and
a priority, arranged so that the tree is simultaneously a binary search tree for the keys and a
min-heap for the priorities. A heater is a priority search tree in which the priorities are given by
the user, and the search keys are distributed uniformly and independently at random in the real
interval [0, 1]. Intuitively, a heater is the ‘opposite’ of a treap.

The following problems consider an n-node heater T whose node priorities are the integers
from 1 to n. We identify nodes in T by their priorities; thus, ‘node 5’ means the node in T with
priority 5. The min-heap property implies that node 1 is the root of T. Finally, let i and j be
integers with 1 <i < j<n.

(a) Prove that in a random permutation of the (i + 1)-element set {1,2,...,1, j}, elements i and
j are adjacent with probability 2/(i + 1).

(b) Prove that node i is an ancestor of node j with probability 2/(i + 1). [Hint: Use part (a)!]
(c) What is the probability that node i is a descendant of node j? [Hint: Don’t use part (a)!]
(d) What is the exact expected depth of node j?

3. Let P be a set of n points in the plane. The staircase of P is the set of all points in the plane that
have at least one point in P both above and to the right.

A set of points in the plane and its staircase (shaded).

(a) Describe an algorithm to compute the staircase of a set of n points in O(nlogn) time.

(b) Describe and analyze a data structure that stores the staircase of a set of points, and an
algorithm ABove?(x, y) that returns TRUE if the point (x, y) is above the staircase, or FALSE
otherwise. Your data structure should use O(n) space, and your ABove? algorithm should
run in O(logn) time.

— +—9

TRUE
(]

FALSE
o

Two staircase queries.



