
CS 473] Spring 2017
Y Homework 0 Z

Due Wednesday, January 25, 2017 at 8pm

• This homework tests your familiarity with prerequisitematerial: designing, describing,
and analyzing elementary algorithms; fundamental graph problems and algorithms; and
especially facility with recursion and induction. Notes on most of this prerequisite material
are available on the course web page.

• Each student must submit individual solutions for this homework. For all future
homeworks, groups of up to three students will be allowed to submit joint solutions.

• Submit your solutions electronically on Gradescope as PDF files.

– Submit a separate file for each numbered problem.
– You can find a LATEX solution template on the course web site (soon); please use it if
you plan to typeset your homework.

– If you must submit scanned handwritten solutions, please use dark ink (not pencil) on
blank white printer paper (not notebook or graph paper), use a high-quality scanner
(not a phone camera), and print the resulting PDF file on a black-and-white printer
to verify readability before you submit.

t Some important course policies u

• You may use any source at your disposal—paper, electronic, or human—but you must
cite every source that you use, and you must write everything yourself in your own words.
See the academic integrity policies on the course web site for more details.

• The answer “I don’t know” (and nothing else) is worth 25% partial credit on any problem
or subproblem, on any homework or exam, except for extra-credit problems. We will
accept synonyms like “No idea” or “WTF” or “¯\(•_•)/¯”, but you must write something.

• Avoid the Deadly Sins! There are a few dangerous writing (and thinking) habits that will
trigger an automatic zero on any homework or exam problem. Yes, really.

– Always give complete solutions, not just examples.
– Every algorithm requires an English specification.
– Greedy algorithms require formal correctness proofs.
– Never use weak induction.

See the course web site for more information.

If you have any questions about these policies,
please don’t hesitate to ask in class, in office hours, or on Piazza.

CS 473 Homework 0 (due January 25) Spring 2017

1. Every cheesy romance movie has a scene where the romantic couple, after a long and
frustrating separation, suddenly see each other across a long distance, and then slowly
approach one another with unwavering eye contact as the music rolls in and the rain lifts
and the sun shines through the clouds and the music swells and everyone starts dancing
with rainbows and kittens and chocolate unicorns and. . . .¹

Suppose a romantic couple—in grand computer science tradition, named Alice and
Bob—enters their favorite park at the east and west entrances and immediately establish
eye-contact. They can’t just run directly to each other; instead, they must stay on the
path that zig-zags through the part between the east and west entrances. To maintain the
proper dramatic tension, Alice and Bob must traverse the path so that they always lie on a
direct east-west line.

We can describe the zigzag path as two arrays X [0 .. n] and Y [0 .. n], containing the
x- and y-coordinates of the corners of the path, in order from the southwest endpoint to
the southeast endpoint. The X array is sorted in increasing order, and Y [0] = Y [n]. The
path is a sequence of straight line segments connecting these corners.

Alice and Bob meet. Alice walks backward in step 2, and Bob walks backward in steps 5 and 6.

(a) Suppose Y [0] = Y [n] = 0 and Y [i]> 0 for every other index i; that is, the endpoints
of the path are strictly below every other point on the path. Prove that under these
conditions, Alice and Bob can meet.

[Hint: Describe a graph that models all possible locations and transitions of the
couple along the path. What are the vertices of this graph? What are the edges? What
can you say about the degrees of the vertices?]

(b) If the endpoints of the path are not below every other vertex, Alice and Bob might
still be able to meet, or they might not. Describe an algorithm to decide whether
Alice and Bob can meet, without either breaking east-west eye contact or stepping off
the path, given the arrays X [0 .. n] and Y [0 .. n] as input.

[Hint: Build the graph from part (a). (How?) What problem do you need to solve
on this graph? Call a textbook algorithm to solve that problem. (Do not regurgitate
the textbook algorithm.) What is your overall running time as a function of n?]

¹Fun fact: Damien Chazelle, the director of Whiplash and La La Land, is the son of Princeton computer science
professor Bernard Chazelle.

2

CS 473 Homework 0 (due January 25) Spring 2017

2. The Tower of Hanoi is a relatively recent descendant of a much older mechanical puzzle
known as the Chinese rings, Baguenaudier (a French word meaning “to wander about
aimlessly”), Meleda, Patience, Tiring Irons, Prisoner’s Lock, Spin-Out, and many other
names. This puzzle was already well known in both China and Europe by the 16th century.
The Italian mathematician Luca Pacioli described the 7-ring puzzle and its solution in his
unpublished treatise De Viribus Quantitatis, written between 1498 and 1506;² only a few
years later, the Ming-dynasty poet Yang Shen described the 9-ring puzzle as “a toy for
women and children”.

A drawing of a 7-ring Baguenaudier, from Récréations Mathématiques by Édouard Lucas (1891)

The Baguenaudier puzzle has many physical forms, but it typically consists of a long
metal loop and several rings, which are connected to a solid base by movable rods. The
loop is initially threaded through the rings as shown in the figure above; the goal of the
puzzle is to remove the loop.

More abstractly, we can model the puzzle as a sequence of bits, one for each ring, where
the ith bit is 1 if the loop passes through the ith ring and 0 otherwise. (Here we index the
rings from right to left, as shown in the figure.) The puzzle allows two legal moves:

• You can always flip the 1st (= rightmost) bit.
• If the bit string ends with exactly i 0s, you can flip the (i + 2)th bit.

The goal of the puzzle is to transform a string of n 1s into a string of n 0s. For example,
the following sequence of 21 moves solve the 5-ring puzzle:

11111 1→ 11110 3→ 11010 1→ 11011 2→ 11001 1→ 11000 5→ 01000
1→ 01001 2→ 01011 1→ 01010 3→ 01110 1→ 01111 2→ 01101 1→ 01100 4→ 00100

1→ 00101 2→ 00111 1→ 00110 3→ 00010 1→ 00011 2→ 00001 1→ 00000

(a) Describe an algorithm to solve the Baguenaudier puzzle. Your input is the number
of rings n; your algorithm should print a sequence of moves that solves the n-ring
puzzle. For example, given the integer 5 as input, your algorithm should print the
sequence 1,3, 1,2, 1,5, 1, 2, 1, 3, 1, 2, 1,4, 1, 2, 1,3, 1, 2, 1.

(b) Exactly how many moves does your algorithm perform, as a function of n? Prove your
answer is correct.

(c) [Extra credit] Call a sequence of moves reduced if no move is the inverse of the
previous move. Prove that for any non-negative integer n, there is exactly one reduced
sequence of moves that solves the n-ring Baguenaudier puzzle. [Hint: See problem 1!]

²De Viribus Quantitatis [On the Powers of Numbers] is an important early work on recreational mathematics and
perhaps the oldest surviving treatise on magic. Pacioli is better known for Summa de Aritmetica, a near-complete
encyclopedia of late 15th-century mathematics, which included the first description of double-entry bookkeeping.

3

CS 473 Homework 0 (due January 25) Spring 2017

3. Suppose you are given a stack of n pancakes of different sizes. You want to sort the
pancakes so that smaller pancakes are on top of larger pancakes. The only operation
you can perform is a flip—insert a spatula under the top k pancakes, for some integer k
between 1 and n, and flip them all over.

Flipping the top four pancakes.

(a) Describe an algorithm to sort an arbitrary stack of n pancakes using as few flips as
possible. Exactly how many flips does your algorithm perform in the worst case?

(b) Now suppose one side of each pancake is burned. Describe an algorithm to sort an
arbitrary stack of n pancakes, so that the burned side of every pancake is facing down,
using as few flips as possible. Exactly how many flips does your algorithm perform in
the worst case?

[Hint: This problem has nothing to do with the Tower of Hanoi!]

4

CS 473] Spring 2017
Y Homework 1 Z

Due Wednesday, February 1, 2017 at 8pm

Starting with this homework, groups of up to three people can submit joint solutions. Each
problem should be submitted by exactly one person, and the beginning of the homework should
clearly state the Gradescope names and email addresses of each group member. In addition,
whoever submits the homework must tell Gradescope who their other group members are.

1. A palindrome is any string that is exactly the same as its reversal, like I, or DEED, or
RACECAR, or AMANAPLANACATACANALPANAMA.

Any string can be decomposed into a sequence of palindromes. For example, the string
BUBBASEESABANANA (“Bubba sees a banana.”) can be broken into palindromes in the
following ways (and many others):

BUB •BASEESAB •ANANA
B •U •BB •A •SEES •ABA •NAN •A
B •U •BB •A •SEES •A •B •ANANA

B •U •B •B •A •S •E •E •S •A •B •A •N •ANA

Describe and analyze an efficient algorithm to find the smallest number of palindromes that
make up a given input string. For example, given the input string BUBBASEESABANANA,
your algorithm would return the integer 3.

2. Suppose we need to distribute a message to all the nodes in a rooted tree. Initially, only
the root node knows the message. In a single round, any node that knows the message can
forward it to at most one of its children.

A message being distributed through a tree in five rounds.

(a) Describe an algorithm to compute the minimum number of rounds required for the
message to be delivered to all nodes in a binary tree.

(b) Describe an algorithm to compute the minimum number of rounds required for the
message to be delivered to all nodes in an arbitrary rooted tree.
[Hint: Don’t forget to justify your algorithm’s correctness; you may find the lecture notes
on greedy algorithms helpful. Any algorithm for this part also solves part (a).]

CS 473 Homework 1 (due February 1) Spring 2017

3. Suppose you are given an m× n bitmap, represented by an array M[1 .. m, 1 .. n] of 0s and
1s. A solid block in M is a contiguous subarray M[i .. i′, j .. i′] in which all bits are equal.

A guillotine subdivision is a compact data structure to represent bitmaps as a recursive
decomposition into solid blocks. If the entire bitmap M is a solid block, there is nothing to
do. Otherwise, we cut M into two smaller bitmaps along a horizontal or vertical line, and
then decompose the two smaller bitmaps recursively.¹

Any guillotine subdivision can be represented as a binary tree, where each internal
node stores the position and orientation of a cut, and each leaf stores a single bit 0 or 1
indicting the contents of the corresponding block. The size of a guillotine subdivision is the
number of leaves in the corresponding binary tree (that is, the final number of solid blocks),
and the depth of a guillotine subdivision is the depth of the corresponding binary tree.

A guillotine subdivision with size 8 and depth 5.

(a) Describe and analyze an algorithm to compute a guillotine subdivision of M of
minimum size.

(b) Describe and analyze an algorithm to compute a guillotine subdivision of M of
minimum depth.

¹Guillotine subdivisions are similar to kd-trees, except that the cuts in a guillotine subdivision are not required to
alternate between horizontal and vertical.

2

CS 473 Homework 1 (due February 1) Spring 2017

Standard dynamic programming rubric. For problems worth 10 poins:

• 3 points for a clear English specification of the recursive function you are trying
to evaluate. (Otherwise, we don’t even know what you’re trying to do.)

+ 2 points for describing the function itself. (For example: “OPT (i, j) is the
edit distance between A[1 .. i] and B[1 .. i].”)

+ 1 point for stating how to call your recursive function to get the final answer.
(For example: “We need to compute OPT (m, n).”)

+ An English description of the algorithm is not sufficient. We want an
English description of the underlying recursive problem. In particular, the
description should specify precisely the role of each input parameter.

+ No credit for the rest of the problem if the English description is is missing.
(This is a Deadly Sin.)

• 4 points for a correct recurrence, described either using mathematical notation
or as pseudocode for a recursive algorithm.

+ 1 point for base case(s). −½ for one minor bug, like a typo or an off-by-one
error.

+ 3 points for recursive case(s). −1 for each minor bug, like a typo or an off-
by-one error. No credit for the rest of the problem if the recursive
case(s) are incorrect.

• 3 points for details of the iterative dynamic programming algorithm

+ 1 point for describing the memoization data structure

+ 1 point for describing a correct evaluation order; a clear picture is usually
sufficient. If you use nested loops, be sure to specify the nesting order.

+ 1 point for time analysis

• It is not necessary to state a space bound.

• For problems that ask for an algorithm that computes an optimal structure—such
as a subset, partition, subsequence, or tree—an algorithm that computes only
the value or cost of the optimal structure is sufficient for full credit, unless the
problem says otherwise.

• Official solutions usually include pseudocode for the final iterative dynamic
programming algorithm, but iterative psuedocode is not required for full
credit. If your solution includes iterative pseudocode, you do not need to
separately describe the recurrence, memoization structure, or evaluation order.
(But you still need to specify the underlying recursive function in English.)

• Official solutions will provide target time bounds. Algorithms that are faster than
this target are worth more points; slower algorithms are worth fewer points,
typically by 2 or 3 points (out of 10) for each factor of n. Partial credit is scaled
to the new maximum score, and all points above 10 are recorded as extra credit.

We rarely include these target time bounds in the actual questions, because
when we have included them, significantly more students turned in algorithms
that meet the target time bound but didn’t work (earning 0/10) instead of correct
algorithms that are slower than the target time bound (earning 8/10).

3

CS 473] Spring 2017
Y Homework 2 Z

Due Wednesday, February 8, 2017 at 8pm

There are only two problems, but the first one counts double.

1. Suppose you are given a two-dimensional array M[1 .. n, 1 .. n] of numbers, which could
be positive, negative, or zero, and which are not necessarily integers. The maximum
subarray problem asks to find the largest sub of elements in any contiguous subarray
of the form M[i .. i′, j .. j′]. In this problem we’ll develop an algorithm for the maximum
subarray problem that runs in O(n3) time.

The algorithm is a combination of divide and conquer and dynamic programming.
Let L be a horizontal line through M that splits the rows (roughly) in half. After some
preprocessing, the algorithm finds themaximum-sum subarray that crosses L, themaximum-
sum subarray above L, and the maximum-sum subarray below L. The first subarray is
found by dynamic programming; the last two subarrays are found recursively.

(a) For any indices i and j, let Sum(i, j) denote the sum of all elements in the subarray
M[1 .. i, 1 .. j]. Describe an algorithm to compute Sum(i, j) for all indices i and j in
O(n2) time.

(b) Describe a simple(!!) algorithm to solve the maximum subarray problem in O(n4)
time, using the output of your algorithm for part (a).

(c) Describe an algorithm to find the maximum-sum subarray that crosses L in O(n3)
time, using the output of your algorithm for part (a). [Hint: Consider the top half and
the bottom half of M separately.]

(d) Describe a divide-and-conquer algorithm to find the maximum-sum subarray in M
in O(n3) time, using your algorithm for part (c) as a subroutine. [Hint: Why is the
running time O(n3) and not O(n3 log n)?]

In fact, the subproblem in part (c) — and thus the entire maximum subarray problem —
can be solved in n3/2Ω(

p
log n) time using a recent algorithm of Ryan Williams. Williams’

algorithm can also be used to compute all-pairs shortest paths in the same slightly subcubic
running time. The divide-and0-conquer strategy itself is due to Tadao Takaoka.

There is a simpler O(n3)-time algorithm for the maximum subarray problem, based on
Kadane’s O(n)-time algorithm for the one-dimensional problem. (For every pair of indices i
and i′, find the best subarray of the form M[i .. i′, j .. j′] in O(n) time.) It’s unclear whether
this approach can be sped up using Williams’ algorithm (or its predecessors) without the
divide-and-conquer layer.

An algorithm for the maximum subarray problem (or all-pairs shortest paths) that runs
in O(n2.99999999) time would be a major breakthrough.

CS 473 Homework 2 (due February 8) Spring 2017

2. The Doctor and River Song decide to play a game on a directed acyclic graph G, which has
one source s and one sink t.¹

Each player has a token on one of the vertices of G. At the start of the game, The
Doctor’s token is on the source vertex s, and River’s token is on the sink vertex t. The
players alternate turns, with The Doctor moving first. On each of his turns, the Doctor
moves his token forward along a directed edge; on each of her turns, River moves her
token backward along a directed edge.

If the two tokens ever meet on the same vertex, River wins the game. (“Hello, Sweetie!”)
If the Doctor’s token reaches t or River’s token reaches s before the two tokens meet, then
the Doctor wins the game.

Describe and analyze an algorithm to determine who wins this game, assuming both
players play perfectly. That is, if the Doctor can win no matter how River moves, then your
algorithm should output “Doctor”, and if River can win no matter how the Doctor moves,
your algorithm should output “River”. (Why are these the only two possibilities?) The
input to your algorithm is the graph G.

¹The labels s and t may be abbreviations for the Untempered Schism and the Time Vortex, or the Shining World of
the Seven Systems (otherwise known as Gallifrey) and Trenzalore, or Skaro and Telos, or Something else Timey-wimey.

2

CS 473] Spring 2017
Y Homework 5 Z

Due Wednesday, February 15, 2017 at 8pm

0. [Warmup only; do not submit solutions]

After sending his loyal friends Rosencrantz and Guildenstern off to Norway, Hamlet
decides to amuse himself by repeatedly flipping a fair coin until the sequence of flips
satisfies some condition. For each of the following conditions, compute the exact expected
number of flips until that condition is met.

(a) Hamlet flips heads.

(b) Hamlet flips both heads and tails (in different flips, of course).

(c) Hamlet flips heads twice.

(d) Hamlet flips heads twice in a row.

(e) Hamlet flips heads followed immediately by tails.

(f) Hamlet flips more heads than tails.

(g) Hamlet flips the same positive number of heads and tails.

[Hint: Be careful! If you’re relying on intuition instead of a proof, you’re probably wrong.]

1. Consider the following non-standard algorithm for shuffling a deck of n cards, initially
numbered in order from 1 on the top to n on the bottom. At each step, we remove the top
card from the deck and insert it randomly back into in the deck, choosing one of the n
possible positions uniformly at random. The algorithm ends immediately after we pick up
card n− 1 and insert it randomly into the deck.

(a) Prove that this algorithm uniformly shuffles the deck, meaning each permutation
of the deck has equal probability. [Hint: Prove that at all times, the cards below card
n− 1 are uniformly shuffled.]

(b) What is the exact expected number of steps executed by the algorithm? [Hint: Split
the algorithm into phases that end when card n− 1 changes position.]

CS 473 Homework 3 (due February 15) Spring 2017

2. Death knocks on your door one cold blustery morning and challenges you to a game. Death
knows that you are an algorithms student, so instead of the traditional game of chess,
Death presents you with a complete binary tree with 4n leaves, each colored either black
or white. There is a token at the root of the tree. To play the game, you and Death will
take turns moving the token from its current node to one of its children. The game will
end after 2n moves, when the token lands on a leaf. If the final leaf is black, you die; if it’s
white, you will live forever. You move first, so Death gets the last turn.

∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧

∨ ∨ ∨

∨

You can decide whether it’s worth playing or not as follows. Imagine that the nodes at
even levels (where it’s your turn) are Or gates, the nodes at odd levels (where it’s Death’s
turn) are And gates. Each gate gets its input from its children and passes its output to its
parent. White and black stand for True and False. If the output at the top of the tree is
True, then you can win and live forever! If the output at the top of the tree is False, you
should challenge Death to a game of Twister instead.

(a) Describe and analyze a deterministic algorithm to determine whether or not you can
win. [Hint: This is easy!]

(b) Unfortunately, Death won’t give you enough time to look at every node in the tree.
Describe a randomized algorithm that determines whether you can win in O(3n)
expected time. [Hint: Consider the case n= 1.]

?(c) [Extra credit] Describe and analyze a randomized algorithm that determines whether
you can win in O(cn) expected time, for some constant c < 3. [Hint: You may not
need to change your algorithm from part (b) at all!]

2

CS 473 Homework 3 (due February 15) Spring 2017

3. The following randomized variant of “one-armed quicksort” selects the kth smallest element
in an unsorted array A[1 .. n]. As usual, Partition(A[1 .. n], p) partitions the array A into
three parts by comparing the pivot element A[p] to every other element, using n − 1
comparisons, and returns the new index of the pivot element.

QuickSelect(A[1 .. n], k) :
r ← Partition(A[1 .. n],Random(n))

if k < r
return QuickSelect(A[1 .. r − 1], k)

else if k > r
return QuickSelect(A[r + 1 .. n], k− r)

else
return A[k]

(a) State a recurrence for the expected running time of QuickSelect, as a function of n
and k.

(b) What is the exact probability that QuickSelect compares the ith smallest and jth
smallest elements in the input array? The correct answer is a simple function of i, j,
and k. [Hint: Check your answer by trying a few small examples.]

(c) What is the exact probability that in one of the recursive calls to QuickSelect, the
first argument is the subarray A[i .. j]? The correct answer is a simple function of i, j,
and k. [Hint: Check your answer by trying a few small examples.]

(d) Show that for any n and k, the expected running time of QuickSelect is Θ(n). You
can use either the recurrence from part (a) or the probabilities from part (b) or (c).

3

CS 473] Spring 2017
Y Homework 4 Z

Due Wednesday, March 1, 2017 at 8pm

1. Recall that a priority search tree is a binary tree in which every node has both a search key
and a priority, arranged so that the tree is simultaneously a binary search tree for the keys
and a min-heap for the priorities. A heater is a priority search tree in which the priorities
are given by the user, and the search keys are distributed uniformly and independently at
random in the real interval [0, 1]. Intuitively, a heater is a sort of anti-treap.

The following problems consider an n-node heater T whose priorities are the integers
from 1 to n. We identify nodes in T by their priorities; thus, “node 5” means the node in T
with priority 5. For example, the min-heap property implies that node 1 is the root of T .
Finally, let i and j be integers with 1≤ i < j ≤ n.

(a) What is the exact expected depth of node j in an n-node heater? Answering the
following subproblems will help you:

i. Prove that in a random permutation of the (i + 1)-element set {1, 2, . . . , i, j},
elements i and j are adjacent with probability 2/(i + 1).

ii. Prove that node i is an ancestor of node j with probability 2/(i + 1). [Hint: Use
the previous question!]

iii. What is the probability that node i is a descendant of node j? [Hint: Do not use
the previous question!]

(b) Describe and analyze an algorithm to insert a new item into a heater. Analyze the
expected running time as a function of the number of nodes.

(c) Describe an algorithm to delete the minimum-priority item (the root) from an n-node
heater. What is the expected running time of your algorithm?

2. Suppose we are given a coin that may or may not be biased, and we would like to compute
an accurate estimate of the probability of heads. Specifically, if the actual unknown
probability of heads is p, we would like to compute an estimate p̃ such that

Pr[|p̃− p|> ε]< δ

where ε is a given accuracy or error parameter, and δ is a given confidence parameter.

The following algorithm is a natural first attempt; here Flip() returns the result of an
independent flip of the unknown coin.

MeanEstimate(ε):
count← 0
for i← 1 to N

if Flip() = Heads
count← count+ 1

return count/N

(a) Let p̃ denote the estimate returned by MeanEstimate(ε). Prove that E[p̃] = p.

CS 473 Homework 4 (due march 1) Spring 2017

(b) Prove that if we set N = dα/ε2e for some appropriate constant α, then we have
Pr[|p̃− p|> ε]< 1/4. [Hint: Use Chebyshev’s inequality.]

(c) We can increase the previous estimator’s confidence by running it multiple times,
independently, and returning the median of the resulting estimates.

MedianOfMeansEstimate(δ,ε):
for j← 1 to K

estimate[j]←MeanEstimate(ε)
return Median(estimate[1 .. K])

Let p∗ denote the estimate returned by MedianOfMeansEstimate(δ,ε). Prove
that if we set N = dα/ε2e (inside MeanEstimate) and K = dβ ln(1/δ)e, for some
appropriate constants α and β , then Pr[|p∗ − p| > ε] < δ. [Hint: Use Chernoff
bounds.]

2

CS 473] Spring 2017
Y Homework 5 Z

Due Wednesday, March 8, 2017 at 8pm

1. Reservoir sampling is a method for choosing an item uniformly at random from an
arbitrarily long stream of data.

GetOneSample(stream S):
`← 0
while S is not done

x ← next item in S
`← `+ 1
if Random(`) = 1

sample← x (?)
return sample

At the end of the algorithm, the variable ` stores the length of the input stream S; this
number is not known to the algorithm in advance. If S is empty, the output of the algorithm
is (correctly!) undefined.

In the following, consider an arbitrary non-empty input stream S, and let n denote the
(unknown) length of S.

(a) Prove that the item returned by GetOneSample(S) is chosen uniformly at random
from S.

(b) What is the exact expected number of times that GetOneSample(S) executes line (?)?

(c) What is the exact expected value of ` when GetOneSample(S) executes line (?) for
the last time?

(d) What is the exact expected value of `when either GetOneSample(S) executes line (?)
for the second time (or the algorithm ends, whichever happens first)?

(e) Describe and analyze an algorithm that returns a subset of k distinct items chosen
uniformly at random from a data stream of length at least k. The integer k is given as
part of the input to your algorithm. Prove that your algorithm is correct.

For example, if k = 2 and the stream contains the sequence 〈«,ª,©,¨〉, the
algorithm should return the subset {©,«} with probability 1/6.

2. Tabulated hashing uses tables of random numbers to compute hash values. Suppose
|U |= 2w × 2w and m= 2`, so the items being hashed are pairs of w-bit strings (or 2w-bit
strings broken in half) and hash values are `-bit strings.

Let A[0 .. 2w − 1] and B[0 .. 2w − 1] be arrays of independent random `-bit strings, and
define the hash function hA,B : U → [m] by setting

hA,B(x , y) := A[x]⊕ B[y]

where ⊕ denotes bit-wise exclusive-or. LetH denote the set of all possible functions hA,B.
Filling the arrays A and B with independent random bits is equivalent to choosing a hash
function hA,B ∈H uniformly at random.

CS 473 Homework 5 (due March 8) Spring 2017

(a) Prove thatH is 2-uniform.

(b) Prove thatH is 3-uniform. [Hint: Solve part (a) first.]

(c) Prove thatH is not 4-uniform.

Yes, “see part (b)” is worth full credit for part (a), but only if your solution to part (b) is
correct.

2

CS 473] Spring 2017
Y Homework 6 Z

Due Wednesday, March 16, 2017 at 8pm

1. Suppose you are given a directed graph G = (V, E), two vertices s and t, a capacity function
c : E → R+, and a second function f : E → R. Describe and analyze an algorithm to
determine whether f is a maximum (s, t)-flow in G. [Hint: Don’t make any “obvious”
assumptions!]

2. Suppose you are given a flow network G with integer edge capacities and an integer
maximum flow f ∗ in G. Describe algorithms for the following operations:

(a) Increment(e): Increase the capacity of edge e by 1 and update the maximum flow.
(b) Decrement(e): Decrease the capacity of edge e by 1 and update the maximum flow.

Both algorithms should modify f ∗ so that it is still a maximum flow, but more quickly than
recomputing a maximum flow from scratch.

3. An (s , t)-series-parallel graph is a directed acyclic graph with two designated vertices s
(the source) and t (the target or sink) and with one of the following structures:

• Base case: A single directed edge from s to t.
• Series: The union of an (s, u)-series-parallel graph and a (u, t)-series-parallel graph

that share a common vertex u but no other vertices or edges.
• Parallel: The union of two smaller (s, t)-series-parallel graphs with the same source s

and target t, but with no other vertices or edges in common.

Every (s, t)-series-parallel graph G can be represented by a decomposition tree, which is a
binary tree with three types of nodes: leaves corresponding to single edges in G, series
nodes (each labeled by some vertex), and parallel nodes (unlabeled).

s le

a b

c d

f i
g

h

j k

e

a

b

d

c
f

i

g h

j
k

t

l

An series-parallel graph and its decomposition tree.

(a) Suppose you are given a directed graph G with two special vertices s and t. Describe
and analyze an algorithm that either builds a decomposition tree for G or correctly
reports that G is not (s, t)-series-parallel. [Hint: Build the tree from the bottom up.]

(b) Describe and analyze an algorithm to compute a maximum (s, t)-flow in a given
(s, t)-series-parallel flow network with arbitrary edge capacities. [Hint: In light of
part (a), you can assume that you are actually given the decomposition tree.]

CS 473] Spring 2017
Y Homework 7 Z

Due Wednesday, March 29, 2017 at 8pm

1. Suppose we are given an array A[1 .. m][1 .. n] of non-negative real numbers. We want
to round A to an integer matrix, by replacing each entry x in A with either bxc or dxe,
without changing the sum of entries in any row or column of A. For example:




1.2 3.4 2.4

3.9 4.0 2.1

7.9 1.6 0.5


 7−→




1 4 2

4 4 2

8 1 1




(a) Describe and analyze an efficient algorithm that either rounds A in this fashion, or
correctly reports that no such rounding is possible.

(b) Prove that a legal rounding is possible if and only if the sum of entries in each row is
an integer, and the sum of entries in each column is an integer. In other words, prove
that either your algorithm from part (a) returns a legal rounding, or a legal rounding
is obviously impossible.

2. Quentin, Alice, and the other Brakebills Physical Kids are planning an excursion through
the Neitherlands to Fillory. The Neitherlands is a vast, deserted city composed of several
plazas, each containing a single fountain that can magically transport people to a different
world. Adjacent plazas are connected by gates, which have been cursed by the Beast. The
gates between plazas are open only for five minutes every hour, all simultaneously—from
12:00 to 12:05, then from 1:00 to 1:05, and so on—and are otherwise locked. During those
five minutes, if more than one person passes through any single gate, the Beast will detect
their presence.¹ Moreover, anyone attempting to open a locked gate, or attempting to pass
through more than one gate within the same five-minute period will turn into a niffin.²
However, any number of people can safely pass through different gates at the same time
and/or pass through the same gate at different times.

You are given a map of the Neitherlands, which is a graph G with a vertex for each
fountain and an edge for each gate, with the fountains to Earth and Fillory clearly marked.
Suppose you are also given a positive integer h. Describe and analyze an algorithm
to compute the maximum number of people that can walk from the Earth fountain to
the Fillory fountain in at most h hours—that is, after the gates have opened at most h
times—without anyone alerting the Beast or turning into a niffin. [Hint: Build a different
graph.]

¹This is very bad.
²This is very very bad.

CS 473 Homework 7 (due March 29) Spring 2017

Rubric (graph reductions): For a problem worth 10 points, solved by reduction to
maximum flow:

• 2 points for a complete description of the relevant flow network, specifying the
set of vertices, the set of edges (being careful about direction), the source and
target vertices s and t, and the capacity of every edge. (If the flow network is
part of the original input, just say that.)

• 1 point for a description of the algorithm to construct this flow network from the
stated input. This could be as simple as “We can construct the flow network in
O(n3) time by brute force.”

• 1 point for precisely specifying the problem to be solved on the flow network
(for example: “maximum flow from x to y”) and the algorithm (For example:
“Ford-Fulkerson” or “Orlin”) to solve that problem. Do not regurgitate the details
of the maximum-flow algorithm itself.

• 1 point for a description of the algorithm to extract the answer to the stated
problem from the maximum flow. This could be as simple as “Return True if the
maximum flow value is at least 42 and False otherwise.”

• 4 points for a proof that your reduction is correct. This proof will almost
always have two components (worth 2 points each). For example, if your algo-
rithm returns a boolean, you should prove that its True answers are correct and
that its False answers are correct. If your algorithm returns a number, you should
prove that number is neither too large nor too small.

• 1 point for the running time of the overall algorithm, expressed as a function of
the original input parameters, not just the number of vertices and edges in your
flow network. You may assume that maximum flows can be computed in O(V E)
time.

Reductions to other flow-based problems described in class or in the notes (for example:
edge-disjoint paths, maximum bipartite matching, minimum-cost circulation) or to
other standard graph problems (for example: reachability, topological sort, minimum
spanning tree, all-pairs shortest paths) have similar requirements.

2

CS 473] Spring 2017
Y Homework 8 Z

Due Wednesday, April 12, 2017 at 8pm

1. Recall that a path cover of a directed acyclic graph is a collection of directed paths, such
that every vertex in G appears in at least one path. We previously saw how to compute
disjoint path covers (where each vertex lies on exactly one path) by reduction to maximum
bipartite matching. Your task in this problem is to compute path covers without the
disjointness constraint.

(a) Suppose you are given a dag G with a unique source s and a unique sink t. Describe
an algorithm to find the smallest path cover of G in which every path starts at s and
ends at t.

(b) Describe an algorithm to find the smallest path cover of an arbitrary dag G, with no
additional restrictions on the paths. [Hint: Use part (a).]

2. Recall that an (s , t)-series-parallel graph is an directed acyclic graph with two designated
vertices s (the source) and t (the target or sink) and with one of the following structures:

• Base case: A single directed edge from s to t.

• Series: The union of an (s, u)-series-parallel graph and a (u, t)-series-parallel graph
that share a common vertex u but no other vertices or edges.

• Parallel: The union of two smaller (s, t)-series-parallel graphs with the same source s
and target t, but with no other vertices or edges in common.

Any series-parallel graph can be represented by a binary decomposition tree, whose interior
nodes correspond to series compositions and parallel compositions, and whose leaves
correspond to individual edges. In a previous homework, we saw how to construct the
decomposition tree for any series-parallel graph in O(V +E) time, and then how to compute
a maximum (s, t)-flow in O(V + E) time.

Describe an efficient algorithm to compute a minimum-cost maximum flow from s to t
in an (s, t)-series-parallel graph G in which every edge has capacity 1 and arbitrary cost.
[Hint: First consider the special case where G has only two vertices but lots of edges.]

3. Every year, Professor Dumbledore assigns the instructors at Hogwarts to various faculty
committees. There are n faculty members and c committees. Each committee member has
submitted a list of their prices for serving on each committee; each price could be positive,
negative, zero, or even infinite. For example, Professor Snape might declare that he would
serve on the Student Recruiting Committee for 1000 Galleons, that he would pay 10000
Galleons to serve on the Defense Against the Dark Arts Course Revision Committee, and
that he would not serve on the Muggle Relations committee for any price.

Conversely, Dumbledore knows how many instructors are needed for each committee,
as well as a list of instructors who would be suitable members for each committee. (For
example: “Dark Arts Revision: 5 members, anyone but Snape.”) If Dumbledore assigns an
instructor to a committee, he must pay that instructor’s price from the Hogwarts treasury.

CS 473 Homework 8 (due April 12) Spring 2017

Dumbledore needs to assign instructors to committees so that (1) each committee is
full, (3) no instructor is assigned to more than three committees, (2) only suitable and
willing instructors are assigned to each committee, and (4) the total cost of the assignment
is as small as possible. Describe and analyze an efficient algorithm that either solves
Dumbledore’s problem, or correctly reports that there is no valid assignment whose total
cost is finite.

2

CS 473] Spring 2017
Y Homework 9 Z

Due Wednesday, April 19, 2017 at 8pm

1. Suppose you are given an arbitrary directed graph G = (V, E) with arbitrary edge weights
`: E → R. Each edge in G is colored either red, white, or blue to indicate how you are
permitted to modify its weight:

• You may increase, but not decrease, the length of any red edge.

• You may decrease, but not increase, the length of any blue edge.

• You may not change the length of any black edge.

The cycle nullification problem asks whether it is possible to modify the edge weights—
subject to these color constraints—so that every cycle in G has length 0. Both the given
weights and the new weights of the individual edges can be positive, negative, or zero. To
keep the following problems simple, assume that G is strongly connected.

(a) Describe a linear program that is feasible if and only if it is possible to make every
cycle in G have length 0. [Hint: Pick an arbitrary vertex s, and let dist(v) denote the
length of every walk from s to v.]

(b) Construct the dual of the linear program from part (a). [Hint: Choose a convenient
objective function for your primal LP.]

(c) Give a self-contained description of the combinatorial problem encoded by the dual
linear program from part (b), and prove directly that it is equivalent to the original
cycle nullification problem. Do not use the words “linear”, “program”, or “dual”. Yes,
you have seen this problem before.

(d) Describe and analyze an algorithm to determine in O(EV) time whether it is possible
to make every cycle in G have length 0, using your dual formulation from part (c).
Do not use the words “linear”, “program”, or “dual”.

2. There is no problem 2.

CS 473] Spring 2017
Y Homework 10 Z

Due Wednesday, April 26, 2017 at 8pm

1. An integer linear program is a linear program with the additional explicit constraint that
the variables must take only integer values. The ILP-Feasibility problem asks whether
there is an integer vector that satisfies a given system of linear inequalities—or more
concisely, whether a given integer linear program is feasible.

Describe a polynomial-time reduction from 3Sat to ILP-Feasibility. Your reduction
implies that ILP-Feasibility is NP-hard.

2. There are two different versions of the Hamiltonian cycle problem, one for directed graphs
and one for undirected graphs. We saw a proof in class (and there are two proofs in the
notes) that the directed Hamiltonian cycle problem is NP-hard.

(a) Describe a polynomial-time reduction from the undirected Hamiltonian cycle problem
to the directed Hamiltonian cycle problem. Prove your reduction is correct.

(b) Describe a polynomial-time reduction from the directed Hamiltonian cycle problem to
the undirected Hamiltonian cycle problem. Prove your reduction is correct.

(c) Which of these two reductions implies that the undirected Hamiltonian cycle problem
is NP-hard?

3. Recall that a 3CNF formula is a conjunction (And) of several distinct clauses, each of which
is a disjunction (Or) of exactly three distinct literals, where each literal is either a variable
or its negation.

Suppose you are given a magic black box that can determine in polynomial time,
whether an arbitrary given 3CNF formula is satisfiable. Describe and analyze a polynomial-
time algorithm that either computes a satisfying assignment for a given 3CNF formula or
correctly reports that no such assignment exists, using the magic black box as a subroutine.
[Hint: Call the magic black box more than once. First imagine an even more magical black
box that can decide Sat for arbitrary boolean formulas, not just 3CNF formulas.]

Rubric (for all polynomial-time reductions): 10 points =
+ 3 points for the reduction itself

– For an NP-hardness proof, the reduction must be from a known NP-hard
problem. You can use any of the NP-hard problems listed in the lecture
notes (except the one you are trying to prove NP-hard, of course).

+ 3 points for the “if” proof of correctness
+ 3 points for the “only if” proof of correctness
+ 1 point for writing “polynomial time”

• An incorrect polynomial-time reduction that still satisfies half of the correctness
proof is worth at most 4/10.

• A reduction in the wrong direction is worth 0/10.

CS 473] Spring 2017
Y Homework 11 Z

“Due” Wednesday, May 3, 2017 at 8pm

This homework will not be graded.
However, material covered by this homework may appear on the final exam.

1. Let Φ be a boolean formula in conjunctive normal form, with exactly three literals in
each clause. Recall that an assignment of boolean values to the variables in Φ satisfies a
clause if at least one of its literals is True. The maximum satisfiability problem for 3CNF
formulas, usually called Max3Sat, asks for the maximum number of clauses that can be
simultaneously satisfied by a single assignment.

Solving Max3Sat exactly is clearly also NP-hard; this question asks about approximation
algorithms. Let Max3Sat(Φ) denote the maximum number of clauses in Φ that can be
simultaneously satisfied by one variable assignment.

(a) Suppose we assign variables in Φ to be True or False using independent fair coin
flips. Prove that the expected number of satisfied clauses is at least 7

8Max3Sat(Φ).

(b) Let k+ denote the number of clauses satisfied by setting every variable in Φ to True,
and let k− denote the number of clauses satisfied by setting every variable in Φ to
False. Prove that max{k+, k−} ≥Max3Sat(Φ)/2.

(c) Let Min3Unsat(Φ) denote the minimum number of clauses that can be simultaneously
left unsatisfied by a single assignment. Prove that it is NP-hard to approximate
Min3Unsat(Φ) within a factor of 1010100

.

2. Consider the following algorithm for approximating the minimum vertex cover of a
connected graph G: Return the set of all non-leaf nodes of an arbitrary depth-first
spanning tree. (Recall that a depth-first spanning tree is a rooted tree; the root is not
considered a leaf, even if it has only one neighbor in the tree.)

(a) Prove that this algorithm returns a vertex cover of G.

(b) Prove that this algorithm returns a 2-approximation to the smallest vertex cover of G.

(c) Describe an infinite family of connected graphs for which this algorithm returns a
vertex cover of size exactly 2 ·Opt. This family implies that the analysis in part (b) is
tight. [Hint: First find just one such graph, with few vertices.]

CS 473 Homework 11 (“due” May 3) Spring 2017

3. Consider the following modification of the “dumb” 2-approximation algorithm for minimum
vertex cover that we saw in class. The only change is that we return a set of edges instead
of a set of vertices.

ApproxMinMaxMatching(G):
M ←∅
while G has at least one edge

uv← any edge in G
G← G \ {u, v}
M ← M ∪ {uv}

return M

(a) Prove that the output subgraph M is a matching—no pair of edges in M share a
common vertex.

(b) Prove that M is amaximalmatching—M is not a proper subgraph of another matching
in G.

(c) Prove that M contains at most twice as many edges as the smallest maximal matching
in G.

(d) Describe an infinite family of graphs G such that the matching returned by Approx-
MinMaxMatching(G) contains exactly twice as many edges as the smallest maximum
matching in G. This family implies that the analysis in part (c) is tight. [Hint: First
find just one such graph, with few vertices.]

The smallest maximal matching in a graph.

2

CS 473] Spring 2017
Y Midterm 1 Z

February 21, 2016

1. Recall that a walk in a directed graph G is an arbitrary sequence of vertices v0�v1� · · ·�vk,
such that vi−1�vi is an edge in G for every index i. A path is a walk in which no vertex
appears more than once.

Suppose you are given a directed graph G = (V, E) and two vertices s and t. Describe
and analyze an algorithm to determine if there is a walk in G from s to t whose length is a
multiple of 3.

For example, given the graph shown below, with the indicated vertices s and t, your
algorithm should return True, because the walk s�w�y�x�s�w�t has length 6.

x y

ws

z

t

[Hint: Build a (different) graph.]

2. A shuffle of two strings X and Y is formed by interspersing the characters into a new string,
keeping the characters of X and Y in the same order. A smooth shuffle of X and Y is a
shuffle of X and Y that never uses more than two consecutive symbols of either string. For
example,

• prDoYgNAraMmmIiCng is a smooth shuffle of DYNAMIC and programming.
• DYprNogrAaMmmICing is a shuffle of DYNAMIC and programming, but it is not

a smooth shuffle (because of the substrings ogr and ing).

Describe and analyze an algorithm to decide, given three strings X , Y , and Z , whether Z is
a smooth shuffle of X and Y .

3. (a) Describe an algorithm that simulates a fair coin, using independent rolls of a fair
three-sided die as your only source of randomness. Your algorithm should return
either Heads or Tails, each with probability 1/2.

(b) What is the expected number of die rolls performed by your algorithm in part (a)?

(c) Describe an algorithm that simulates a fair three-sided die, using independent fair
coin flips as your only source of randomness. Your algorithm should return either
1, 2, or 3, each with probability 1/3.

(d) What is the expected number of coin flips performed by your algorithm in part (c)?

1

CS 473 Midterm 1 Spring 2017

4. Death knocks on Dirk Gently’s door one cold blustery morning and challenges him to a
game. Emboldened by his experience with algorithms students, Death presents Dirk with a
complete binary tree with 4n leaves, each colored either black or white. There is a token at
the root of the tree. To play the game, Dirk and Death will take turns moving the token
from its current node to one of its children. The game will end after 2n moves, when the
token lands on a leaf. If the final leaf is black, Dirk dies; if it’s white, Dirk lives forever.
Dirk moves first, so Death gets the last turn.

(Yes, this is precisely the same game from Homework 3.)

∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧

∨ ∨ ∨

∨

Unfortunately, Dirk slept through Death’s explanation of the rules, so he decides to
just play randomly. Whenever it’s Dirk’s turn, he flips a fair coin and moves left on heads,
or right on tails, confident that the Fundamental Interconnectedness of All Things will
keep him alive, unless it doesn’t. Death plays much more purposefully, of course, always
choosing the move that maximizes the probability that Dirk loses the game.

(a) Describe an algorithm that computes the probability that Dirk wins the game against
Death.

(b) Realizing that Dirk is not taking the game seriously, Death gives up in desperation and
decides to also play randomly! Describe an algorithm that computes the probability
that Dirk wins the game again Death, assuming both players flip fair coins to decide
their moves.

For both algorithms, the input consists of the integer n (specifying the depth of the tree)
and an array of 4n bits specifying the colors of leaves in left-to-right order.

2

CS 473] Spring 2017
Y Midterm 2 Z

April 4, 2016

1. Let G = (V, E) be an arbitrary undirected graph. Suppose we color each vertex of G
uniformly and independently at random from a set of three colors: red, green, or blue. An
edge of G is monochromatic if both of its endpoints have the same color.

(a) What is the exact expected number of monochromatic edges? (Your answer should be
a simple function of V and E.)

(b) For each edge e ∈ E, define an indicator variable X e that equals 1 if e is monochromatic
and 0 otherwise. Prove that

Pr[(Xa = 1)∧ (X b = 1)] = Pr[Xa = 1] · Pr[X b = 1]

for every pair of edges a 6= b. This claim implies that the random variables X e are
pairwise independent.

(c) Prove that there is a graph G such that

Pr[(Xa = 1)∧ (X b = 1)∧ (X c = 1)] 6= Pr[Xa = 1] · Pr[X b = 1] · Pr[X c = 1]

for some triple of distinct edges a, b, c in G. This claim implies that the random
variables X e are not necessarily 3-wise independent.

2. The White Rabbit has a very poor memory, and so he is constantly forgetting his regularly
scheduled appointments with the Queen of Hearts. In an effort to avoid further beheadings
of court officials, The King of Hearts has installed an app on Rabbit’s pocket watch to
automatically remind Rabbit of any upcoming appointments. For each reminder Rabbit
receives, Rabbit has a 50% chance of actually remembering his appointment (decided by
an independent fair coin flip).

First, suppose the King of Hearts sends Rabbit k separate reminders for a single
appointment.

(a) What is the exact probability that Rabbit will remember his appointment? Your
answer should be a simple function of k.

(b) What value of k should the King choose so that the probability that Rabbit will
remember this appointment is at least 1− 1/nα? Your answer should be a simple
function of n and α.

Now suppose the King of Hearts sends Rabbit k separate reminders for each of n
different appointments. (That’s nk reminders altogether.)

(c) What is the exact expected number of appointments that Rabbit will remember? Your
answer should be a simple function of n and k.

(d) What value of k should the King choose so that the probability that Rabbit remembers
every appointment is at least 1 − 1/nα? Again, your answer should be a simple
function of n and α.

[Hint: There is a simple solution that does not use tail inequalities.]

1

CS 473 Midterm 2 Spring 2017

3. The Island of Sodor is home to an extensive rail network. Recently, several cases of a
deadly contagious disease (either swine flu or zombies; reports are unclear) have been
reported in the village of Ffarquhar. The controller of the Sodor railway plans to close
certain railway stations to prevent the disease from spreading to Tidmouth, his home town.
No trains can pass through a closed station. To minimize expense (and public notice), he
wants to close as few stations as possible. However, he cannot close the Ffarquhar station,
because that would expose him to the disease, and he cannot close the Tidmouth station,
because then he couldn’t visit his favorite pub.

Describe and analyze an algorithm to find the minimum number of stations that must
be closed to block all rail travel from Ffarquhar to Tidmouth. The Sodor rail network is
represented by an undirected graph, with a vertex for each station and an edge for each
rail connection between two stations. Two special vertices f and t represent the stations
in Ffarquhar and Tidmouth.

For example, given the following input graph, your algorithm should return the integer 2.

f t

4. The Department of Commuter Silence at Shampoo-Banana University has a flexible
curriculum with a complex set of graduation requirements. The department offers n
different courses, and there are m different requirements. Each requirement specifies a
subset of the n courses and the number of courses that must be taken from that subset.
The subsets for different requirements may overlap, but each course can only be used to
satisfy at most one requirement.

For example, suppose there are n = 5 courses A, B, C , D, E and m = 2 graduation
requirements:

• You must take at least 2 courses from the subset {A, B, C}.
• You must take at least 2 courses from the subset {C , D, E}.

Then a student who has only taken courses B, C , D cannot graduate, but a student who has
taken either A, B, C , D or B, C , D, E can graduate.

Describe and analyze an algorithm to determine whether a given student can graduate.
The input to your algorithm is the list of m requirements (each specifying a subset of the n
courses and the number of courses that must be taken from that subset) and the list of
courses the student has taken.

2

CS 473] Spring 2017
Y Final Exam Z

May 10, 2017

1. A three-dimensional matching in an undirected graph G is a collection of vertex-disjoint
triangles. A three-dimensional matching is maximal if it is not a proper subgraph of a
larger three-dimensional matching in the same graph.

(a) Let M and M ′ be two arbitrary maximal three-dimensional matchings in the same
underlying graph G. Prove that |M | ≤ 3 · |M ′|.

(b) Finding the largest three-dimensional matching in a given graph is NP-hard. Describe
and analyze a fast 3-approximation algorithm for this problem.

(c) Finding the smallest maximal three-dimensional matching in a given graph is NP-hard.
Describe and analyze a fast 3-approximation algorithm for this problem.

2. Let G = (V, E) be an arbitrary dag with a unique source s and a unique sink t. Suppose
we compute a random walk from s to t, where at each node v (except t), we choose an
outgoing edge v�w uniformly at random to determine the successor of v.

(a) Describe and analyze an algorithm to compute, for every vertex v, the probability
that the random walk visits v.

(b) Describe and analyze an algorithm to compute the expected number of edges in the
random walk.

Assume all relevant arithmetic operations can be performed exactly in O(1) time.

3. Consider the following solitaire game. The puzzle consists of an n×m grid of squares,
where each square may be empty, occupied by a red stone, or occupied by a blue stone.
The goal of the puzzle is to remove some of the given stones so that the remaining stones
satisfy two conditions: (1) every row contains at least one stone, and (2) no column
contains stones of both colors. For some initial configurations of stones, reaching this goal
is impossible.

A solvable puzzle and one of its many solutions. An unsolvable puzzle.

Prove that it is NP-hard to determine, given an initial configuration of red and blue
stones, whether the puzzle can be solved.

1

CS 473 Final Exam Spring 2017

4. Suppose you are given a bipartite graph G = (L t R, E) and a maximum matching M in G.
Describe and analyze fast algorithms for the following problems:

(a) Insert(e): Insert a new edge e into G and update the maximum matching. (You can
assume that e is not already an edge in G, and that G + e is still bipartite.)

(b) Delete(e): Delete the existing edge e from G and update the maximum matching.
(You can assume that e is in fact an edge in G.)

Your algorithms should modify M so that it is still a maximum matching, faster than
recomputing a maximum matching from scratch.

5. You are applying to participate in this year’s Trial of the Pyx, the annual ceremony where
samples of all British coinage are tested, to ensure that they conform as strictly as possible
to legal standards. As a test of your qualifications, your interviewer at the Worshipful
Company of Goldsmiths has given you a bag of n commemorative Alan Turing half-guinea
coins, exactly two of which are counterfeit. One counterfeit coin is very slightly lighter
than a genuine Turing; the other is very slightly heavier. Together, the two counterfeit
coins have exactly the same weight as two genuine coins. Your task is to identify the two
counterfeit coins.

The weight difference between the real and fake coins is too small to be detected by
anything other than the Royal Pyx Coin Balance. You can place any two disjoint sets
of coins in each of the Balance’s two pans; the Balance will then indicate which of the
two subsets has larger total weight, or that the two subsets have the same total weight.
Unfortunately, each use of the Balance requires completing a complicated authorization
form (in triplicate), submitting a blood sample, and scheduling the Royal Bugle Corps, so
you really want to use the Balance as few times as possible.

(a) Suppose you randomly choose n/2 of your n coins to put on one pan of the Balance,
and put the remaining n/2 coins on the other pan. What is the probability that the
two subsets have equal weight?

(b) Describe and analyze a randomized algorithm to identify the two fake coins. What
is the expected number of times your algorithm uses the Balance? To simplify the
algorithm, you may assume that n is a power of 2.

6. Suppose you are given a set L of n line segments in the plane, where each segment has
one endpoint on the vertical line x = 0 and one endpoint on the vertical line x = 1, and
all 2n endpoints are distinct. Describe and analyze an algorithm to compute the largest
subset of L in which no pair of segments intersects.

2

CS 473 Final Exam Spring 2017

Some Useful Inequalities

Let X =
∑n

i=1 X i , where each X i is a 0/1 random variable, and let µ= E[X].

• Markov’s Inequality: Pr[X ≥ x]≤ µ/x for all x > 0.

• Chebyshev’s Inequality: If X1, X2, . . . , Xn are pairwise independent, then for all δ > 0:

Pr[X ≥ (1+δ)µ]< 1
δ2µ

and Pr[X ≤ (1−δ)µ]< 1
δ2µ

• Chernoff Bounds: If X1, X2, . . . , Xn are fully independent, then for all 0< δ ≤ 1:

Pr[X ≥ (1+δ)µ]≤ exp
�−δ2µ/3

�
and Pr[X ≤ (1−δ)µ]≤ exp

�−δ2µ/2
�

Some Useful Algorithms

• Random(k): Returns an element of {1, 2, . . . , k}, chosen independently and uniformly at
random, in O(1) time. For example, Random(2) can be used for a fair coin flip.

• Ford and Fulkerson’s maximum flow algorithm: Returns a maximum (s, t)-flow f ∗ in a
given flow network in O(E · | f ∗|) time. If all input capacities are integers, then all output flow
values are also integers.

• Orlin’s maximum flow algorithm: Returns a maximum (s, t)-flow in a given flow network in
O(VE) time. If all input capacities are integers, then all output flow values are also integers.

• Orlin’s minimum-cost flow algorithm: Returns a minimum-cost flow in a given flow network
in O(E2 log2 V) time. If all input capacities, costs, and balances are integers, then all output
flow values are also integers.

Some Useful NP-hard Problems:

3Sat: Given a boolean formula in conjunctive normal form, with exactly three distinct literals per
clause, does the formula have a satisfying assignment?

MaxIndependentSet: Given an undirected graph G, what is the size of the largest subset of
vertices in G that have no edges among them?

MaxClique: Given an undirected graph G, what is the size of the largest complete subgraph of G?

MinVertexCover: Given an undirected graph G, what is the size of the smallest subset of vertices
that touch every edge in G?

MinSetCover: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subcollection whose union is S?

MinHittingSet: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the
smallest subset of S that intersects every subset Si?

3Color: Given an undirected graph G, can its vertices be colored with three colors, so that every
edge touches vertices with two different colors?

HamiltonianCycle: Given a graph G (either directed or undirected), is there a cycle in G that
visits every vertex exactly once?

FeasibleILP: Given a matrix A∈ Zn×d and a vector b ∈ Zn, determine whether the set of feasible
integer points max{x ∈ Zd | Ax ≤ b, x ≥ 0} is empty.

HydraulicPress: And here ve go!

3

CS 473 Final Exam Spring 2017

Common Grading Rubrics
(For problems out of 10 points)

General Principles:

• Faster algorithms are worth more points, and slower algorithms are worth fewer points,
typically by 2 or 3 points (out of 10) for each factor of n. Partial credit is scaled to the new
maximum score, and all points above 10 are recorded as extra credit.

• A clear, correct, and correctly analyzed algorithm, no matter how slow, is always worth more
than “I don’t know”. An incorrect algorithm, no matter how fast, may be worth nothing.

• Proofs of correctness are required on exams if and only if we explicitly ask for them.

Dynamic Programming:

• 3 points for a clear English specification of the underlying recursive function= 2 for describing
the function itself + 1 for describing how to call the function to get your final answer. We want
an English description of the underlying recursive problem, not just the algorithm/recurrence.
In particular, your description should specify precisely the role of each input parameter. No
credit for the rest of the problem if the English description is is missing; this is a Deadly
Sin.

• 4 points for correct recurrence = 1 for base case(s) + 3 for recursive case(s). No credit for
iterative details if the recursive case(s) are incorrect.

• 3 points for iterative details = 1 for memoization structure + 1 for evaluation order + 1 for
time analysis. Complete iterative pseudocode is not required for full credit.

Graph Reductions:

• 4 points for a complete description of the relevant graph, including vertices, edges (including
whether directed or undirected), numerical data (weights, lengths, capacities, costs, balances,
and the like), source and target vertices, and so on. If the graph is part of the original input,
just say that.

• 4 points for other details of the reduction, including how to build the graph from the original
input, the precise problem to be solved on the graph, the precise algorithm used to solve that
problem, and how to extract your final answer from the output of that algorithm.

• 2 points for running time of the overall algorithm, expressed as a function of the original input
parameters, not just the number of vertices and edges in the graph.

NP-hardness Proofs:

• 3 points for a complete description of the reduction, including an appropriate NP-hard problem
to reduce from, how to transform the input, and how to transform the output.

• 6 points for the proof of correctness = 3 for the “if” part + 3 for the “only if” part.

• 1 points for “polynomial time”.

4

