
CS 473 ] Spring 2017

Y Homework 2 Z
Due Wednesday, February 8, 2017 at 8pm

There are only two problems, but the first one counts double.

1. Suppose you are given a two-dimensional array M[1 .. n, 1 .. n] of numbers, which could
be positive, negative, or zero, and which are not necessarily integers. The maximum
subarray problem asks to find the largest sub of elements in any contiguous subarray
of the form M[i .. i′, j .. j′]. In this problem we’ll develop an algorithm for the maximum
subarray problem that runs in O(n3) time.

The algorithm is a combination of divide and conquer and dynamic programming.
Let L be a horizontal line through M that splits the rows (roughly) in half. After some
preprocessing, the algorithm finds themaximum-sum subarray that crosses L, themaximum-
sum subarray above L, and the maximum-sum subarray below L. The first subarray is
found by dynamic programming; the last two subarrays are found recursively.

(a) For any indices i and j, let Sum(i, j) denote the sum of all elements in the subarray
M[1 .. i, 1 .. j]. Describe an algorithm to compute Sum(i, j) for all indices i and j in
O(n2) time.

(b) Describe a simple(!!) algorithm to solve the maximum subarray problem in O(n4)
time, using the output of your algorithm for part (a).

(c) Describe an algorithm to find the maximum-sum subarray that crosses L in O(n3)
time, using the output of your algorithm for part (a). [Hint: Consider the top half and
the bottom half of M separately.]

(d) Describe a divide-and-conquer algorithm to find the maximum-sum subarray in M
in O(n3) time, using your algorithm for part (c) as a subroutine. [Hint: Why is the
running time O(n3) and not O(n3 log n)?]

In fact, the subproblem in part (c) — and thus the entire maximum subarray problem —
can be solved in n3/2Ω(

p
log n) time using a recent algorithm of Ryan Williams. Williams’

algorithm can also be used to compute all-pairs shortest paths in the same slightly subcubic
running time. The divide-and0-conquer strategy itself is due to Tadao Takaoka.

There is a simpler O(n3)-time algorithm for the maximum subarray problem, based on
Kadane’s O(n)-time algorithm for the one-dimensional problem. (For every pair of indices i
and i′, find the best subarray of the form M[i .. i′, j .. j′] in O(n) time.) It’s unclear whether
this approach can be sped up using Williams’ algorithm (or its predecessors) without the
divide-and-conquer layer.

An algorithm for the maximum subarray problem (or all-pairs shortest paths) that runs
in O(n2.99999999) time would be a major breakthrough.

https://arxiv.org/abs/1312.6680
https://cosc.canterbury.ac.nz/tad.takaoka/cats02.pdf
https://en.wikipedia.org/wiki/Maximum_subarray_problem


CS 473 Homework 2 (due February 8) Spring 2017

2. The Doctor and River Song decide to play a game on a directed acyclic graph G, which has
one source s and one sink t.¹

Each player has a token on one of the vertices of G. At the start of the game, The
Doctor’s token is on the source vertex s, and River’s token is on the sink vertex t. The
players alternate turns, with The Doctor moving first. On each of his turns, the Doctor
moves his token forward along a directed edge; on each of her turns, River moves her
token backward along a directed edge.

If the two tokens ever meet on the same vertex, River wins the game. (“Hello, Sweetie!”)
If the Doctor’s token reaches t or River’s token reaches s before the two tokens meet, then
the Doctor wins the game.

Describe and analyze an algorithm to determine who wins this game, assuming both
players play perfectly. That is, if the Doctor can win no matter how River moves, then your
algorithm should output “Doctor”, and if River can win no matter how the Doctor moves,
your algorithm should output “River”. (Why are these the only two possibilities?) The
input to your algorithm is the graph G.

¹The labels s and t may be abbreviations for the Untempered Schism and the Time Vortex, or the Shining World of
the Seven Systems (otherwise known as Gallifrey) and Trenzalore, or Skaro and Telos, or Something else Timey-wimey.

2


