CS/ECE 374 A 4 Spring 2018

» Homework o &
Due Tuesday, January 23, 2018 at 8pm

* Each student must submit individual solutions for this homework. For all future
homeworks, groups of up to three students can submit joint solutions.

* Submit your solutions electronically to Gradescope as PDF files. Submit a separate
PDF file for each numbered problem. If you plan to typeset your solutions, please use the
KEIX solution template on the course web site. If you must submit scanned handwritten
solutions, please use a black pen on blank white paper and a high-quality scanner app (or
an actual scanner).

* You are not required to sign up on Gradescope or Piazza with your real name and your
illinois.edu email address; you may use any email address and alias of your choice. However,
to give you credit for the homework, we need to know who Gradescope thinks you are.
Please fill out the web form linked from the course web page.

Some important course policies

* You may use any source at your disposal—paper, electronic, or human—but you must
cite every source that you use, and you must write everything yourself in your own words.
See the academic integrity policies on the course web site for more details.

* The answer “I don’t know” (and nothing else) is worth 25% partial credit on any required
problem or subproblem on any homework or exam. We will accept synonyms like “No
idea” or “WTF” or “\ (6_0) /”, but you must write something.

On the other hand, only the homework problems you submit actually contribute to your
overall course grade, so submitting “I don’t know” for an entire numbered homework
problem will almost certainly hurt your grade more than submitting nothing at all.

e Avoid the Three Deadly Sins! Any homework or exam solution that breaks any of the
following rules will be given an automatic zero, unless the solution is otherwise perfect.
Yes, we really mean it. We're not trying to be scary or petty (Honest!), but we do want to
break a few common bad habits that seriously impede mastery of the course material.

— Always give complete solutions, not just examples.

— Always declare all your variables, in English. In particular, always describe the specific
problem your algorithm is supposed to solve.
- Never use weak induction.

See the course web site for more information.

If you have any questions about these policies,
please don’t hesitate to ask in class, in office hours, or on Piazza.

CS/ECE 374 A Homework o (due January 23) Spring 2018

1. The famous Basque computational arborist Gorka Oihanean has a favorite 26-node binary
tree, in which each node is labeled with a letter of the alphabet. Intorder and postorder
traversals of his tree visits the nodes in the following orders:

Inorder: F EVIBHNXGWAZODIJISRMUTCKQPLY
Postorder: F VB I ENAZWGXJSDMUROHKCQYLPT

(a) List the nodes in Professor Oihanean’s tree according to a preorder traversal.
(b) Draw Professor Oihanean’s tree.

You do not need to prove that your answers are correct.

2. For any string w € {0, 1}*, let swap(w) denote the string obtained from w by swapping the
first and second symbols, the third and fourth symbols, and so on. For example:

swap(10110001101)=0111001001 1.

The swap function can be formally defined as follows:

£ ifw=e¢
swap(w):={ w ifw=0orw=1

ba * swap(x) if w=abx for some a,b € {0,1} and x € {0, 1}*

(a) Prove by induction that |swap(w)| = |w| for every string w.
(b) Prove by induction that swap(swap(w)) = w for every string w.

You may assume without proof that |[x ¢ y| = |x| + |y|, or any other result proved in class,
in lab, or in the lecture notes. Otherwise, your proofs must be formal and self-contained,
and they must invoke the formal definitions of length |w|, concatenation ¢, and the swap
function. Do not appeal to intuition!

3. Consider the set of strings L. € {0, 1}* defined recursively as follows:
* The empty string ¢ is in L.
* For any string x in L, the string Ox is also in L.

* For any strings x and y in L, the string 1x1y is also in L.
* These are the only strings in L.

(a) Prove that the string 101110101101011 isin L.
(b) Prove that every string w € L contains an even number of 1s.
(c) Prove that every string w € {0, 1}* with an even number of 1s is a member of L.

Let #(a,w) denote the number of times symbol a appears in string w; for example,
#(0,101110101101011)=5 and #(1,101110101101011)= 10.

You may assume without proof that #(a,uv) = #(a,u) + #(a,v) for any symbol a and
any strings u and v, or any other result proved in class, in lab, or in the lecture notes.
Otherwise, your proofs must be formal and self-contained.

CS/ECE 374 A Homework o (due January 23) Spring 2018

Each homework assignment will include at least one solved problem, similar to the problems
assigned in that homework, together with the grading rubric we would apply if this problem
appeared on a homework or exam. These model solutions illustrate our recommendations for
structure, presentation, and level of detail in your homework solutions. Of course, the actual
content of your solutions won’t match the model solutions, because your problems are different!

Solved Problems

4. The reversal wR of a string w is defined recursively as follows:

€ ifw=e¢

xRea ifw=a-x

A palindrome is any string that is equal to its reversal, like AMANAPLANACANALPANAMA,
RACECAR, POOP, I, and the empty string.

(a) Give a recursive definition of a palindrome over the alphabet 3.

(b) Prove w = wR for every palindrome w (according to your recursive definition).

(c) Prove that every string w such that w = w® is a palindrome (according to your
recursive definition).

You may assume without proof the following statements for all strings x, y, and z:

* Reversal reversal: (xF)R = x

* Concatenation reversal: (x ® y)f = yR ¢ xR

e Right cancellation: If x 2 =y * 2, then x = y.

Solution:

(a) A string w € ¥* is a palindrome if and only if either
* w=g,or
* w = qa for some symbol a € %, or
* w = axa for some symbol a € ¥; and some palindrome x € ¥*.

Rubric: 2 points = ¥ for each base case + 1 for the recursive case. No credit for
the rest of the problem unless this part is correct.

(b) Let w be an arbitrary palindrome.
Assume that x = x® for every palindrome x such that |x| < |w|.
There are three cases to consider (mirroring the definition of “palindrome”):

e If w =g, then wR = ¢ by definition, so w = w&.
* If w=a for some symbol a € %, then wR = a by definition, so w = wk.

* Finally, suppose w = axa for some symbol a € % and some palindrome

CS/ECE 374 A Homework o (due January 23) Spring 2018

x € P. In this case, we have

wh=(a -xe*a)l
=(x*a)fea by definition of reversal
=afexReq by concatenation reversal
=a*xReq by definition of reversal
=a°x°a by the inductive hypothesis
=w by assumption
In all three cases, we conclude that w = wR. [|

Rubric: 4 points: standard induction rubric (scaled)

(c) Let w be an arbitrary string such that w = wR.
Assume that every string x such that |x| < |w| and x = xR is a palindrome.
There are three cases to consider (mirroring the definition of “palindrome”):

* If w=¢, then w is a palindrome by definition.
e If w = a for some symbol a € %, then w is a palindrome by definition.
* Otherwise, we have w = ax for some symbol a and some non-empty string x.
The definition of reversal implies that w® = (ax)® = xRa.
Because x is non-empty its reversal x* is also non-empty.
Thus, xR = by for some symbol b and some string y.
It follows that wR = bya, and therefore w = (W*)R = (bya)R = ay®b.

[At this point, we need to prove that a = b and that y is a palindrome.]

Our assumption that w = wR implies that bya = ay®b.
The recursive definition of string equality immediately implies a = b.

Because a = b, we have w = ay®a and wR = aya.

The recursive definition of string equality implies y®a = ya.
Right cancellation implies that y® = y.

The inductive hypothesis now implies that y is a palindrome.

We conclude that w is a palindrome by definition.

In all three cases, we conclude that w is a palindrome. [|

Rubric: 4 points: standard induction rubric (scaled).

CS/ECE 374 A Homework o (due January 23) Spring 2018

Standard induction rubric. For problems worth 10 points:

+ 1 for explicitly considering an arbitrary object.
+ 2 for a valid strong induction hypothesis

— Deadly Sin! Automatic zero for stating a weak induction hypothesis, unless the rest of
the proof is absolutely perfect.

+ 2 for explicit exhaustive case analysis

No credit here if the case analysis omits an infinite number of objects. (For example: all
odd-length palindromes.)

—1 if the case analysis omits an finite number of objects. (For example: the empty string.)

—1 for making the reader infer the case conditions. Spell them out!

No penalty if the cases overlap (for example: even length at least 2, odd length at least
3, and length at most 5.)

+ 1 for cases that do not invoke the inductive hypothesis (“base cases”)
— No credit here if one or more “base cases” are missing.
+ 2 for correctly applying the stated inductive hypothesis

— No credit here for applying a different inductive hypothesis, even if that different
inductive hypothesis would be valid.

+ 2 for other details in cases that invoke the inductive hypothesis (“inductive cases”)
— No credit here if one or more “inductive cases” are missing.

For (sub)problems worth less than 10 points, scale and round to the nearest half-integer.

CS/ECE 374 A 4 Spring 2018

» Homework 1 &
Due Tuesday, January 30, 2018 at 8pm

Starting with this homework, groups of up to three people can submit joint solutions. Each
problem should be submitted by exactly one person, and the beginning of the homework should
clearly state the Gradescope names and email addresses of each group member. In addition,
whoever submits the homework must tell Gradescope who their other group members are.

1. For each of the following languages over the alphabet {0, 1}, give a regular expression that

describes that language, and briefly argue why your expression is correct.

(a) All strings except 001.

(b) All strings that end with the suffix 001001.

(c) All strings that contain the substring 001.

(d) All strings that contain the subsequence 001.

(e) All strings that do not contain the substring 001.

(f) All strings that do not contain the subsequence 001.

2. Let L denote the set of all strings in {0, 1}* that contain all four strings 00, 01, 10, and

11 as substrings. For example, the strings 110011 and 01001011101001 are in L, but
the strings 00111 and 1010101 are not.

Formally describe a DFA with input alphabet 3 = {0, 1} that accepts the language L,
by explicitly describing the states Q, the start state s, the accept states A, and the transition
function §. Do not attempt to draw your DFA; the smallest DFA for this language has 20
states, which is too many for a drawing to be understandable.

Argue that your machine accepts every string in L and nothing else, by explaining
what each state in your DFA means. Formal descriptions without English explanations will
receive no credit, even if they are correct. (See the standard DFA rubric for more details.)

This is an exercise in clear communication. We are not only asking you to design a
correct DFA. We are also asking you to clearly, precisely, and convincingly explain your DFA
to another human being who understands DFAs but has not thought about this particular
problem. Excessive formality and excessive brevity will hurt you just as much as imprecision
and handwaving.

CS/ECE 374A Homework 1 (due January 30) Spring 2018

3. Let L be the set of all strings in {0, 1}* that contain exactly one occurrence of the substring
010.

(a) Give a regular expression for L, and briefly argue why your expression is correct.
[Hint: You may find the shorthand notation A* = AA* useful.]

(b) Describe a DFA over the alphabet 3 = {0, 1} that accepts the language L.

Argue that your machine accepts every string in L and nothing else, by explaining
what each state in your DFA means. You may either draw the DFA or describe it
formally, but the states Q, the start state s, the accepting states A, and the transition
function 6 must be clearly specified. Drawings or formal descriptions without English
explanations will receive no credit, even if they are correct.

CS/ECE 374A Homework 1 (due January 30) Spring 2018

Solved problem

4. C comments are the set of strings over alphabet >} = {*, /,A, o, /} that form a proper
comment in the C program language and its descendants, like C++ and Java. Here .
represents the newline character, ¢ represents any other whitespace character (like
the space and tab characters), and A represents any non-whitespace character other
than * or /.! There are two types of C comments:

e Line comments: Strings of the form //---

* Block comments: Strings of the form /*--- %/

Following the Cgg standard, we explicitly disallow nesting comments of the same type.
A line comment starts with // and ends at the first [after the opening //. A block
comment starts with /* and ends at the the first */ completely after the opening /*; in
particular, every block comment has at least two *s. For example, each of the following
strings is a valid C comment:

[xx%] /]o]]od [x]]]oxodwx/ [x0/]odox/
On the other hand, none of the following strings is a valid C comment:

/*/ Ry [*o/*ox[ox/

(a) Describe a regular expression for the set of all C comments.

Solution:
[1U +x+A+0)d + /5 (/+A+o+d+xx*(A+o+) **x/

The first subexpression matches all line comments, and the second subexpression
matches all block comments. Within a block comment, we can freely use any
symbol other than *, but any run of *s must be followed by a character in
(A+ o+ J) or by the closing slash of the comment. []

IThe actual C commenting syntax is considerably more complex than described here, because of character and
string literals.
e The opening /* or // of a comment must not be inside a string literal (" ---") or a (multi-)character literal
(- n.
* The opening double-quote of a string literal must not be inside a character literal (' " ') or a comment.
* The closing double-quote of a string literal must not be escaped (\")
* The opening single-quote of a character literal must not be inside a string literal (""--- ' ---") or a comment.
* The closing single-quote of a character literal must not be escaped (\ ’)
* A backslash escapes the next symbol if and only if it is not itself escaped (\\) or inside a comment.
For example, the string " /*\\\"*/"/*"/*\" /%" / is a valid string literal (representing the s-character string
/*\ "\ */, which is itself a valid block comment!) followed immediately by a valid block comment. For this homework
question, just pretend that the characters ', ", and \ don’t exist.
Commenting in C++ is even more complicated, thanks to the addition of raw string literals. Don’t ask.
Some C and C++ compilers do support nested block comments, in violation of the language specification. A few
other languages, like OCaml, explicitly allow nesting block comments.

CS/ECE 374A Homework 1 (due January 30) Spring 2018

Rubric: Standard regular expression rubric

(b) Describe a regular expression for the set of all strings composed entirely of blanks (¢),
newlines (), and C comments.

Solution:
(o+d + //(/+*+A+0Yd+ /([+A+ o+ d++x*(A+ o+ 1)) xx*/)*

This regular expression has the form ({whitespace) + (comment))*, where
(whitespace) is the regular expression ¢ + ./ and (comment) is the regular
expression from part (a). [|

Rubric: Standard regular expression rubric

(c) Describe a DFA that accepts the set of all C comments.

Solution: The following eight-state DFA recognizes the language of C comments.
All missing transitions lead to a hidden reject state.

8—“

/*Ao

/
() /
— /A0d *

N
.
Aod

The states are labeled mnemonically as follows:

e s — We have not read anything.

* / — We just read the initial /.

* // — We are reading a line comment.

e L — We have just read a complete line comment.

* /* — We are reading a block comment, and we did not just read a * after
the opening / *.

e /** — We are reading a block comment, and we just read a x after the
opening /*.

* B — We have just read a complete block comment.

Rubric: Standard DFA design rubric

CS/ECE 374A Homework 1 (due January 30) Spring 2018

(d) Describe a DFA that accepts the set of all strings composed entirely of blanks (¢),
newlines (), and C comments.

Solution: By merging the accepting states of the previous DFA with the start
state and adding white-space transitions at the start state, we obtain the following
six-state DFA. Again, all missing transitions lead to a hidden reject state.

/*Ao
od
y
—QO
/ *
*
Aod

The states are labeled mnemonically as follows:

* s — We are between comments.

* / — We just read the initial / of a comment.

* // — We are reading a line comment.

* /* — We are reading a block comment, and we did not just read a * after
the opening /*.

e /** — We are reading a block comment, and we just read a * after the
opening /*.

Rubric: Standard DFA design rubric

CS/ECE 374A Homework 1 (due January 30) Spring 2018

Standard regular expression rubric. For problems worth 10 points:

e 2 points for a syntactically correct regular expression.

* Homework only: 4 points for a brief English explanation of your regular expression.
This is how you argue that your regular expression is correct.

— Deadly Sin (“Declare your variables.”): No credit for the problem if the
English explanation is missing, even if the regular expression is correct.

— For longer expressions, you should explain each of the major components of your
expression, and separately explain how those components fit together.

— We do not want a transciption; don’t just translate the regular-expression notation
into English.

* 4 points for correctness. (8 points on exams, with all penalties doubled)

— —1 for a single mistake: one typo, excluding exactly one string in the target language,
or including exactly one string not in the target language.

— —2 for incorrectly including/excluding more than one but a finite number of strings.

— —4 for incorrectly including/excluding an infinite number of strings.

* Regular expressions that are longer than necessary may be penalized. Regular expres-
sions that are significantly longer than necessary may get no credit at all.

Standard DFA design rubric. For problems worth 10 points:

e 2 points for an unambiguous description of a DFA, including the states set Q, the start
state s, the accepting states A, and the transition function &.

— For drawings: Use an arrow from nowhere to indicate s, and doubled circles to
indicate accepting states A. If A= &, say so explicitly. If your drawing omits a reject
state, say so explicitly. Draw neatly! If we can’t read your solution, we can’t give
you credit for it,.

— For text descriptions: You can describe the transition function either using a 2d
array, using mathematical notation, or using an algorithm.

— For product constructions: You must give a complete description of the states
and transition functions of the DFAs you are combining (as either drawings or text),
together with the accepting states of the product DFA.

* Homework only: 4 points for briefly and correctly explaining the purpose of each state
in English. This is how you justify that your DFA is correct.

— Deadly Sin (“Declare your variables.”): No credit for the problem if the
English description is missing, even if the DFA is correct.
— For product constructions, explaining the states in the factor DFAs is sufficient.

* 4 points for correctness. (8 points on exams, with all penalties doubled)

— —1 for a single mistake: a single misdirected transition, a single missing or extra
accept state, rejecting exactly one string that should be accepted, or accepting
exactly one string that should be accepted.

— —2 for incorrectly accepting/rejecting more than one but a finite number of strings.

— —4 for incorrectly accepting/rejecting an infinite number of strings.

* DFA drawings with too many states may be penalized. DFA drawings with significantly
too many states may get no credit at all.

* Half credit for describing an NFA when the problem asks for a DFA.

CS/ECE 374 A 4 Spring 2018

» Homework 2 &
Due Tuesday, February 6, 2018 at 8pm

1. Prove that the following languages are not regular.

(@) {0910°10° | a+b=c}
() {we(@+1) | #(0,w) <2-#(1,w)}
(© {Oml" | m+n> 0 and ged(m,n) = 1}
Here gcd(m,n) denotes the greatest common divisor of m and n: the largest

integer d such that both m/d and n/d are integers. In particular, gcd(1,n) =1 and
gcd(0, n) = n for every positive integer n.

2. For each of the following regular expressions, describe or draw two finite-state machines:
* An NFA that accepts the same language, constructed from the given regular expression
using Thompson’s algorithm (described in class and in the notes).

* An equivalent DFA, constructed from your NFA using the incremental subset algorithm
(described in class and in the notes). For each state in your DFA, identify the
corresponding subset of states in your NFA. Your DFA should have no unreachable
states.

(@) (0+1)*-0001-(0+1)*
() (1+01+001)*0*

3. For each of the following languages over the alphabet > = {0, 1}, either prove that the
language is regular (by constructing an appropriate DFA, NFA, or regular expression) or
prove that the language is not regular (by constructing an infinite fooling set). Recall
that ©* denotes the set of all nonempty strings over .

(a) Stringsin which the substrings 00 and 11 do not appear the same number of times. For
example, 1100011 ¢ L because both substrings appear twice, but 01000011 € L.

(b) Strings in which the substrings ©1 and 10 do not appear the same number of times. For
example, 1100011 € L because both substrings appear twice, but 01000011 € L.

() {wa | w,Xx € E*}

(d {wa | w,x € ZI+}

[Hint: Exactly two of these languages are regular. Strings can be empty.]

CS/ECE 374A Homework 2 (due February 6) Spring 2018

Solved problem

4. For each of the following languages, either prove that the language is regular (by con-
structing an appropriate DFA, NFA, or regular expression) or prove that the language is not
regular (by constructing an infinite fooling set).

Recall that a palindrome is a string that equals its own reversal: w = wR. Every string of
length 0 or 1 is a palindrome.

(a) Strings in (0 + 1)* in which no prefix of length at least 2 is a palindrome.

Solution: Regular: ¢ + 01"+ 10*. Call this language L,.

Let w be an arbitrary non-empty string in (0 + 1)*. Without loss of generality,
assume w = Qx for some string x. There are two cases to consider.

* If x contains a 0, then we can write w = 01" 0y for some integer n and some
string y; but this is impossible, because the prefix ©1"0 is a palindrome of
length at least 2.

* Otherwise, x = 1" for some integer n. Every prefix of w has the form 01™
for some integer m < n. Any palindrome that starts with @ must end with 0,
so the only palindrome prefixes of w are € and 0, both of which have length
less than 2.

We conclude that 0x € L, if and only if x € 1*. A similar argument implies that
1x € L, if and only if x € 0*. Finally, trivially, € € L,,. [|

Rubric: 2% points = Y for “regular” + 1 for regular expression + 1 for justification. This
is more detail than necessary for full credit.

(b) Strings in (0 + 1 + 2)* in which no prefix of length at least 2 is a palindrome.

Solution: Not regular. Call this language L.
I claim that the infinite language F = (012)" is a fooling set for L.
Let x and y be arbitrary distinct strings in F.
Then x = (012)' and y = (012) for some positive integers i # j.
Without loss of generality, assume i < j.
Let z be the suffix (210)'.
» xz=(012){(210)! is a palindrome of length 6i > 2, so xz & L.
* yz =(012)(210)! has no palindrome prefixes except ¢ and 0, because
1<j,s0 yz € Ly.
We conclude that F is a fooling set for Ly, as claimed.
Because F is infinite, L; cannot be regular. [|

Rubric: 2% points = ¥ for “not regular” + 2 for fooling set proof (standard rubric,
scaled).

CS/ECE 374A Homework 2 (due February 6) Spring 2018

(c) Strings in (0 4+ 1)* in which no prefix of length at least 3 is a palindrome.

Solution: Not regular. Call this language L..

I claim that the infinite language F = (001101)" is a fooling set for L..

Let x and y be arbitrary distinct strings in F.

Then x = (001101)" and y = (001101) for some positive integers i # j.

Without loss of generality, assume i < j.

Let z be the suffix (101100).
e xz2=(001101){(101100)' is a palindrome of length 12i > 2, so xz & L.
s yz =(001101)/(101100)' has no palindrome prefixes except £ and 0,

because i < j, so yz € L.
We conclude that F is a fooling set for L, as claimed.
Because F is infinite, L. cannot be regular. [|

Rubric: 2% points = ¥ for “not regular” + 2 for fooling set proof (standard rubric,
scaled).

(d) Strings in (0 + 1)* in which no substring of length at least 3 is a palindrome.

Solution: Regular. Call this language L.

Every palindrome of length at least 3 contains a palindrome substring of
length 3 or 4. Thus, the complement language L, is described by the regular
expression

(0+1)(000+010+101+111+0110+1001)(0+ 1)*

Thus, L, is regular, so its complement L, is also regular. []

Solution: Regular. Call this language L.
In fact, L, is finite! Appending either O or 1 to any of the underlined strings
creates a palindrome suffix of length 3 or 4.

£e+0+1+00+01+10+11+001+011+100+110+0011+1100

Rubric: 2% points = % for “regular” + 2 for proof:

e 1 for expression for E + 1 for applying closure
* 1 for regular expression + 1 for justification

CS/ECE 374A Homework 2 (due February 6)

Spring 2018

Standard fooling set rubric. For problems worth 5 points:

* 2 points for the fooling set:
+ 1 for explicitly describing the proposed fooling set F.
+ 1 if the proposed set F is actually a fooling set for the target language.

— No credit for the proof if the proposed set is not a fooling set.
— No credit for the problem if the proposed set is finite.

* 3 points for the proof:
o The proof must correctly consider arbitrary strings x,y € F.
— No credit for the proof unless both x and y are always in F.
— No credit for the proof unless x and y can be any strings in F.
+ 1 for correctly describing a suffix z that distinguishes x and y.
+ 1 for proving either xz € L or yz € L.
+ 1 for proving either yz € L or xz & L, respectively.

As usual, scale partial credit (rounded to nearest %2) for problems worth fewer points.

CS/ECE 374 A 4 Spring 2018

+ Homework 3 &u
Due Tuesday, February 13, 2018 at 8pm

1. Describe context-free grammars for the following languages over the alphabet ¥ = {0, 1}.
For each non-terminal in your grammars, describe in English the language generated by
that non-terminal.

(@) {0°10°10°|a+b=c}
) {we(@+1) | #(0,w) <2-#(1,w)}

(c) Strings in which the substrings 00 and 11 appear the same number of times. For
example, 1100011 € L because both substrings appear twice, but 01000011 ¢ L.
[Hint: This is the complement of the language you considered in HW2.]

2. Let inc: {0,1}* — {0, 1}* denote the increment function, which transforms the binary
representation of an arbitrary integer n into the binary representation of n + 1, truncated
to the same number of bits. For example:

inc(0010)=0011 inc(0111)= 1000 inc(1111) = 0000 inc(e) =¢
Let L € {0, 1}* be an arbitrary regular language. Prove that inc(L) = {inc(w) | w € L} is

also regular.

3. A shuffle of two strings x and y is any string obtained by interleaving the symbols in x
and y, but keeping them in the same order. For example, the following strings are shuffles
of HOGWARTS and BRAKEBILLS:

HOGWARTSBRAKEBILLS HOGBRAKEWARTSBILLS BHROAGKWEABRITLSLS

More formally, a string z is a shuffle of strings x and y if and only if (at least) one of the
following conditions holds:

e x=¢andz=y
e y=¢gandz=x
* x =ax’ and z = az’ where 2’ is a shuffle of x’ and y

* y =ay’ and z = az’ where 2’ is a shuffle of x and y’

For any two languages L and L’ over the alphabet {0, 1}, define
shuffles(L,L") = {z e{0,1}* | z is a shuffle of some x €L and y € L’}

Prove that if L and L’ are regular languages, then shuffles(L,L’) is also a regular language.

CS/ECE 374A Homework 3 (due February 13) Spring 2018

Solved problem

4. (a) Fix an arbitrary regular language L. Prove that the language half(L) := {w | ww € L}
is also regular.

Solution: Let M = (X, Q,s,A, &) be an arbitrary DFA that accepts L. We define a
new NFA M’ = (%,Q’,s’,A’, 8") with e-transitions that accepts half(L), as follows:

Q' =Qx*xQxQu{s}
s’ is an explicit state in Q’
A" ={(h,h,q)| h€eQand q € A}

5'(s’,e)={(s,h,h) | h€Q}
5'(s’,a) =@

6/((Pah: Q), 8) =g
5'((p,h,q),a) = {(6(p,a),h,5(g,a))}

M’ reads its input string w and simulates M reading the input string ww.
Specifically, M’ simultaneously simulates two copies of M, one reading the left
half of ww starting at the usual start state s, and the other reading the right half
of ww starting at some intermediate state h.

* The new start state s’ non-deterministically guesses the “halfway” state
h = 6*(s, w) without reading any input; this is the only non-determinism
in M’.

 State (p, h,q) means the following:

— The left copy of M (which started at state s) is now in state p.
— The initial guess for the halfway state is h.
— The right copy of M (which started at state h) is now in state q.

e M’ accepts if and only if the left copy of M ends at state h (so the initial
non-deterministic guess h = 6*(s, w) was correct) and the right copy of M
ends in an accepting state.

Solution (smartass): A complete solution is given in the lecture notes. [|

Rubric: 5 points: standard langage transformation rubric (scaled). Yes, the smartass
solution would be worth full credit.

CS/ECE 374A

Homework 3 (due February 13)

Spring 2018

(b) Describe a regular language L such that the language double(L) := {ww |w € L} is
not regular. Prove your answer is correct.

Solution: Consider the regular language L = 0*1.
Expanding the regular expression lets us rewrite L = {0"1 | n > 0}. It

that double(L) = {0"10"1 | n > 0}. I claim that this language is not regular.

Let x and y be arbitrary distinct strings in L.

Then x = 0’1 and y = 0/1 for some integers i # j.

Then x is a distinguishing suffix of these two strings, because
* xx € double(L) by definition, but
o yx =0'10/1 & double(L) because i # j.

We conclude that L is a fooling set for double(L).

Because L is infinite, double(L) cannot be regular.

follows

Solution: Consider the regular language L = * = (0 + 1)*.

I claim that the language double(~*) = {ww | w € ©*} is not regular.

Let F be the infinite language 01*0.

Let x and y be arbitrary distinct strings in F.

Then x = 01'0 and y = 0170 for some integers i # j.

The string z = 1' is a distinguishing suffix of these two strings, because
e xz2=01'01" = ww where w = 01/, so xz € double(=*), but
e yx =01/01" & double(=*) because i # j.

We conclude that F is a fooling set for double(%*).

Because F is infinite, double(%*) cannot be regular.

Rubric: 5 points:

* 2 points for describing a regular language L such that double(L) is not re
e 1 point for describing an infinite fooling set for double(L):

+ Y4 for explicitly describing the proposed fooling set F.

+ Y if the proposed set F is actually a fooling set.

— No credit for the proof if the proposed set is not a fooling set.
— No credit for the problem if the proposed set is finite.

e 2 points for the proof:

+ ¥ for correctly considering arbitrary strings x and y
— No credit for the proof unless both x and y are always in F.
— No credit for the proof unless both x and y can be any string in F.

+ YA for correctly stating a suffix z that distinguishes x and y.

+ ¥ for proving either xz € L or yz € L.

+ Y5 for proving either yz ¢ L or xz ¢ L, respectively.
These are not the only correct solutions. These are not the only fooling sets
languages.

gular.

for these

CS/ECE 374A Homework 3 (due February 13) Spring 2018

Standard langage transformation rubric. For problems worth 10 points:

+ 2 foraformal, complete, and unambiguous description of the output automaton, including
the states, the start state, the accepting states, and the transition function, as functions
of an arbitrary input DFA. The description must state whether the output automaton is a
DFA, an NFA without e-transitions, or an NFA with e-transitions.

* No points for the rest of the problem if this is missing.

+ 2 for a brief English explanation of the output automaton. We explicitly do not want a
formal proof of correctness, or an English transcription, but a few sentences explaining
how your machine works and justifying its correctness. What is the overall idea? What do
the states represent? What is the transition function doing? Why these accepting states?

* Deadly Sin: No points for the rest of the problem if this is missing.
+ 6 for correctness
+ 3 for accepting all strings in the target language
+ 3 for accepting only strings in the target language
— 1 for a single mistake in the formal description (for example a typo)
* Double-check correctness when the input language is &, or {€}, or 0%, or ©*.

CS/ECE 374 A 4 Spring 2018

+ Homework 4 eu
Due Tuesday, February 27, 2018 at 8pm

1. At the end of the second act of the action blockbuster Fast and Impossible XIII34: Guardians
of Expendable Justice Reloaded, the villainous Dr. Metaphor hypnotizes the entire Hero
League/Force/Squad, arranges them in a long line at the edge of a cliff, and instructs each
hero to shoot the closest taller heroes to their left and right, at a prearranged signal.

Suppose we are given the heights of all n heroes, in clockwise order around the circle,
in an array Ht[1..n]. (To avoid salary arguments, the producers insisted that no two
heroes have the same height.) Then we can compute the Left and Right targets of each
hero in O(n?) time using the following algorithm.

@

(b)

()

WHOTARGETsSWHOM(Ht[1..n]):
forje—1ton

((Find the left target L[j] for hero j))
L[j] < NONE
forie—1toj—1
if Ht[i] > Ht[j]
L{jl i
((Find the right target R[j] for hero j))
R[j] « NoNE
for k < ndowntoj+1
if Ht[k] > Ht[j]
R[jl<k

return L[1..n], R[1..n]

Describe a divide-and-conquer algorithm that computes the output of WHOTARGETS-
WuowM in O(nlogn) time.

Prove that at least | n/2] of the n heroes are targets. That is, prove that the output
arrays R[0..n—1] and L[0..n— 1] contain at least | n/2] distinct values (other than
NONE).

Alas, Dr. Metaphor’s diabolical plan is successful. At the prearranged signal, all the
heroes simultaneously shoot their targets, and all targets fall over the cliff, apparently
dead. Metaphor repeats his dastardly experiment over and over; after each massacre,
he forces the remaining heroes to choose new targets, following the same algorithm,
and then shoot their targets at the next signal. Eventually, only the shortest member
of the Hero Crew/Alliance/Posse is left alive.!

Describe an algorithm that computes the number of rounds before Dr. Metaphor’s
deadly process finally ends. For full credit, your algorithm should run in O(n) time.

In the thrilling final act, Retcon the Squirrel, the last surviving member of the Hero Team/Group/Society, saves
everyone by traveling back in time and retroactively replacing the other n — 1 heroes with lifelike balloon sculptures.

CS/ECE 374A Homework 4 (due February 27) Spring 2018

2. Describe and analyze a recursive algorithm to reconstruct an arbitrary binary tree, given
its preorder and inorder node sequences as input.

The input to your algorithm is a pair of arrays Pre[1..n] and In[1..n], each containing
a permutation of the same set of n distinct symbols. Your algorithm should return an
n-node binary tree whose nodes are labeled with those n symbols (or an error code if no
binary tree is consistent with the input arrays). You solved an instance of this problem in
Homework o.

3. Suppose we are given a set S of n items, each with a value and a weight. For any element
x € S, we define two subsets:
e S_, is the set of all elements of S whose value is smaller than the value of x.
* S., is the set of all elements of S whose value is larger than the value of x.
For any subset R C S, let w(R) denote the sum of the weights of elements in R. The
weighted median of R is any element x such that w(S_,.) < w(S)/2 and w(S-,) < w(S)/2.

Describe and analyze an algorithm to compute the weighted median of a given weighted
set in O(n) time. Your input consists of two unsorted arrays S[1..n] and W[1..n], where
for each index i, the ith element has value S[i] and weight W[i]. You may assume that all
values are distinct and all weights are positive.

[Hint: Use or modity the linear-time selection algorithm described in class on Thursday:.]

CS/ECE 374A Homework 4 (due February 27) Spring 2018

Solved problem

4. Suppose we are given two sets of n points, one set {p;,p,...,P,} on the line y =0 and
the other set {q1,qs,-..,q,} on the line y = 1. Consider the n line segments connecting
each point p; to the corresponding point q;. Describe and analyze a divide-and-conquer
algorithm to determine how many pairs of these line segments intersect, in O(nlogn) time.
See the example below.

A 949, 4, 9 9 A

p, P, P, P, PP, Py

Seven segments with endpoints on parallel lines, with 11 intersecting pairs.
Your input consists of two arrays P[1..n] and Q[1..n] of x-coordinates; you may

assume that all 2n of these numbers are distinct. No proof of correctness is necessary, but
you should justify the running time.

Solution: We begin by sorting the array P[1..n] and permuting the array Q[1..n]
to maintain correspondence between endpoints, in O(nlogn) time. Then for any
indices i < j, segments i and j intersect if and only if Q[i] > Q[j]. Thus, our goal is
to compute the number of pairs of indices i < j such that Q[i] > Q[j]. Such a pair is
called an inversion.

We count the number of inversions in Q using the following extension of mergesort;
as a side effect, this algorithm also sorts Q. If n < 100, we use brute force in O(1)
time. Otherwise:

e Color the elements in the Left half Q[1..|n/2]] bLue.
Color the elements in the Right half Q[|n/2|+ 1..n] Red.
Recursively count inversions in (and sort) the blue subarray Q[1..[n/2]].

Recursively count inversions in (and sort) the red subarray Q[|n/2]+1..n].

Count red/blue inversions as follows:

— MERGE the sorted subarrays Q[1..n/2] and Q[n/2+1..n], maintaining the
element colors.

— For each blue element Q[i] of the now-sorted array Q[1..n], count the
number of smaller red elements Q[j].

The last substep can be performed in O(n) time using a simple for-loop:

CS/ECE 374A

Homework 4 (due February 27)

Spring 2018

CouNTREDBLUE(A[1..n]):

total < 0

else

count < 0

forie—1ton
if Ai] is red
count < count + 1

total « total + count
return total

MERGE and COUNTREDBLUE each run in O(n) time. Thus, the running time of our
inversion-counting algorithm obeys the mergesort recurrence T(n) = 2T (n/2)+ O(n).
(We can safely ignore the floors and ceilings in the recursive arguments.) We conclude
that the overall running time of our algorithm is O(nlogn), as required.

Rubric: This is enough for full credit.

MERGE algorithm are indicated in red.

In fact, we can execute the third merge-and-count step directly by modifying
the MERGE algorithm, without any need for “colors”. Here changes to the standard

MERGEANDCOUNT(A[1..n],m):

fork<—1ton
ifj>n
B[k] < Ali];
elseifi >m
Blk] < Alj];
else if A[i] < A[j]
B[k] < Ali];
else
B[k] < A[j];
fork—1ton
A[k] < B[k]
return total

i—1; jem+1; count < 0; total < 0

i< i+1; total < total + count
j < j+1; count « count+1
i —1i+1; total < total + count

j < j+1; count < count+1

We can further optimize MERGEANDCOUNT by observing that count is always
equal to j —m—1, so we don’t need an additional variable. (Proof: Initially, j =m+1
and count = 0, and we always increment j and count together.)

CS/ECE 374A

Homework 4 (due February 27)

Spring 2018

MERGEANDCOUNT2(A[1..n],m):

fork<—1ton
ifj>n
B[k] < A[i];
elseifi >m
Blk] < A[j];
else if Ali] < A[j]
Blk] < Ali];
else
Blk] < A[j];
fork<—1ton
Alk] « B[k]
return total

i—1; jem+1; total 0

i<—1i+1; total « total+j—m—1
jej+1
i<—1i+1; total « total+j—m—1

jeJj+1

MERGEANDCOUNT? still runs in
O(nlogn), as required.

O(n) time, so the overall running time is still
|

Rubric: 10 points = 2 for base case + 3 for divide (split and recurse) + 3 for conquer (merge
and count) + 2 for time analysis. Max 3 points for a correct O(n?)-time algorithm. This is
neither the only way to correctly describe this algorithm nor the only correct O(nlogn)-time
algorithm. No proof of correctness is required.

Notice that each boxed algorithm is preceded by an English description of the task that
algorithm performs. Omitting these descriptions is a Deadly Sin.

CS/ECE 374 A 4 Spring 2018

» Homework 5 eu
Due Tuesday, March 6, 2018 at 8pm

1. It’s almost time to show off your flippin’ sweet dancing skills! Tomorrow is the big dance
contest you’ve been training for your entire life, except for that summer you spent with
your uncle in Alaska hunting wolverines. You've obtained an advance copy of the list of n
songs that the judges will play during the contest, in chronological order.

You know all the songs, all the judges, and your own dancing ability extremely well.
For each integer k, you know that if you dance to the kth song on the schedule, you will be
awarded exactly Score[k] points, but then you will be physically unable to dance for the
next Wait[k] songs (that is, you cannot dance to songs k + 1 through k + Wait[k]). The
dancer with the highest total score at the end of the night wins the contest, so you want
your total score to be as high as possible.

Describe and analyze an efficient algorithm to compute the maximum total score you
can achieve. The input to your sweet algorithm is the pair of arrays Score[1..n] and
Wait[1..n].

2. Suppose you are given a NFA M = ({0,1},Q,s,A,) and a binary string w € {0, 1}*.
Describe and analyze an efficient algorithm to determine whether M accepts w. Concretely,
the input NFA M is represented as follows:

* Q={1,2,...,k} for some integer k.
e The start state s is state 1.

* Accepting states are indicated by a boolean array A[1.. k], where A[q] = TRUE if and
onlyifqgeA

* The transition function 6 is represented by a boolean array inDelta[1..k,0..1,1..k],
where inDelta[p, a,q] = TRUE if and only if g € 6(p, a).

Finally, the input string is given as an array w[1..n]. Your algorithm should return TRUE
if M accepts w, and FaLsE if M does not accept w. Report the running time of your
algorithm as a function of k (the number of states in M) and n (the length of w). [Hint:
Do not convert M to a DFA!!]

CS/ECE 374A Homework 5 (due March 6) Spring 2018

3. Recall that a palindrome is any string that is exactly the same as its reversal, like the
empty srting, or I, or DEED, or RACECAR, or AMANAPLANACATACANALPANAMA.

Any string can be decomposed into a sequence of palindromes. For example, the
string BUBBASEESABANANA (“Bubba sees a banana.”) can be broken into non-empty
palindromes in the following ways (and 65 others):

BUB ¢ BASEESAB ¢ ANANA
BeU-e+BB*ASEESA * B * ANANA
BUBe*Be*AeSEES*ABA*N-*ANA

BeUeBB*AeSeEE*S*A*BeA*NAN®A
BeUeBeBeAeSeEsEeSeAeBeA*NeAeNeA

(a) Describe and analyze an efficient algorithm to find the smallest number of palindromes
that make up a given input string. For example:
e Given the string PALINDROME, your algorithm should return the integer 10.
e Given the string BUBBASEESABANANA, your algorithm should return the inte-
ger 3.
* Given the string RACECAR, your algorithm should return the integer 1.

(b) A metapalindrome is a decomposition of a string into a sequence of non-empty
palindromes, such that the sequence of palindrome lengths is itself a palindrome. For
example, the decomposition

BUB e B e ALA* SEES * ABA*N <+ ANA

is a metapalindrome for the string BUBBALASEESABANANA, with the palindromic
length sequence (3,1, 3,4, 3,1, 3). Describe and analyze an efficient algorithm to find
the length of the shortest metapalindrome for a given string. For example:

* Given the string BUBBALASEESABANANA, your algorithm should return the
integer 7.

e Given the string PALINDROME, your algorithm should return the integer 10.

e Given the string DEPOPED, your algorithm should return the integer 1.

CS/ECE 374A

Homework 5 (due March 6)

Spring 2018

Solved Problem

4. A shuffle of two strings X and Y is formed by interspersing the characters into a new
string, keeping the characters of X and Y in the same order. For example, the string
BANANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways.

BANANAANANAS BANANAANANAS BANANAANANAS

Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING are both

shuffles of DYNAMI

PRODGYRNAMAMMIINCG

C and PROGRAMMING:

DYPRONGARMAMMICING

Given three strings A[1..m], B[1..n], and C[1..m+ n], describe and analyze an algorithm
to determine whether C is a shuffle of A and B.

Shuf(i, j) = ;

Solution: We define a boolean function Shuf(i, j), which is TRUE if and only if the
prefix C[1..i + j] is a shuffle of the prefixes A[1..i] and B[1..j]. This function
satisfies the following recurrence:

(Shufli —1,j) A (ALi] = C[i + j])

We need to compute Shuf(m, n).

We can memoize all function values into a two-dimensional array Shuf[0..m][0.. n].
Each array entry Shuf[i, j] depends only on the entries immediately below and im-
mediately to the right: Shuf[i —1, j] and Shuf{i, j —1]. Thus, we can fill the array in
standard row-major order. The original recurrence gives us the following pseudocode:

TRUE ifi=j=0
Shuf(0,j —1)A(BLjl=C[j]) ifi=0and j>0
Shuf(i—1,0) A(A[i] = C[i]) ifi>0and j=0

\ V (Shuf(i,j —1)A(B[j1=Cl[i+j])) ifi>0andj>0

SHUFFLE?(A[1..m], B[1..n], C[1..m+n]):
Shuf[0,0] « TRUE
forje—1ton
Shufl0, j] < Shufl0,j —1]A(B[j]=C[j])
forie—1ton
Shufli, 0] « Shufli—1,0] A (Ali] = B[i])
forj<—1ton
Shufli, j] « FALSE
if Ali] = C[i + j]
Shufli,j] < Shufli,j]V Shufli—1,j]
if B[i]=C[i+j]
Shufli,j] <« Shufli,j]V Shufli,j—1]

return Shuf[m, n]

The algorithm runs in O(mn) time.

CS/ECE 374A Homework 5 (due March 6) Spring 2018

Rubric: Max 10 points: Standard dynamic programming rubric. No proofs required. Max 7
points for a slower polynomial-time algorithm; scale partial credit accordingly.

Standard dynamic programming rubric. For problems worth 10 poins:

* 6 points for a correct recurrence, described either using mathematical notation or as pseudocode
for a recursive algorithm.

+ 1 point for a clear English description of the function you are trying to evaluate. (Oth-
erwise, we don’t even know what you’re trying to do.) Deadly Sin: Automatic zero if
the English description is missing.

+ 1 point for stating how to call your function to get the final answer.
+ 1 point for base case(s). —%2 for one minor bug, like a typo or an off-by-one error.

+ 3 points for recursive case(s). —1 for each minor bug, like a typo or an off-by-one error.
No credit for the rest of the problem if the recursive case(s) are incorrect.

* 4 points for details of the dynamic programming algorithm
+ 1 point for describing the memoization data structure

+ 2 points for describing a correct evaluation order; a clear picture is usually sufficient. If
you use nested loops, be sure to specify the nesting order.

+ 1 point for time analysis
* |t is not necessary to state a space bound.

* For problems that ask for an algorithm that computes an optimal structure—such as a subset,
partition, subsequence, or tree—an algorithm that computes only the value or cost of the
optimal structure is sufficient for full credit, unless the problem says otherwise.

* Official solutions usually include pseudocode for the final iterative dynamic programming algo-
rithm, but iterative pseudocode is not required for full credit. If your solution includes
iterative pseudocode, you do not need to separately describe the recurrence, memoization
structure, or evaluation order. (But you still need to describe the underlying recursive function
in English.)

» Official solutions will provide target time bounds. Algorithms that are faster than this target
are worth more points; slower algorithms are worth fewer points, typically by 2 or 3 points (out
of 10) for each factor of n. Partial credit is scaled to the new maximum score, and all points
above 10 are recorded as extra credit.

We rarely include these target time bounds in the actual questions, because when we have
included them, significantly more students turned in algorithms that meet the target time
bound but didn’t work (earning 0/10) instead of correct algorithms that are slower than the
target time bound (earning 8/10).

CS/ECE 374 A 4 Spring 2018

«» Homework 6 &
Due Tuesday, March 13, 2018 at 8pm

1. Suppose you are given an array A[1..n] of positive integers, each of which is colored either
red or blue. An increasing back-and-forth subsequence is an sequence of indices I[1..£]
with the following properties:

* 1<I[j]<nforallj.

o A[I[j]]<A[I[j+1]]forall j <.

e IfA[I[j]]isred, then I[j+1]>I[j].

e IfA[I[j]]is blue, then I[j + 1] < I[j].
Less formally, suppose we start with a token on some integer A[j], and then repeatedly
move the token Left (if it’s on a bLue square) or Right (if it’s on a Red square), always

moving from a smaller number to a larger number. Then the sequence of token positions is
an increasing back-and-forth subsequence.

Describe and analyze an efficient algorithm to compute the length of the longest
increasing back-and-forth subsequence of a given array of n red and blue integers. For
example, given the input array

[Lfifof2fs]of6]6]4]5]8]of7]7][3]2]3]8]4]0]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

your algorithm should return the integer 9, which is the length of the following increasing
back-and-forth subsequence:

[of1[2]3]4[6]7][8]9]
20 1 16 17 9 8 13 11 12
(The small numbers are indices into the input array.)

2. Describe and analyze an algorithm that finds the largest rectangular pattern that appears
more than once in a given bitmap. Your input is a two-dimensional array M[1..n,1..n] of
bits; your output is the area of the repeated pattern. (The two copies of the pattern might
overlap, but must not actually coincide.)

For example, given the bitmap shown on the left in the figure below, your algorithm
should return 15 x 13 = 195, because the same 15 x 13 doggo appears twice, as shown on
the right, and this is the largest such pattern.

CS/ECE 374A Homework 6 (due March 13) Spring 2018

3. AVL trees were the earliest self-balancing balanced binary search trees, first described in
1962 by Georgy Adelson-Velsky and Evgenii Landis. An AVL tree is a binary search tree
where for every node v, the height of the left subtree of v and the height of the right
subtree of v differ by at most 1.

Describe and analyze an efficient algorithm to construct an optimal AVL tree for a given
set of keys and frequencies. Your input consists of a sorted array A[1..n] of search keys and
an array f[1..n] of frequency counts, where f[i] is the number of searches for A[i]. Your
task is to construct an AVL tree for the given keys such that the total cost of all searches is
as small as possible. This is exactly the same cost function that we considered in Thursday’s
class; the only difference is that the output tree must satisfy the AVL balance constraint.

[Hint: You do not need to know or use the insertion and deletion algorithms that keep
the AVL tree balanced.]

CS/ECE 374A Homework 6 (due March 13) Spring 2018

Solved Problems

4. A string w of parentheses (and) and brackets [and] is balanced if and only if w is
generated by the following context-free grammar:

S—e|(S)|[S]]ss
For example, the string w = ([()IL1())LO ()1() is balanced, because w = xy, where

x=(L[OIMO) ad y=L[00O10.

Describe and analyze an algorithm to compute the length of a longest balanced subsequence
of a given string of parentheses and brackets. Your input is an array A[1..n], where
Alil€{(,), [, 1} for every index i.

Solution: Suppose A[1..n] is the input string. For all indices i and k, let LBS(i, k)
denote the length of the longest balanced subsequence of the substring Ali..k]. We
need to compute LBS(1, n). This function obeys the following recurrence:

(0 ifi >k

2+IBS(i+1,k—1)

r'ffa}((LBS(i,)+ LBS(j + 1,k)) [AL ~ALK]
e

LBS(i, j) = { max

k—
m_aix (LBS(i,j) +LBS(j+1, k)) otherwise

Here A[i] ~ A[k]indicates that A[i] and A[k] are matching delimiters: Either A[i] = (
and Alk]=) orAli]=[and A[k]=1.

We can memoize this function into a two-dimensional array LBS[1..n,1..n]. Since
every entry LBS[i, j] depends only on entries in later rows or earlier columns (or both),
we can evaluate this array row-by-row from bottom up in the outer loop, scanning
each row from left to right in the inner loop. The resulting algorithm runs in O(n?)
time.

LONGESTBALANCEDSUBSEQUENCE(A[1..n]):
fori <~ ndownto 1
LBS[i,i] < 0O
fork—i+1ton
if A[i] ~A[k]
LBS[i,k] —LBS[i +1,k—1]+2
else
LBS[i,k]< 0
forje—itok—1
LBS[i, k] « max {LBS[i,k], LBS[i,j]+LBS[j + 1,k]}
return LBS[1,n]

Rubric: 10 points, standard dynamic programming rubric

CS/ECE 374A Homework 6 (due March 13) Spring 2018

5. Oh, no! You've just been appointed as the new organizer of Giggle, Inc.’s annual mandatory
holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree
with the company president at the root. The all-knowing oracles in Human Resources have
assigned a real number to each employee measuring how “fun” the employee is. In order
to keep things social, there is one restriction on the guest list: An employee cannot attend
the party if their immediate supervisor is also present. On the other hand, the president
of the company must attend the party, even though she has a negative fun rating; it’s her
company, after all.

Describe an algorithm that makes a guest list for the party that maximizes the sum of
the “fun” ratings of the guests. The input to your algorithm is a rooted tree T describing
the company hierarchy, where each node v has a field v.fun storing the “fun” rating of the
corresponding employee.

Solution (two functions): We define two functions over the nodes of T.

* MaxFunYes(v) is the maximum total “fun” of a legal party among the descendants
of v, where v is definitely invited.

e MaxFunNo(v) is the maximum total “fun” of a legal party among the descendants
of v, where v is definitely not invited.

We need to compute MaxFunYes(root). These two functions obey the following mutual
recurrences:

MaxFunYes(v) = v.fun + Z MaxFunNo(w)

children w of v

MaxFunNo(v) = Z max{MaxFunYes(w), MaxFunNo(w)}

children w of v

(These recurrences do not require separate base cases, because Z @ =0.) We can
memoize these functions by adding two additional fields v.yes and v.no to each node
v in the tree. The values at each node depend only on the vales at its children, so we
can compute all 2n values using a postorder traversal of T.

CoMPUTEMAXFUN(V):
v.yes < v.fun
BEsSTPARTY(T): v.no <0
CompuTEMAXFUN(T.root) for all children w of v
return T.root.yes ComPUTEMAXFUN(w)
v.yes < v.yes + w.no
v.no < v.no + max{w.yes, w.no}

(Yes, this is still dynamic programming; we’re only traversing the tree recursively
because that’s the most natural way to traverse trees!®) The algorithm spends O(1)
time at each node, and therefore runs in O(n) time altogether. [|

“A naive recursive implementation would run in O(¢") time in the worst case, where ¢ = (1++/5)/2 ~
1.618 is the golden ratio. The worst-case tree is a path—every non-leaf node has exactly one child.

CS/ECE 374A Homework 6 (due March 13) Spring 2018

Solution (one function): For each node v in the input tree T, let MaxFun(v) denote
the maximum total “fun” of a legal party among the descendants of v, where v may
or may not be invited.

The president of the company must be invited, so none of the president’s “children”
in T can be invited. Thus, the value we need to compute is

root.fun + Z MaxFun(w).

grandchildren w of root
The function MaxFun obeys the following recurrence:

v.fun+ Z MaxFun(x)

grandchildren x of v

Z MaxFun(w)

children w of v

MaxFun(v) = max

(This recurrence does not require a separate base case, because Z @ =0.) We can
memoize this function by adding an additional field v.maxFun to each node v in
the tree. The value at each node depends only on the values at its children and
grandchildren, so we can compute all values using a postorder traversal of T.

ComPUTEMAXFUN(V):
BESTPARTY(T): yes < v.fun
CoMPUTEMAXFUN(T.root) no < 0
party « T.root.fun for all children w of v
for all children w of T.root CoMmPUTEMAXFUN(w)
for all children x of w no < no + w.maxFun

party « party + x.maxFun for all children x of w

return party yes < yes + x.maxFun
v.maxFun < max{yes,no}

(Yes, this is still dynamic programming; we’re only traversing the tree recursively
because that’s the most natural way to traverse trees!)

The algorithm spends O(1) time at each node (because each node has exactly one
parent and one grandparent) and therefore runs in O(n) time altogether. |

?Like the previous solution, a direct recursive implementation would run in O(¢") time in the worst
case, where ¢ = (1++/5)/2 ~ 1.618 is the golden ratio.

Rubric: 10 points: standard dynamic programming rubric. These are not the only correct
solutions.

CS/ECE 374 A 4 Spring 2018

» Homework 7 &

Due Tuesday, March 27, 2018 at 8pm
(after Spring Break)

1. Consider the following solitaire game, played on a connected undirected graph G. Initially,
tokens are placed on three start vertices a, b,c. In each turn, you must move all three
tokens, by moving each token along an edge from its current vertex to an adjacent vertex.
At the end of each turn, the three tokens must lie on three different vertices. Your goal is to
move the tokens onto three goal vertices x, y, z; it does not matter which token ends up on

which goal vertex.

The initial configuration of the puzzle and the first two turns of a solution.

Describe and analyze an algorithm to determine whether this puzzle is solvable. Your
input consists of the graph G, the start vertices a, b, ¢, and the goal vertices x, y,z. Your
output is a single bit: TRUE or FALSE. [Hint: You've seen this sort of thing before.]

2. The following puzzles appear in my daughter’s elementary-school math workbook.!

Complete each angle maze below by tracing a path
PRACTICE from start to finish that has only acute angles.

/\
Finish
Start Finish
Start

Describe and analyze an algorithm to solve arbitrary acute-angle mazes.

You are given a connected undirected graph G, whose vertices are points in the plane
and whose edges are line segments. Edges do not intersect, except at their endpoints. For
example, a drawing of the letter X would have five vertices and four edges; the first maze
above has 13 vertices and 15 edges. You are also given two vertices Start and Finish.

Your algorithm should return TRUE if G contains a walk from Start to Finish that has
only acute angles, and FALSE otherwise. Formally, a walk through G is valid if, for any two
consecutive edges u—v—w in the walk, either Zuvw = 7 or 0 < Zuvw < 1t/2. Assume you
have a subroutine that can determine in O(1) time whether two segments with a common
vertex define a straight, obtuse, right, or acute angle.

1Jason Batterson and Shannon Rogers, Beast Academy Math: Practice 3A, 2012. See https://www.beastacademy.
com/resources/printables.php for more examples.

CS/ECE 374 A Homework 7 (due March 27) Spring 2018

3. Rectangle Walk is a new abstract puzzle game, available for only 99¢ on Steam, iOS,
Android, Xbox One, Playstation 5, Nintendo Wii U, Atari 2600, Palm Pilot, Commodore 64,
TRS-80, Sinclair ZX-1, DEC PDP-8, ILLIAC V, Zuse Z3, Duramesc, Odhner Arithmometer,
Analytical Engine, Jacquard Loom, Horologium mirabile Lundense, Leibniz Stepped
Reckoner, Antikythera Mechanism, and Pile of Sticks.

The game is played on an n x n grid of black and white squares. The player moves a
rectangle through this grid, subject to the following conditions:
* The rectangle must be aligned with the grid; that is, the top, bottom, left, and right
coordinates must be integers.
* The rectangle must fit within the n x n grid, and it must contain at least one grid cell.
e The rectangle must not contain a black square.
* In a single move, the player can replace the current rectangle r with any rectangle r’

that either contains r or is contained in r.

Initially, the player’s rectangle is a 1 x 1 square in the upper right corner. The player’s goal
is to reach a 1 x 1 square in the bottom left corner using as few moves as possible.

The first five steps in a Rectangle Walk.

Describe and analyze an algorithm to compute the length of the shortest Rectangle
Walk in a given bitmap. Your input is an array M[1..n,1..n], where M[i, j] = 1 indicates
a black square and M[i,j] = 0 indicates a white square. You can assume that a valid
rectangle walk exists; in particular, M[1,1] = 0 and M[n,n] = 0. For example, given the
bitmap shown above, (I think) your algorithm should return the integer 18.

CS/ECE 374 A Homework 7 (due March 27) Spring 2018

Solved Problem

4. Professor McClane takes you out to a lake and hands you three empty jars. Each jar holds
a positive integer number of gallons; the capacities of the three jars may or may not be
different. The professor then demands that you put exactly k gallons of water into one of
the jars (which one doesn’t matter), for some integer k, using only the following operations:

(a) Fill a jar with water from the lake until the jar is full.
(b) Empty a jar of water by pouring water into the lake.

(c) Pour water from one jar to another, until either the first jar is empty or the second jar
is full, whichever happens first.

For example, suppose your jars hold 6, 10, and 15 gallons. Then you can put 13 gallons of
water into the third jar in six steps:

e Fill the third jar from the lake.

e Fill the first jar from the third jar. (Now the third jar holds 9 gallons.)

* Empty the first jar into the lake.

e Fill the second jar from the lake.

e Fill the first jar from the second jar. (Now the second jar holds 4 gallons.)
e Empty the second jar into the third jar.

Describe and analyze an efficient algorithm that either finds the smallest number of
operations that leave exactly k gallons in any jar, or reports correctly that obtaining
exactly k gallons of water is impossible. Your input consists of the capacities of the three
jars and the positive integer k. For example, given the four numbers 6,10, 15 and 13 as
input, your algorithm should return the number 6 (for the sequence of operations listed
above).

Solution: Let A, B, C denote the capacities of the three jars. We reduce the problem
to breadth-first search in the following directed graph:

« Vv = {(a,b,c) | 0<a<Aand0<b<Band0<c<C}. Each vertex corre-
sponds to a possible configuration of water in the three jars. There are
(A+1)(B+1)(C +1) = O(ABC) vertices altogether.

* The graph has a directed edge (a, b, c)—(a’, b’c’) whenever it is possible to move
from the first configuration to the second in one step. Specifically, there is an
edge from (a, b, ¢) to each of the following vertices (except those already equal
to (a, b, c)):

- (0, b,c) and (a,0,c) and (a, b,0) — dumping a jar into the lake
- (A, b,c) and (a,B,c) and (a, b, C) — filling a jar from the lake
(0,a+b,c) ifa+b<B
- {(a+b—B,B,c) ifa+b>B
(0,b,a+c) ifa+c<C
- {(a+c—C,b,C) ifa+c>C

} — pouring from jar 1 into jar 2

} — pouring from jar 1 into jar 3

CS/ECE 374 A Homework 7 (due March 27) Spring 2018

(a+b,0,c) ifa+b<A
(A,a+b—Ayc) ifa+b=A

) {(a,o,b+c) ifb+c<C

} — pouring from jar 2 into jar 1

(a,b+c—C,C) iberC>C}—pouringfromjarzintojar3

(a+c,b,0) ifa+c<A _ o
- (Ab,a+c—A) ifa+c>A — pouring from jar 3 into Jar 1
,0,d CEs mra C =
(a,b+c¢,0) ifb+c<B . ‘ ‘ ‘
" \(@B,b+c—B) ifbrcxp| POwingfromjar3intojar2

Since each vertex has at most 12 outgoing edges, there are at most 12(A+ 1) x
(B+1)(C +1) = O(ABC) edges altogether.

To solve the jars problem, we need to find the shortest path in G from the start
vertex (0,0,0) to any target vertex of the form (k,-,-) or (-, k,-) or (:,-,k). We can
compute this shortest path by calling breadth-first search starting at (0,0,0), and
then examining every target vertex by brute force. If BFS does not visit any target
vertex, we report that no legal sequence of moves exists. Otherwise, we find the target
vertex closest to (0, 0,0) and trace its parent pointers back to (0,0, 0) to determine
the shortest sequence of moves. The resulting algorithm runs in O(V + E) = O(ABC)
time.

We can make this algorithm faster by observing that every move either leaves
at least one jar empty or leaves at least one jar full. Thus, we only need vertices
(a,b,c) where eithera=0orb=0o0orc=0o0ora=Aor b=B orc=C; no other
vertices are reachable from (0, 0,0). The number of non-redundant vertices and edges
is O(AB + BC + AC). Thus, if we only construct and search the relevant portion of G,
the algorithm runs in O(AB + BC + AC) time. []

Rubric: 10 points: standard graph reduction rubric (see next page)

e Brute force construction is fine.
— 1 for calling Dijkstra instead of BFS

e max 8 points for O(ABC) time; scale partial credit.

CS/ECE 374 A Homework 7 (due March 27) Spring 2018

Standard rubric for graph reduction problems. For problems out of 10 points:
+ 1 for correct vertices, including English explanation for each vertex
+ 1 for correct edges
— Y4 for forgetting “directed” if the graph is directed
+ 1 for stating the correct problem (in this case, “shortest path”)

— “Breadth-first search” is not a problem; it’s an algorithm!

+ 1 for correctly applying the correct algorithm (in this case, “breadth-first search from
(0,0,0) and then examine every target vertex”)

+ 1 for time analysis in terms of the input parameters.

+ 5 for other details of the reduction

— If your graph is constructed by naive brute force, you do not need to describe the
construction algorithm; in this case, points for vertices, edges, problem, algorithm,
and running time are all doubled.

— Otherwise, apply the appropriate rubric, including Deadly Sins, to the construction
algorithm. For example, for a solution that uses dynamic programming to build the
graph quickly, apply the standard dynamic programming rubric.

CS/ECE 374 A 4 Spring 2018

»» Homework 8 ey
Due Tuesday, April 3, 2018 at 8pm

This is the last homework before Midterm 2.

1. After moving to a new city, you decide to choose a walking route from your home to your
new office. To get a good daily workout, your route must consist of an uphill path (for
exercise) followed by a downhill path (to cool down), or just an uphill path, or just a
downhill path.? (You’ll walk the same path home, so you'll get exercise one way or the
other.) But you also want the shortest path that satisfies these conditions, so that you
actually get to work on time.

Your input consists of an undirected graph G, whose vertices represent intersections
and whose edges represent road segments, along with a start vertex s and a target vertex t.
Every vertex v has a value h(v), which is the height of that intersection above sea level,
and each edge uv has a value £(uv), which is the length of that road segment.

(a) Describe and analyze an algorithm to find the shortest uphill-downhill walk from s
to t. Assume all vertex heights are distinct.

(b) Suppose you discover that there is no path from s to t with the structure you want.
Describe an algorithm to find a path from s to ¢ that alternates between “uphill” and
“downhill” subpaths as few times as possible, and has minimum length among all
such paths. (There may be even shorter paths with more alternations, but you don’t
care about them.) Again, assume all vertex heights are distinct.

2. Let G = (V, E) be a directed graph with weighted edges; edge weights could be positive,
negative, or zero.

(a) How could we delete an arbitrary vertex v from this graph, without changing the
shortest-path distance between any other pair of vertices? Describe an algorithm that
constructs a directed graph G’ = (V’/, E’) with weighted edges, where V' = V\{v}, and
the shortest-path distance between any two nodes in G’ is equal to the shortest-path
distance between the same two nodes in G, in O(V?) time.

(b) Now suppose we have already computed all shortest-path distances in G’. Describe
an algorithm to compute the shortest-path distances in the original graph G from v
to every other vertex, and from every other vertex to v, all in O(V?) time.

(c) Combine parts (a) and (b) into another all-pairs shortest path algorithm that runs in
O(V?) time. (The resulting algorithm is almost the same as Floyd-Warshall!)

1A hill is an area of land that extends above the surrounding terrain, usually at a fairly gentle gradient. Like a
building, but smoother and made of dirt and rock and trees instead of steel and concrete. It’s hard to explain.

CS/ECE 374 A Homework 8 (due April 3) Spring 2018

3. The first morning after returning from a glorious spring break, Alice wakes to discover that
her car won’t start, so she has to get to her classes at Sham-Poobanana University by public
transit. She has a complete transit schedule for Poobanana County. The bus routes are
represented in the schedule by a directed graph G, whose vertices represent bus stops and
whose edges represent bus routes between those stops. For each edge u—v, the schedule
records three positive real numbers:

* {(u—v) is the length of the bus ride from stop u to stop v (in minutes)
e f(u—v) is the first time (in minutes past 12am) that a bus leaves stop u for stop v.

e A(u—v) is the time between successive departures from stop u to stop v (in minutes).

Thus, the first bus for this route leaves u at time f(u—v) and arrives at v at time
f(u—v)+£(u—v), the second bus leaves u at time f (u—v)+ A(u—v) and arrives at v at
time f(u—v)+ A(u—v) + £(u—v), the third bus leaves u at time f(u—v)+2- A(u—v) and
arrives at v at time f(u—v)+2- A(u—v)+£(u—v), and so on.

Alice wants to leaves from stop s (her home) at a certain time and arrive at stop t (The
See-Bull Center for Fake News Detection) as quickly as possible. If Alice arrives at a stop on
one bus at the exact time that another bus is scheduled to leave, she can catch the second
bus. Because she’s a student at SPU, Alice can ride the bus for free, so she doesn’t care how
many times she has to change buses.

Describe and analyze an algorithm to find the earliest time Alice can reach her
destination. Your input consists of the directed graph G = (V, E), the vertices s and t,
the values £(e), f (e), A(e) for each edge e € E, and Alice’s starting time (in minutes past
12am).

[Hint: In this rare instance, modifying the algorithm may be more efficient than
modifying the input graph. Don’t describe the algorithm from scratch; just describe your
changes.]

CS/ECE 374 A Homework 8 (due April 3) Spring 2018

Solved Problem

4. Although we typically speak of “the” shortest path from one vertex to another, a single
graph could contain several minimum-length paths with the same endpoints.

o | mﬁ% Forn | o
(2#'4/1;?51—? %1;{?}5 ¢{ ;(P:\ —6 (:341/ <1—O
&2»6—4 2)5)—4>(5\ ¥2>(V)—4>(5\ (%2>6—4>(5\

Four (of many) equal-length shortest paths.

Describe and analyze an algorithm to determine the number of shortest paths from a source
vertex s to a target vertex t in an arbitrary directed graph G with weighted edges. You
may assume that all edge weights are positive and that the necessary arithmetic operations
can be performed in O(1) time each.

[Hint: Compute shortest path distances from s to every other vertex. Throw away all
edges that cannot be part of a shortest path from s to another vertex. What’s left?]

Solution: We start by computing shortest-path distances dist(v) from s to v, for every
vertex v, using Dijkstra’s algorithm. Call an edge u—v tight if dist(u) + w(u—v) =
dist(v). Every edge in a shortest path from s to t must be tight. Conversely, every
path from s to t that uses only tight edges has total length dist(t) and is therefore a
shortest path!

Let H be the subgraph of all tight edges in G. We can easily construct H in O(V +E)
time. Because all edge weights are positive, H is a directed acyclic graph. It remains
only to count the number of paths from s to t in H.

For any vertex v, let NumPaths(v) denote the number of paths in H from v to t; we
need to compute NumPaths(s). This function satisfies the following simple recurrence:

1 ifv=t

NumPath =
IR) ZNumPaths(w) otherwise

vV—=w

In particular, if v is a sink but v # t (and thus there are no paths from v to t), this
recurrence correctly gives us NumPaths(v) = >. @ = 0.

We can memoize this function into the graph itself, storing each value NumPaths(v)
at the corresponding vertex v. Since each subproblem depends only on its successors
in H, we can compute NumPaths(v) for all vertices v by considering the vertices in
reverse topological order, or equivalently, by performing a depth-first search of H
starting at s. The resulting algorithm runs in O(V + E) time.

The overall running time of the algorithm is dominated by Dijkstra’s algorithm in
the preprocessing phase, which runs in O(E log V) time. [|

CS/ECE 374 A Homework 8 (due April 3) Spring 2018

Rubric: 10 points = 5 points for reduction to counting paths in a dag (standard graph reduction
rubric) + 5 points for the path-counting algorithm (standard dynamic programming rubric)

CS/ECE 374 A 4 Spring 2018

» Homework 9 &
Due Tuesday, April 17, 2018 at 8pm

1. For any integer k, the problem kSaT is defined as follows:
e InPUT: A boolean formula @ in conjunctive normal form, with exactly k distinct
literals in each clause.

e OurpuT: TRUE if & has a satisfying assignment, and FALSE otherwise.

(a) Describe a polynomial-time reduction from 2SaT to 3Sart, and prove that your reduction
is correct.

(b) Describe and analyze a polynomial-time algorithm for 2SaT. [Hint: This problem is
strongly connected to topics covered earlier in the semester.]

(c) Why don’t these results imply a polynomial-time algorithm for 3SAT?

2. This problem asks you to describe polynomial-time reductions between two closely related
problems:

* SUBSETSUM: Given a set S of positive integers and a target integer T, is there a
subset of S whose sum is T?

* PARTITION: Given a set S of positive integers, is there a way to partition S into two
subsets S; and S, that have the same sum?

(a) Describe a polynomial-time reduction from SUBSETSUM to PARTITION.

(b) Describe a polynomial-time reduction from PARTITION to SUBSETSUM.

Don’t forget to to prove that your reductions are correct.

3. Pebbling is a solitaire game played on an undirected graph G, where each vertex has zero
or more pebbles. A single pebbling move removes two pebbles from some vertex v and adds
one pebble to an arbitrary neighbor of v. (Obviously, v must have at least two pebbles
before the move.) The PEBBLECLEARING problem asks, given a graph G = (V,E) and a
pebble count p(v) for each vertex v, whether is there a sequence of pebbling moves that
removes all but one pebble. Prove that PEBBLECLEARING is NP-hard.

CS/ECE 374 A Homework 9 (due November 15) Spring 2018

Solved Problem

4. Consider the following solitaire game. The puzzle consists of an n x m grid of squares,
where each square may be empty, occupied by a red stone, or occupied by a blue stone.
The goal of the puzzle is to remove some of the given stones so that the remaining stones
satisfy two conditions:

(1) Every row contains at least one stone.
(2) No column contains stones of both colors.
For some initial configurations of stones, reaching this goal is impossible; see the example

below.

Prove that it is NP-hard to determine, given an initial configuration of red and blue
stones, whether this puzzle can be solved.

Ol0O Q] O
O|R%(88 BIERIES
8 1010 | O]
O8] (&8 O8] (&8

A solvable puzzle and one of its many solutions. An unsolvable puzzle.

KOO
RIOB|O

Solution: We show that this puzzle is NP-hard by describing a reduction from 3SAT.

Let ® be a 3CNF boolean formula with m variables and n clauses. We transform
this formula into a puzzle configuration in polynomial time as follows. The size of the
board is n x m. The stones are placed as follows, for all indices i and j:

* If the variable x; appears in the ith clause of ®, we place a blue stone at (i, j).

* If the negated variable x; appears in the ith clause of ®, we place a red stone at
(i, J).
* Otherwise, we leave cell (i, j) blank.

We claim that this puzzle has a solution if and only if ® is satisfiable. This claim
immediately implies that solving the puzzle is NP-hard. We prove our claim as follows:

— First, suppose @ is satisfiable; consider an arbitrary satisfying assignment. For
each index j, remove stones from column j according to the value assigned to x;:

- If x; = TRUE, remove all red stones from column j.
— If x; = FaLSE, remove all blue stones from column j.

In other words, remove precisely the stones that correspond to FALSE literals.
Because every variable appears in at least one clause, each column now contains
stones of only one color (if any). On the other hand, each clause of & must
contain at least one TRUE literal, and thus each row still contains at least one
stone. We conclude that the puzzle is satisfiable.

CS/ECE 374 A Homework 9 (due November 15) Spring 2018

<= On the other hand, suppose the puzzle is solvable; consider an arbitrary solution.

For each index j, assign a value to x; depending on the colors of stones left in
column j:

— If column j contains blue stones, set x; = TRUE.

— If column j contains red stones, set x; = FALSE.

— If column j is empty, set x; arbitrarily.
In other words, assign values to the variables so that the literals corresponding
to the remaining stones are all TRUE. Each row still has at least one stone, so

each clause of ® contains at least one TRUE literal, so this assignment makes
$ = TRUE. We conclude that ® is satisfiable.

This reduction clearly requires only polynomial time. [|

Rubric (Standard polynomial-time reduction rubric): 10 points =
+ 3 points for the reduction itself

— For an NP-hardness proof, the reduction must be from a known NP-hard problem.
You can use any of the NP-hard problems listed in the lecture notes (except the one
you are trying to prove NP-hard, of course). See the list on the next page.

+ 3 points for the “if” proof of correctness

+ 3 points for the “only if” proof of correctness

+ 1 point for writing “polynomial time”

* An incorrect polynomial-time reduction that still satisfies half of the correctness proof is
worth at most 4/10.

* A reduction in the wrong direction is worth 0/10.

CS/ECE 374 A Homework 9 (due November 15) Spring 2018

Some useful NP-hard problems. You are welcome to use any of these in your own NP-hardness
proofs, except of course for the specific problem you are trying to prove NP-hard.

CIircuITSAT: Given a boolean circuit, are there any input values that make the circuit output TRUE?

3SaT: Given a boolean formula in conjunctive normal form, with exactly three distinct literals per
clause, does the formula have a satisfying assignment?

MAXINDEPENDENTSET: Given an undirected graph G, what is the size of the largest subset of
vertices in G that have no edges among them?

MaxCLIQUE: Given an undirected graph G, what is the size of the largest complete subgraph of G?

MINVERTEXCOVER: Given an undirected graph G, what is the size of the smallest subset of vertices
that touch every edge in G?

MiINSETCOVER: Given a collection of subsets S4,S,,...,S,, of a set S, what is the size of the smallest
subcollection whose union is S?

MINHITTINGSET: Given a collection of subsets S¢,S,,...,S,, of a set S, what is the size of the
smallest subset of S that intersects every subset S;?

3CoLoR: Given an undirected graph G, can its vertices be colored with three colors, so that every
edge touches vertices with two different colors?

HamirToNIANPATH: Given graph G (either directed or undirected), is there a path in G that visits
every vertex exactly once?

HamiLToNIANCYCLE: Given a graph G (either directed or undirected), is there a cycle in G that visits
every vertex exactly once?

TRAVELINGSALESMAN: Given a graph G (either directed or undirected) with weighted edges, what is
the minimum total weight of any Hamiltonian path/cycle in G?

LoNGEsSTPATH: Given a graph G (either directed or undirected, possibly with weighted edges), what
is the length of the longest simple path in G?

STEINERTREE: Given an undirected graph G with some of the vertices marked, what is the minimum
number of edges in a subtree of G that contains every marked vertex?

SuBseTSUM: Given a set X of positive integers and an integer k, does X have a subset whose
elements sum to k?

PArTITION: Given a set X of positive integers, can X be partitioned into two subsets with the same
sum?

3PArRTITION: Given a set X of 3n positive integers, can X be partitioned into n three-element subsets,
all with the same sum?

INTEGERLINEARPROGRAMMING: Given a matrix A € Z™? and two vectors b € Z" and ¢ € Zd,
compute max{c-x |Ax < b,x > 0,x € Z4}.

FEASIBLEILP: Given a matrix A € Z™*4 and a vector b € Z", determine whether the set of feasible
integer points max{x € Z? | Ax < b, x > 0} is empty.

DrAuGHTS: Given an n X n international draughts configuration, what is the largest number of pieces
that can (and therefore must) be captured in a single move?

SUPERMARIOBROTHERS: Given an n x n Super Mario Brothers level, can Mario reach the castle?

StEaAMEDHAMS: Aurora borealis? At this time of year, at this time of day, in this part of the country,
localized entirely within your kitchen? May | see it?

CS/ECE 374 A 4 Spring 2018

«» Homework 10 &y
Due Tuesday, April 24, 2018 at 8pm

This is the last graded homework before the final exam.

1. (a) A subset S of vertices in an undirected graph G is half-independent if each vertex
in S is adjacent to at most one other vertex in S. Prove that finding the size of the
largest half-independent set of vertices in a given undirected graph is NP-hard.

(b) A subset S of vertices in an undirected graph G is sort-of-independent if if each vertex
in S is adjacent to at most 374 other vertices in S. Prove that finding the size of the
largest sort-of-independent set of vertices in a given undirected graph is NP-hard.

2. Fix an alphabet 3. = {0, 1}. Prove that the following problems are NP-hard.?

(a) Given a regular expression R over the alphabet 3, is L(R) # %*?
(b) Given an NFA M over the alphabet %, is L(M) # ¥*?

[Hint: Encode all the bad choices for some problem into a regular expression R, so that if
all choices are bad, then L(R) = ¥*.]

3. Let (M) denote the encoding of a Turing machine M (or if you prefer, the Python source
code for the executable code M). Recall that x * y denotes the concatenation of strings x
and y. Prove that the following language is undecidable.

SELFSELFACCEPT := {(M) | M accepts the string (M) * (M)}

Note that Rice’s theorem does not apply to this language.

1In fact, both of these problems are NP-hard even when || = 1, but proving that is much more difficult.

CS/ECE 374 A Homework 10 (due April 24) Spring 2018

Solved Problem

4. A double-Hamiltonian tour in an undirected graph G is a closed walk that visits every vertex
in G exactly twice. Prove that it is NP-hard to decide whether a given graph G has a
double-Hamiltonian tour.

(&

This graph contains the double-Hamiltonian tour a~b—d—g—e—b—d—c—f —-a—c—f—g—e—a.

Solution: We prove the problem is NP-hard with a reduction from the standard
Hamiltonian cycle problem. Let G be an arbitrary undirected graph. We construct a
new graph H by attaching a small gadget to every vertex of G. Specifically, for each
vertex v, we add two vertices vf and V", along with three edges v, v and vivi.

NN

A vertex in G, and the corresponding vertex gadget in H.

I claim that G has a Hamiltonian cycle if and only if H has a double-Hamiltonian tour.

= Suppose G has a Hamiltonian cycle v{—»v,—---—v,—v;. We can construct a
double-Hamiltonian tour of H by replacing each vertex v; with the following
walk:

cee —>vi—>vib—>v?—>vl!)—>v?—>vi—> cee

&= Conversely, suppose H has a double-Hamiltonian tour D. Consider any vertex v
in the original graph G; the tour D must visit v exactly twice. Those two visits
split D into two closed walks, each of which visits v exactly once. Any walk from
v’ or v! to any other vertex in H must pass through v. Thus, one of the two
closed walks visits only the vertices v, v*, and v!. Thus, if we simply remove the
vertices in H \ G from D, we obtain a closed walk in G that visits every vertex in
G once.

Given any graph G, we can clearly construct the corresponding graph H in polynomial
time.

With more effort, we can construct a graph H that contains a double-Hamiltonian
tour that traverses each edge of H at most once if and only if G contains a Hamil-
tonian cycle. For each vertex v in G we attach a more complex gadget containing five
vertices and eleven edges, as shown on the next page.

CS/ECE 374 A Homework 10 (due April 24) Spring 2018

S

A vertex in G, and the corresponding modified vertex gadget in H.

Non-solution (self-loops): We attempt to prove the problem is NP-hard with a
reduction from the Hamiltonian cycle problem. Let G be an arbitrary undirected
graph. We construct a new graph H by attaching a self-loop every vertex of G. Given
any graph G, we can clearly construct the corresponding graph H in polynomial time.

AN

An incorrect vertex gadget.

Suppose G has a Hamiltonian cycle v; —»v,— - - - —>v,—v;. We can construct a double-
Hamiltonian tour of H by alternating between edges of the Hamiltonian cycle and
self-loops:

V]2V Vg Vg = Vg — - o s 5V, =V, = V.

On the other hand, if H has a double-Hamiltonian tour, we cannot conclude that G
has a Hamiltonian cycle, because we cannot guarantee that a double-Hamiltonian
tour in H uses any self-loops. The graph G shown below is a counterexample; it has a
double-Hamiltonian tour (even before adding self-loops!) but no Hamiltonian cycle.

This graph has a double-Hamiltonian tour.

Rubric: 10 points, standard polynomial-time reduction rubric

CS/ECE 374 A 4 Spring 2018

» “Homework” 11 &
“Due” Tuesday, May 1, 2018

This homework is optional. However, similar undecidability questions may appear
on the final exam, so we still strongly recommend treating at least those questions
as regular homework. Solutions will be released next Tuesday as usual.

1. Let M be a Turing machine, let w be an arbitrary input string, and let s be an integer. We
say that M accepts w in space s if, given w as input, M accesses only the first s (or fewer)
cells on its tape and eventually accepts.

*(a) Sketch a Turing machine/algorithm that correctly decides the following language:
SQUARESPACE = {(M,w) | M accepts w in space |w|2}
(b) Prove that the following language is undecidable:

SOMESQUARESPACE = {(M) | M accepts at least one string w in space |w|2}

2. Consider the following language:

PIcky = {(M)

M accepts at least one input string
and M rejects at least one input string

(a) Prove that Picky is undecidable.

(b) Sketch a Turing machine/algorithm that accepts P1cky.

CS/ECE 374 A Lab 1 — January 16 Spring 2018

The following problems ask you to prove some “obvious” claims about recursively-defined string
functions. In each case, we want a self-contained, step-by-step induction proof that builds on
formal definitions and prior reults, not on intuition. In particular, your proofs must refer to the
formal recursive definitions of string length and string concatenation:

wl 0 ifw=e
w|:=
1+ x| if w = ax for some symbol a and some string x
Z ifw=e
wez:=) .
a-(xez) if w=ax for some symbol a and some string x

You may freely use the following results, which are proved in the lecture notes:

Lemma 1: w * ¢ = w for all strings w.
Lemma 2: |w * x| = |w| + |x| for all strings w and x.

Lemma 3: (wex)e*y=w e (xe°y)forall strings w, x, and y.

The reversal wR of a string w is defined recursively as follows:

wR:={8 ifw=¢

x* ea if w=ax for some symbol a and some string x
For example, STRESSED® = DESSERTS and WTF374R = 473FTW.

1. Prove that |w| = |[wR| for every string w.
2. Prove that (w ¢ 2)R = 2R « wR for all strings w and z.

3. Prove that (WR)R = w for every string w.

[Hint: You need #2 to prove #3, but you may find it easier to solve #3 first.]

To think about later: Let #(a, w) denote the number of times symbol a appears in string w. For
example, #(X,WTF374) =0 and #(0,000010101010010100) = 12.

4. Give a formal recursive definition of #(a, w).
5. Prove that #(a,w * z) = #(a,w) + #(a, 2) for all symbols a and all strings w and 2.

6. Prove that #(a, wR) = #(a, w) for all symbols a and all strings w.

CS/ECE 374 A Lab 1% — January 19 Spring 2018

Give regular expressions for each of the following languages over the alphabet {0, 1}.

. All strings containing the substring 000.

All strings not containing the substring 000.
All strings in which every run of 0s has length at least 3.

All strings in which all the 1s appear before any substring 000.

. All strings containing at least three Os.

Every string except ©00. [Hint: Don't try to be clever.]

Work on these later:

All strings w such that in every prefix of w, the number of 0s and 1s differ by at most 1.

. All strings containing at least two Os and at least one 1.

All strings w such that in every prefix of w, the number of Os and 1s differ by at most 2.

. All strings in which the substring 000 appears an even number of times.

(For example, 0001000 and 0000 are in this language, but 00000 is not.)

CS/ECE 374 A Lab 2 — January 24 Spring 2018

Describe deterministic finite-state automata that accept each of the following languages over the
alphabet 32 = {0, 1}. Describe briefly what each state in your DFAs means.

Either drawings or formal descriptions are acceptable, as long as the states Q, the start state
s, the accept states A, and the transition function 6 are all be clear. Try to keep the number of
states small.

1. All strings containing the substring 000.

2. All strings not containing the substring 000.

3. All strings in which every run of Os has length at least 3.

4. All strings in which all the 1s appear before any substring 000.
5. All strings containing at least three 0s.

6. Every string except 000. [Hint: Don't try to be clever.]

Work on these later:

7. All strings w such that in every prefix of w, the number of 0s and 1s differ by at most 1.
8. All strings containing at least two Os and at least one 1.
9. All strings w such that in every prefix of w, the number of 0s and 1s differ by at most 2.

*10. All strings in which the substring 000 appears an even number of times.
(For example, 0001000 and 0000 are in this language, but 00000 is not.)

CS/ECE 374 A Lab 2%, — January 26 Spring 2018

Describe deterministic finite-state automata that accept each of the following languages over the
alphabet 32 = {0, 1}. You may find it easier to describe these DFAs formally than to draw pictures.

Either drawings or formal descriptions are acceptable, as long as the states Q, the start state s,
the accept states A, and the transition function & are all clear. Try to keep the number of states
small.

1. All strings in which the number of Os is even and the number of 1s is not divisible by 3.
2. All strings that are both the binary representation of an integer divisible by 3 and the
ternary (base-3) representation of an integer divisible by 4.

For example, the string 1100 is an element of this language, because it represents
23+ 22 =12 in binary and 3% + 32 = 36 in ternary.

Work on these later:

3. All strings w such that (Ig/l) mod 6 = 4.
[Hint: Maintain both (|V2V|) mod 6 and |w| mod 6.]
[Hint: (";1) = ('21) +n.]
*4. All strings w such that Fy ;0 ,,) mod 10 = 4, where #(10,w) denotes the number of times
10 appears as a substring of w, and F,, is the nth Fibonacci number:

0 ifn=0
F,=41 ifn=1

F,_1+F,_ 5 otherwise

CS/ECE 374 A Lab 3 — January 31 Spring 2018

Prove that each of the following languages is not regular.

1. {0%" | n> 0}

2. {02"1" | n >0}

3. {0™1" | m # 2n}

4. Strings over {0, 1} where the number of Os is exactly twice the number of 1s.

5. Strings of properly nested parentheses (), brackets [|, and braces { }. For example, the
string ([]) {7} is in this language, but the string ([)] is not, because the left and right
delimiters don’t match.

Work on these later:

6. Strings of the form w,#w,# - -- #w, for some n > 2, where each substring w; is a string in
{0, 1}", and some pair of substrings w; and w; are equal.

7. {0% | n>0}

8. {we (0 + 1)* | wis the binary representation of a perfect square}

CS/ECE 374 A Lab 3% — February 2 Spring 2018

1.

@
(b)

(0

d

(a)

(b)

(©

(d)

Convert the regular expression (0*1 4 01*)* into an NFA using Thompson’s algorithm.

Convert the NFA you just constructed into a DFA using the incremental subset
construction. Draw the resulting DFA. Your DFA should have four states, all reachable
from the start state. (Some of these states are obviously equivalent, but keep them
separate.)

Think about later: Convert the DFA you just constructed into a regular expression
using Han and Wood’s algorithm. You should not get the same regular expression
you started with.

What is this language?

Convert the regular expression (¢+(0+ 11)*0)1(11)* into an NFA using Thompson’s
algorithm.

Convert the NFA you just constructed into a DFA using the incremental subset
construction. Draw the resulting DFA. Your DFA should have six states, all reachable
from the start state. (Some of these states are obviously equivalent, but keep them
separate.)

Think about later: Convert the DFA you just constructed into a regular expression
using Han and Wood’s algorithm. You should not get the same regular expression
you started with.

What is this language?

CS/ECE 374 A Lab 4 — February 7 Spring 2018

Let L be an arbitrary regular language.

1. Prove that the language insert1(L) := {x1y | xy € L} is regular.

Intuitively, insert1(L) is the set of all strings that can be obtained from strings in L by insert-
ing exactly one 1. For example, if L. = {&,00K!}, then insert1(L) = {1,100K!,010K!,
001K!,00K1!,00K!1}.

2. Prove that the language deletel1(L) := {xy | x1y € L} is regular.

Intuitively, deletel(L) is the set of all strings that can be obtained from strings in L
by deleting exactly one 1. For example, if L = {101101,00,¢}, then deletel(L) =
{01101,10101,10116}.

Work on these later: (In fact, these might be easier than problems 1 and 2.)
3. Consider the following recursively defined function on strings:

€ ifw=¢

stutter(w) := {

aa ° stutter(x) if w = ax for some symbol a and some string x

Intuitively, stutter(w) doubles every symbol in w. For example:

e stutter(PRESTO) = PPRREESSTTOO
e stutter(HOCUSoPOCUS) = HHOOCCUUSS<©<+PPOOCCUUSS

Let L be an arbitrary regular language.

(a) Prove that the language stutter'(L) := {w | stutter(w) € L} is regular.
(b) Prove that the language stutter(L) := {stutter(w) | w € L} is regular.

4. Consider the following recursively defined function on strings:

€ ifw=¢e
evens(w) :=1{ ¢ if w = a for some symbol a
b - evens(x) if w = abx for some symbols a and b and some string x

Intuitively, evens(w) skips over every other symbol in w. For example:

* evens(EXPELLIARMUS) = XELAMS
* evens(AVADA<KEDAVRA) = VD<EAR.

Once again, let L be an arbitrary regular language.

(a) Prove that the language evens™'(L) := {w | evens(w) € L} is regular.

(b) Prove that the language evens(L) := {evens(w) | w € L} is regular.

CS/ECE 374 A Lab 5 — February 14 Spring 2018

Let L be an arbitrary regular language over the alphabet 3 = {0, 1}. Prove that the following
languages are also regular. (You probably won’t get to all of these.)

1. FLipOpps(L) := {flipOdds(w) | w € L}, where the function flipOdds inverts every odd-
indexed bit in w. For example:

flipOdds(0000111101010101) =1010010111111111

Solution: Let M = (Q,s,A,5) be a DFA that accepts L. We construct a new DFA
M’ =(Q,s’,A’,8’) that accepts FLipOpDs(L) as follows.

Intuitively, M’ receives some string flipOdds(w) as input, restores every other bit
to obtain w, and simulates M on the restored string w.

Each state (q,flip) of M’ indicates that M is in state g, and we need to flip the
next input bit if flip = TRUE

Q' = Q x {TRUE, FALSE}

s’ = (s, TRUE)

A =
5'((q,flip),a) =

2. UNFLIPODD1S(L) := {w € ©* | flipOdd1s(w) € L}, where the function flipOdd1 inverts
every other 1 bit of its input string, starting with the first 1. For example:

flipOdd1s(0000111101010101) =0000010100010001

Solution: Let M = (Q,s,A,6) be a DFA that accepts L. We construct a new DFA
M’ =(Q,s’,A’,8") that accepts UNFLIPODD 15(L) as follows.

Intuitively, M’ receives some string w as input, flips every other 1 bit, and simulates
M on the transformed string.

Each state (q,flip) of M’ indicates that M is in state g, and we need to flip the
next 1 bit of and only if flip = TRUE.

Q' = Q x {TRUE, FALSE}

s’ = (s, TRUE)

A =
5'((q,flip),a) =

CS/ECE 374 A Lab 5 — February 14 Spring 2018

3. FLipOpp1s(L) := {flipOdd1s(w) | w € L}, where the function flipOdd1 is defined as in the
previous problem.

Solution: Let M = (Q,s,A,5) be a DFA that accepts L. We construct a new NFA
M’ =(Q/,s’,A’,8") that accepts FLIPODD1s(L) as follows.

Intuitively, M’ receives some string flipOdd1s(w) as input, guesses which 0 bits to
restore to 1s, and simulates M on the restored string w. No string in FLiPOpD15(L)
has two 1s in a row, so if M’ ever sees 11, it rejects.

Each state (q,flip) of M’ indicates that M is in state g, and we need to flip a 0 bit
before the next 1 if flip = TRUE.

Q' = Q x {TRUE, FALSE}
s’ = (s, TRUE)

A=

&'((q.flip),a) =

4. Faro(L) := {faro(w,x) | w,x € L and |w| = |x|}, where the function faro is defined recur-
sively as follows:

b ifw=e
faro(w, x) :=]

a-faro(x,y) if w=ay for some a € ¥ and some y € ©*
For example, faro(0001101,1111001)=01010111100011, (A "faro shuffle" splits a
deck of cards into two equal piles and then perfectly interleaves them.)

Solution: Let M = (Q,s,A, 5) be a DFA that accepts L. We construct a DFA M’ =
(Q,s’,A’,8") that accepts Faro(L) as follows.

Intuitively, M’ reads the string faro(w, x) as input, splits the string into the
subsequences w and x, and passes each of those strings to an independent copy of M.

Each state (g, g, next) indicates that the copy of M that gets w is in state q;, the
copy of M that gets x is in state g, and next indicates which copy gets the next input
bit.

Q' =QxQx{1,2}
s’ =(s,s,1)
A=

6'((q1, 9o, next),a) =

CS/ECE 374 Lab 6 — February 21 Spring 2018

Here are several problems that are easy to solve in O(n) time, essentially by brute force. Your
task is to design algorithms for these problems that are significantly faster.

1. Suppose we are given an array A[1..n] of n distinct integers, which could be positive,
negative, or zero, sorted in increasing order so that A[1] < A[2] < --- < A[n].

(a) Describe a fast algorithm that either computes an index i such that Ali] =i or
correctly reports that no such index exists.

(b) Suppose we know in advance that A[1] > 0. Describe an even faster algorithm that
either computes an index i such that A[i] =i or correctly reports that no such index
exists. [Hint: This is really easy.]

2. Suppose we are given an array A[1..n] such that A[1] > A[2] and A[n—1] < A[n]. We say
that an element A[x] is a local minimum if both A[x — 1] > A[x] and A[x] < A[x + 1].
For example, there are exactly six local minima in the following array:

Lo]7]7]2]1]3]7]|5]4]7]3]s[4][8]6]9]
A A A A A A

Describe and analyze a fast algorithm that returns the index of one local minimum. For
example, given the array above, your algorithm could return the integer 9, because A[9] is
a local minimum. [Hint: With the given boundary conditions, any array must contain at
least one local minimum. Why?]

3. Suppose you are given two sorted arrays A[1..n] and B[1..n] containing distinct integers.
Describe a fast algorithm to find the median (meaning the nth smallest element) of the
union AU B. For example, given the input

Al1..81=[0,1,6,9,12,13,18,20] B[1..8]=[2,4,5,8,17,19,21,23]

your algorithm should return the integer 9. [Hint: What can you learn by comparing one
element of A with one element of B?]

To think about later:

4. Now suppose you are given two sorted arrays A[1..m] and B[1..n] and an integer k.
Describe a fast algorithm to find the kth smallest element in the union AU B. For example,
given the input

Al1..8]1=[0,1,6,9,12,13,18,20] B[1..5]=[2,5,7,17,19] k=6

your algorithm should return the integer 7.

CS/ECE 374 Lab 6% — February 23 Spring 2018

In lecture, Jeff described an algorithm of Karatsuba that multiplies two n-digit integers using
0(n'83) single-digit additions, subtractions, and multiplications. In this lab we’ll look at some
extensions and applications of this algorithm.

1. Describe an algorithm to compute the product of an n-digit number and an m-digit number,
where m < n, in O(m'$3~1n) time.

2. Describe an algorithm to compute the decimal representation of 2" in O(n'#?) time.

[Hint: Repeated squaring. The standard algorithm that computes one decimal digit at a
time requires ©(n?) time.]

3. Describe a divide-and-conquer algorithm to compute the decimal representation of an
arbitrary n-bit binary number in O(n'¢®) time.

[Hint: Let x = a - 2"/% + b. Watch out for an extra log factor in the running time.]

Think about later:

4. Suppose we can multiply two n-digit numbers in O(M(n)) time. Describe an algorithm to
compute the decimal representation of an arbitrary n-bit binary number in O(M(n)logn)
time.

CS/ECE 374 A Lab 7 — February 28 Spring 2018

A subsequence of a sequence (for example, an array, linked list, or string), obtained by removing
zero or more elements and keeping the rest in the same sequence order. A subsequence is called
a substring if its elements are contiguous in the original sequence. For example:

e SUBSEQUENCE, UBSEQU, and the empty string ¢ are all substrings (and therefore sub-
sequences) of the string SUBSEQUENCE;

* SBSQNC, SQUEE, and EEE are all subsequences of SUBSEQUENCE but not substrings;

* QUEUE, EQUUS, and DIMAGGIO are not subsequences (and therefore not substrings) of
SUBSEQUENCE.

Describe recursive backtracking algorithms for the following problems. Don’t worry about running
times.

1. Given an array A[1..n] of integers, compute the length of a longest increasing subsequence.
A sequence B[1..£] is increasing if B[i] > B[i — 1] for every index i > 2.

For example, given the array
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,7)

your algorithm should return the integer 6, because (1,4,5,6,8,9) is a longest increasing
subsequence (one of many).

2. GivenanarrayA[1..n] of integers, compute the length of a longest decreasing subsequence.
A sequence B[1..£] is decreasing if B[i] < B[i — 1] for every index i > 2.

For example, given the array
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,7)

your algorithm should return the integer 5, because (9,6, 5,4, 2) is a longest decreasing
subsequence (one of many).

3. Given an array A[1..n] of integers, compute the length of a longest alternating sub-
sequence. A sequence B[1..£] is alternating if B[i] < B[i — 1] for every even index i > 2,
and B[i] > B[i — 1] for every odd index i > 3.

For example, given the array

your algorithm should return the integer 17, because (3,1,4,1,5,2,6,5,8,7,9,3,8,4,6,2,7)
is a longest alternating subsequence (one of many).

CS/ECE 374 A Lab 7 — February 28 Spring 2018

To think about later:

4. Given an array A[1..n] of integers, compute the length of a longest convex subsequence
of A. A sequence B[1..£]is convex if B[i]—B[i— 1] > B[i — 1] — B[i — 2] for every index
i>3.

For example, given the array
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,7)

your algorithm should return the integer 6, because (3,1,1,2,5,9) is a longest convex
subsequence (one of many).

5. Given an array A[1..n], compute the length of a longest palindrome subsequence of A.
Recall that a sequence B[1..£] is a palindrome if B[i] = B[{ —i + 1] for every index i.

For example, given the array
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,7)

your algorithm should return the integer 7, because (4,9, 5,3, 5, 9, 4) is a longest palindrome
subsequence (one of many).

CS/ECE 374 A Lab 7% — March 2 Spring 2018

A subsequence of a sequence (for example, an array, a linked list, or a string), obtained by
removing zero or more elements and keeping the rest in the same sequence order. A subsequence
is called a substring if its elements are contiguous in the original sequence. For example:

e SUBSEQUENCE, UBSEQU, and the empty string ¢ are all substrings of the string SUB-
SEQUENCE;

* SBSQNC, UEQUE, and EEE are all subsequences of SUBSEQUENCE but not substrings;

* QUEUE, SSS, and FOOBAR are not subsequences of SUBSEQUENCE.

Describe and analyze dynamic programming algorithms for the following problems. For the
first three, use the backtracking algorithms you developed on Wednesday.

1. Given an array A[1 .. n] of integers, compute the length of a longest increasing subsequence
of A. A sequence B[1..{] is increasing if B[i] > B[i — 1] for every index i > 2.

2. Given an array A[1..n] of integers, compute the length of a longest decreasing subsequence
of A. A sequence B[1..{] is decreasing if B[i] < B[i — 1] for every index i > 2.

3. Given an array A[1 .. n] of integers, compute the length of a longest alternating subsequence
of A. A sequence B[1..{] is alternating if B[i] < B[i — 1] for every even index i > 2, and
B[i] > B[i—1] for every odd index i > 3.

4. Given an array A[1..n] of integers, compute the length of a longest convex subsequence
of A. A sequence B[1..£] is convex if B[i]—B[i—1] > B[i — 1] — B[i — 2] for every index
1>3.

5. Given an array A[1..n], compute the length of a longest palindrome subsequence of A.
Recall that a sequence B[1..£] is a palindrome if B[i] = B[{ —i + 1] for every index i.

CS/ECE 374 A Lab 7% — March 2 Spring 2018

Basic steps in developing a dynamic programming algorithm

1. Formulate the problem recursively. This is the hard part. There are two distinct but
equally important things to include in your formulation.

(@

(b)

Specification. First, give a clear and precise English description of the problem you
are claiming to solve. Not how to solve the problem, but what the problem actually is.
Omitting this step in homeworks or exams is an automatic zero.

Solution. Second, give a clear recursive formula or algorithm for the whole problem
in terms of the answers to smaller instances of exactly the same problem. It generally
helps to think in terms of a recursive definition of your inputs and outputs. If you
discover that you need a solution to a similar problem, or a slightly related problem,
you’re attacking the wrong problem; go back to step 1.

2. Build solutions to your recurrence from the bottom up. Write an algorithm that starts
with the base cases of your recurrence and works its way up to the final solution, by
considering intermediate subproblems in the correct order. This stage can be broken down
into several smaller, relatively mechanical steps:

(@

(b)

(o)

(d

(e)

®

Identify the subproblems. What are all the different ways can your recursive
algorithm call itself, starting with some initial input?

Analyze running time. Add up the running times of all possible subproblems,
ignoring the recursive calls.

Choose a memoization data structure. For most problems, each recursive subprob-
lem can be identified by a few integers, so you can use a multidimensional array. But
some problems need a more complicated data structure.

Identify dependencies. Except for the base cases, every recursive subproblem
depends on other subproblems—which ones? Draw a picture of your data structure,
pick a generic element, and draw arrows from each of the other elements it depends
on. Then formalize your picture.

Find a good evaluation order. Order the subproblems so that each subproblem
comes after the subproblems it depends on. Typically, you should consider the base
cases first, then the subproblems that depends only on base cases, and so on. Be
careful!

Write down the algorithm. You know what order to consider the subproblems, and
you know how to solve each subproblem. So do that! If your data structure is an array,
this usually means writing a few nested for-loops around your original recurrence.

CS/ECE 374 A Lab 8 — March 7 Spring 2018

Lenny Adve, the founding dean of the new Maximilian Q. Levchin College of Computer
Science, has commissioned a series of snow ramps on the south slope of the Orchard Downs
sledding hill' and challenged Bill Kudeki, head of the Department of Electrical and Computer
Engineering, to a sledding contest. Bill and Lenny will both sled down the hill, each trying
to maximize their air time. The winner gets to expand their department/college into Siebel
Center, the new ECE Building, and the English Building; the loser has to move their entire
department/college under the Boneyard bridge next to Everitt Lab (along with the English
department).

Whenever Lenny or Bill reaches a ramp while on the ground, they can either use that ramp to
jump through the air, possibly flying over one or more ramps, or sled past that ramp and stay on
the ground. Obviously, if someone flies over a ramp, they cannot use that ramp to extend their
jump.

1. Suppose you are given a pair of arrays Ramp[1..n] and Length[1..n], where Ramp[i] is
the distance from the top of the hill to the ith ramp, and Length[i] is the distance that any
sledder who takes the ith ramp will travel through the air.

Describe and analyze an algorithm to determine the maximum total distance that Lenny
and Bill can travel through the air. [Hint: Do whatever you feel like you wanna do. Gosh!]

2. Uh-oh. The university lawyers heard about Lenny and Bill’s little bet and immediately
objected. To protect the university from both lawsuits and sky-rocketing insurance rates,
they impose an upper bound on the number of jumps that either sledder can take.

Describe and analyze an algorithm to determine the maximum total distance that Lenny
or Bill can spend in the air with at most k jumps, given the original arrays Ramp[1..n] and
Length[1..n] and the integer k as input.

3. To think about later: When the lawyers realized that imposing their restriction didn’t
immediately shut down the contest, they added a new restriction: No ramp can be used
more than once! Disgusted by the legal interference, Lenny and Bill give up on their bet
and decide to cooperate to put on a good show for the spectators.

Describe and analyze an algorithm to determine the maximum total distance that Lenny
and Bill can spend in the air, each taking at most k jumps (so at most 2k jumps total), and
with each ramp used at most once.

LThe north slope is faster, but too short for an interesting contest.

CS/ECE 374 A Lab 8% — March 9 Spring 2018

1. A basic arithmetic expression is composed of characters from the set {1,+, x} and
parentheses. Almost every integer can be represented by more than one basic arithmetic
expression. For example, all of the following basic arithmetic expression represent the
integer 14:

1+14+1+1+14+141+1+14+1+1+14+1+1+1+1
(IT+D)xA+1+1+1+1D))+((Q1+D)x (1 +1))
1I+D)x(A+14+14+1+14+1+1)
I+Dx(((1+1+D)xA+1)+1)

Describe and analyze an algorithm to compute, given an integer n as input, the minimum
number of 1’s in a basic arithmetic expression whose value is equal to n. The number
of parentheses doesn’t matter, just the number of 1’s. For example, when n = 14, your
algorithm should return 8, for the final expression above. The running time of your
algorithm should be bounded by a small polynomial function of n.

Think about later:

2. Suppose you are given a sequence of integers separated by + and — signs; for example:
1+43-2-541-6+7

You can change the value of this expression by adding parentheses in different places. For
example:

143—2—-5+1—-6+7=-1
1+3—(2-5)+(1—-6)+7=9
1+3B-2)—-G+1)—(6+7)=-17

Describe and analyze an algorithm to compute, given a list of integers separated by +
and — signs, the maximum possible value the expression can take by adding parentheses.
Parentheses must be used only to group additions and subtractions; in particular, do not
use them to create implicit multiplication as in 1 + 3(—2)(—5)+1—6+7 = 33.

CS/ECE 374 A Lab | 72| — March 14 Spring 2018

For each of the problems below, transform the input into a graph and apply a standard graph
algorithm that you've seen in class. Whenever you use a standard graph algorithm, you must
provide the following information. (I recommend actually using a bulleted list.)

What are the vertices? What does each vertex represent?

What are the edges? Are they directed or undirected?

If the vertices and/or edges have associated values, what are they?
What problem do you need to solve on this graph?

What standard algorithm are you using to solve that problem?

What is the running time of your entire algorithm, including the time to build the graph, as
a function of the original input parameters?

. Snakes and Ladders is a classic board game, originating in India no later than the 16th

century. The board consists of an n x n grid of squares, numbered consecutively from 1
to n?, starting in the bottom left corner and proceeding row by row from bottom to top,
with rows alternating to the left and right. Certain pairs of squares, always in different
rows, are connected by either “snakes” (leading down) or “ladders” (leading up). Each
square can be an endpoint of at most one snake or ladder.

10099@97 96@
8 828%8485?6‘

61 862 | 6386 6166 [

112]@4]s|6]7|@®] ™o

A typical Snakes and Ladders board.
Upward straight arrows are ladders; downward wavy arrows are snakes.

You start with a token in cell 1, in the bottom left corner. In each move, you advance
your token up to k positions, for some fixed constant k (typically 6). Then if the token is at
the top of a snake, you must slide the token down to the bottom of that snake, and if the
token is at the bottom of a ladder, you may move the token up to the top of that ladder.

Describe and analyze an efficient algorithm to compute the smallest number of moves
required for the token to reach the last square of the Snakes and Ladders board.

. Let G be an undirected graph. Suppose we start with two coins on two arbitrarily chosen

vertices of G. At every step, each coin must move to an adjacent vertex. Describe and
analyze an efficient algorithm to compute the minimum number of steps to reach a
configuration where both coins are on the same vertex, or to report correctly that no such
configuration is reachable. The input to your algorithm consists of a graph G = (V, E) and
two vertices u,v € V (which may or may not be distinct).

CS/ECE 374 A Lab | 72| — March 14 Spring 2018

Think about later:

3. Let G be an undirected graph. Suppose we start with 374 coins on 374 arbitrarily chosen
vertices of G. At every step, each coin must move to an adjacent vertex. Describe and
analyze an efficient algorithm to compute the minimum number of steps to reach a
configuration where both coins are on the same vertex, or to report correctly that no such
configuration is reachable. The input to your algorithm consists of a graph G = (V, E) and
starting vertices sq,S,, .. .,S374 (Which may or may not be distinct).

CS/ECE 374 A Lab 9% — October 26 Spring 2018

For each of the problems below, transform the input into a graph and apply a standard graph
algorithm that you've seen in class. Whenever you use a standard graph algorithm, you must
provide the following information. (I recommend actually using a bulleted list.)

e What are the vertices? What does each vertex represent?

e What are the edges? Are they directed or undirected?

e If the vertices and/or edges have associated values, what are they?

* What problem do you need to solve on this graph?

e What standard algorithm are you using to solve that problem?

e What is the running time of your entire algorithm, including the time to build the graph, as
a function of the original input parameters?

1. Inspired by the previous lab, you decide to organize a Snakes and Ladders competition
with n participants. In this competition, each game of Snakes and Ladders involves three
players. After the game is finished, they are ranked first, second, and third. Each player
may be involved in any (non-negative) number of games, and the number need not be
equal among players.

At the end of the competition, m games have been played. You realize that you forgot
to implement a proper rating system, and therefore decide to produce the overall ranking
of all n players as you see fit. However, to avoid being too suspicious, if player A ranked
better than player B in any game, then A must rank better than B in the overall ranking.

You are given the list of players and their ranking in each of the m games. Describe and
analyze an algorithm that produces an overall ranking of the n players that is consistent
with the individual game rankings, or correctly reports that no such ranking exists.

2. There are n galaxies connected by m intergalactic teleport-ways. Each teleport-way joins
two galaxies and can be traversed in both directions. However, the company that runs the
teleport-ways has established an extremely lucrative cost structure: Anyone can teleport
further from their home galaxy at no cost whatsoever, but teleporting toward their home
galaxy is prohibitively expensive.

Judy has decided to take a sabbatical tour of the universe by visiting as many galaxies
as possible, starting at her home galaxy. To save on travel expenses, she wants to teleport
away from her home galaxy at every step, except for the very last teleport home.

Describe and analyze an algorithm to compute the maximum number of galaxies that
Judy can visit. Your input consists of an undirected graph G with n vertices and m edges
describing the teleport-way network, an integer 1 <s < n identifying Judy’s home galaxy,
and an array D[1..n] containing the distances of each galaxy from s.

To think about later:

3. Just before embarking on her universal tour, Judy wins the space lottery, giving her just
enough money to afford two teleports toward her home galaxy. Describe and analyze a
new algorithm to compute the maximum number of galaxies Judy can visit; if she visits
the same galaxy twice, that counts as two visits. After all, argues the travel agent, who can
see an entire galaxy in just one visit?

CS/ECE 374 A Lab 9% — October 26 Spring 2018

*4. Judy replies angrily to the travel agent that she can see an entire galaxy in just one visit,
because 99% of every galaxy is exactly the same glowing balls of plasma and lifeless chunks
of rock and McDonalds and Starbucks and prefab “Irish” pubs and overpriced souvenir
shops and Peruvian street-corner musicians as every other galaxy.

Describe and analyze an algorithm to compute the maximum number of distinct galaxies
Judy can visit. She is still allowed to visit the same galaxy more than once, but only the
first visit counts toward her total.

CS/ECE 374 A Lab 10 — March 28 Spring 2018

1. Describe and analyze an algorithm to compute the shortest path from vertex s to vertex t
in a directed graph with weighted edges, where exactly one edge u—v has negative weight.
Assume the graph has no negative cycles. [Hint: Modify the input graph and run Dijkstra’s
algorithm. Alternatively, don’t modify the input graph, but run Dijkstra’s algorithm

anyway.]

2. You just discovered your best friend from elementary school on Twitbook. You both want to
meet as soon as possible, but you live in two different cites that are far apart. To minimize
travel time, you agree to meet at an intermediate city, and then you simultaneously hop in
your cars and start driving toward each other. But where exactly should you meet?

You are given a weighted graph G = (V, E), where the vertices V represent cities and
the edges E represent roads that directly connect cities. Each edge e has a weight w(e)
equal to the time required to travel between the two cities. You are also given a vertex p,
representing your starting location, and a vertex q, representing your friend’s starting
location.

Describe and analyze an algorithm to find the target vertex t that allows you and your
friend to meet as soon as possible, assuming both of you leave home right now.

To think about later:

3. A looped tree is a weighted, directed graph built from a binary tree by adding an edge from
every leaf back to the root. Every edge has a non-negative weight.

4 W')\
i/\i
1753

A looped tree.

~

(a) How much time would Dijkstra’s algorithm require to compute the shortest path
between two vertices u and v in a looped tree with n nodes?

(b) Describe and analyze a faster algorithm.

CS/ECE 374 A Lab 10%2 — March 30 Spring 2018

1. Suppose that you have just finished computing the array dist[1..V,1.. V] of shortest-path
distances between all pairs of vertices in an edge-weighted directed graph G. Unfortunately,
you discover that you incorrectly entered the weight of a single edge u—v, so all that
precious CPU time was wasted. Or was it? Maybe your distances are correct after all!

In each of the following problems, let w(u—v) denote the weight that you used in your
distance computation, and let w’(u—v) denote the correct weight of u—v.

(a) Suppose w(u—v) > w’'(u—v); that is, the weight you used for u—v was larger than
its true weight. Describe an algorithm that repairs the distance array in O(V?2) time
under this assumption. [Hint: For every pair of vertices x and y, either u—v is on
the shortest path from x to y or it isn’t.]

(b) Maybe even that was too much work. Describe an algorithm that determines whether
your original distance array is actually correct in O(1) time, again assuming that
w(u—v) > w'(u—~v). [Hint: Either u—v is the shortest path from u to v or it isn'’t.]

(c) To think about later: Describe an algorithm that determines in O(VE) time whether
your distance array is actually correct, even if w(u—v) < w’'(u—v).

(d) To think about later: Argue that when w(u—v) < w’(u—v), repairing the distance
array requires recomputing shortest paths from scratch, at least in the worst case.

2. You—yes, you—can cause a major economic collapse with the power of graph algorithms!?
The arbitrage business is a money-making scheme that takes advantage of differences in
currency exchange. In particular, suppose that 1 US dollar buys 120 Japanese yen; 1 yen
buys 0.01 euros; and 1 euro buys 1.2 US dollars. Then, a trader starting with $1 can
convert their money from dollars to yen, then from yen to euros, and finally from euros
back to dollars, ending with $1.44! The cycle of currencies $ - ¥ —-€ — $ is called an
arbitrage cycle. Of course, finding and exploiting arbitrage cycles before the prices are
corrected requires extremely fast algorithms.

Suppose n different currencies are traded in your currency market. You are given
the matrix R[1..n] of exchange rates between every pair of currencies; for each i and j,
one unit of currency i can be traded for R[i, j] units of currency j. (Do not assume that
R[i,j]-R[j,1]=1)

(a) Describe an algorithm that returns an array V[1..n], where V[i] is the maximum
amount of currency i that you can obtain by trading, starting with one unit of
currency 1, assuming there are no arbitrage cycles.

(b) Describe an algorithm to determine whether the given matrix of currency exchange
rates creates an arbitrage cycle.

*(c¢) To think about later: Modify your algorithm from part (b) to actually return an
arbitrage cycle, if such a cycle exists.

INo, you can’t.

CS/ECE 374 A Lab 11 — April 4 Spring 2018

1. Flappy Bird is a popular mobile game written by Nguyén Ha Dong, originally released in
May 2013. The game features a bird named “Faby”, who flies to the right at constant speed.
Whenever the player taps the screen, Faby is given a fixed upward velocity; between taps,
Faby falls due to gravity. Faby flies through a landscape of pipes until it touches either a
pipe or the ground, at which point the game is over. Your task, should you choose to accept
it, is to develop an algorithm to play Flappy Bird automatically.

Well, okay, not Flappy Bird exactly, but the following drastically simplified variant,
which I will call Flappy Pixel. Instead of a bird, Faby is a single point, specified by three
integers: horizontal position x (in pixels), vertical position y (in pixels), and vertical
speed y’ (in pixels per frame). Faby’s environment is described by two arrays Hi[1..n] and
Lo[1..n], where for each index i, we have 0 < Lo[i] < Hi[i] < h for some fixed height
value h. The game is described by the following piece of pseudocode:

FLappYPIXEL(Hi[1..n],Lo[1..n]):
y < [h/2]
y' <0
forx«—1ton
if the player taps the screen

y' <10 (flap))
else
y ey -1 ((fall))
yey+y
if y <Lo[x]ory>Hi[x]
return FALSE {{(player loses))
return TRUE {(player wins))

Notice that in each iteration of the main loop, the player has the option of tapping the
screen.

Describe and analyze an algorithm to determine the minimum number of times that the
player must tap the screen to win Flappy Pixel, given the integer h and the arrays Hi[1..n]
and Lo[1..n] as input. If the game cannot be won at all, your algorithm should return oo.
Describe the running time of your algorithm as a function of n and h.

[Problem 2 is on the back.]

CS/ECE 374 A Lab 11 — April 4 Spring 2018

2. Racetrack (also known as Graph Racers and Vector Rally) is a two-player paper-and-pencil
racing game that Jeff played on the bus in 5th grade.! The game is played with a track
drawn on a sheet of graph paper. The players alternately choose a sequence of grid points
that represent the motion of a car around the track, subject to certain constraints explained
below.

Each car has a position and a velocity, both with integer x- and y-coordinates. A subset
of grid squares is marked as the starting area, and another subset is marked as the finishing
area. The initial position of each car is chosen by the player somewhere in the starting area;
the initial velocity of each car is always (0, 0). At each step, the player optionally changes
each component of the velocity by at most 1. The car’s new position is then determined by
adding the new velocity to the car’s previous position. The new position must be inside the
track; otherwise, the car crashes and that player loses the race.2 The race ends when the
first car reaches a position inside the finishing area.

velocity | position

0,00 | (1,5

1,00 | (25)

-1 | (44 m
(3,00 | (7,4 S
1) | (9,5) T
1,2) | (10,7)

(0,3) (10,10)
(-1,4) (9,14)
(0,3) (9,17)
(1,2) | (10,19)
(2,2) | (12,21)
(2,1) (14,22)
(2,0) | (16,22)
(1,-1) | (17,21)
(2,-1) | (19,20)
(3,0) | (22,20)
3,1) (25,21)
A 16-step Racetrack run, on a 25 x 25 track. This is not the shortest run on this track.

START

Suppose the racetrack is represented by an n x n array of bits, where each 0 bit
represents a grid point inside the track, each 1 bit represents a grid point outside the track,
the “starting line” consists of all O bits in column 1, and the “finishing line” consists of all @
bits in column n.

Describe and analyze an algorithm to find the minimum number of steps required to
move a car from the starting line to the finish line of a given racetrack.

[Hint: Your initial analysis can be improved.]

1The actual game is a bit more complicated than the version described here. See http://harmmade.com/vectorracer/
for an excellent online version.

2However, it is not necessary for the entire line segment between the old position and the new position to lie inside
the track. Sometimes Speed Racer has to push the A button.

CS/ECE 374 A Lab 11 — April 4

Spring 2018

To think about later:

3. Consider the following variant of Flappy Pixel. The mechanics of the game are unchanged,
but now the environment is specified by an array Points[1..n, 1 .. h] of integers, which could
be positive, negative, or zero. If Faby falls off the top or bottom edge of the environment,
the game immediately ends and the player gets nothing. Otherwise, at each frame, the
player earns Points[x, y] points, where (x, y) is Faby’s current position. The game ends

4.

when Faby reaches the right end of the environment.

FLappyPixeL2(Points[1..n]):

score «— 0

y < [h/2]
Y <0
forx<—1ton

y' <10
else

y ey -1
yey+y
ify<lory>h

return —oo

return score

if the player taps the screen

{(flap))

((faln)

((fail))

score « score + Points[x, y]

Describe and analyze an algorithm to determine the maximum possible score that a

player can earn in this game.

We can also consider a similar variant of Racetrack.

Instead of bits, the “track” is

described by an array Points[1..n,1..n] of numbers, which could be positive, negative, or
zero. Whenever the car lands on a grid cell (i, j), the player receives Points[i, j] points.
Forbidden grid cells are indicated by Points[i, j] = —00.

Describe and analyze an algorithm to find the largest possible score that a player can
earn by moving a car from column 1 (the starting line) to column n (the finish line).

[Hint: Wait, what if all the point values are positive?]

CS/ECE 374 A Lab 12 — April 11 Spring 2018

1. Suppose you are given a magic black box that somehow answers the following decision
problem in polynomial time:
e INPUT: A boolean circuit K with n inputs and one output.
e OurtpruT: TRUE if there are input values x;, X, ..., X, € {TRUE, FALSE} that make K

output TRUE, and FALSE otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following related
search problem in polynomial time:

e INPUT: A boolean circuit K with n inputs and one output.

e QuTtpuT: Input values x1,X,,...,Xx, € {TRUE,FALSE} that make K output TRUE, or

NoNE if there are no such inputs.

[Hint: You can use the magic box more than once.]

2. An independent set in a graph G is a subset S of the vertices of G, such that no two vertices
in S are connected by an edge in G. Suppose you are given a magic black box that somehow
answers the following decision problem in polynomial time:

e INPUT: An undirected graph G and an integer k.

e OurtpuT: TRUE if G has an independent set of size k, and FALSE otherwise.

(a) Using this black box as a subroutine, describe algorithms that solves the following
optimization problem in polynomial time:

e INPUT: An undirected graph G.
* OutprurT: The size of the largest independent set in G.

[Hint: You've seen this problem before.]

(b) Using this black box as a subroutine, describe algorithms that solves the following
search problem in polynomial time:

e INnPUT: An undirected graph G.
* OuTpuT: An independent set in G of maximum size.

CS/ECE 374 A Lab 12 — April 11 Spring 2018

To think about later:

3. Formally, a proper coloring of a graph G = (V,E) is a function ¢: V — {1,2,...,k}, for
some integer k, such that c(u) # c(v) for all uv € E. Less formally, a valid coloring assigns
each vertex of G a color, such that every edge in G has endpoints with different colors. The
chromatic number of a graph is the minimum number of colors in a proper coloring of G.

Suppose you are given a magic black box that somehow answers the following decision
problem in polynomial time:

e INPUT: An undirected graph G and an integer k.

* OurtpuT: TRUE if G has a proper coloring with k colors, and FALSE otherwise.
Using this black box as a subroutine, describe an algorithm that solves the following
coloring problem in polynomial time:

e INPUT: An undirected graph G.

e OurpuT: A valid coloring of G using the minimum possible number of colors.

[Hint: You can use the magic box more than once. The input to the magic box is a graph
and only a graph, meaning only vertices and edges.]

CS/ECE 374 A Lab 122 — April 13 Spring 2018

Proving that a problem X is NP-hard requires several steps:
* Choose a problem Y that you already know is NP-hard (because we told you so in class).

* Describe an algorithm to solve Y, using an algorithm for X as a subroutine. Typically this
algorithm has the following form: Given an instance of Y, transform it into an instance
of X, and then call the magic black-box algorithm for X.

* Prove that your algorithm is correct. This always requires two separate steps, which are
usually of the following form:

— Prove that your algorithm transforms “good” instances of Y into “good” instances
of X.

— Prove that your algorithm transforms “bad” instances of Y into “bad” instances of X .
Equivalently: Prove that if your transformation produces a “good” instance of X, then
it was given a “good” instance of Y.

e Argue that your algorithm for Y runs in polynomial time. (This is usually trivial.)

1. Recall the following kCoLor problem: Given an undirected graph G, can its vertices be
colored with k colors, so that every edge touches vertices with two different colors?

(a) Describe a direct polynomial-time reduction from 3CoLoR to 4COLOR.

(b) Prove that kCoLor problem is NP-hard for any k > 3.

2. A Hamiltonian cycle in a graph G is a cycle that goes through every vertex of G exactly
once. Deciding whether an arbitrary graph contains a Hamiltonian cycle is NP-hard.

A tonian cycle in a graph G is a cycle that goes through at least half of the vertices
of G. Prove that deciding whether a graph contains a tonian cycle is NP-hard.

To think about later:

3. Let G be an undirected graph with weighted edges. A Hamiltonian cycle in G is heavy if
the total weight of edges in the cycle is at least half of the total weight of all edges in G.
Prove that deciding whether a graph contains a heavy Hamiltonian cycle is NP-hard.

A heavy Hamiltonian cycle. The cycle has total weight 34; the graph has total weight 67.

CS/ECE 374 A Lab 13 — April 18 Spring 2018

Prove that each of the following problems is NP-hard.

1. Given an undirected graph G, does G contain a simple path that visits all but 374 vertices?

2. Given an undirected graph G, does G have a spanning tree in which every node has degree
at most 3747

3. Given an undirected graph G, does G have a spanning tree with at most 374 leaves?

CS/ECE 374 A Lab 13% — April 20 Spring 2018

Proving that a language L is undecidable by reduction requires several steps. (These are the
essentially the same steps you already use to prove that a problem is NP-hard.)

* Choose a language L’ that you already know is undecidable (because we told you so in
class). The simplest choice is usually the standard halting language

HaLT := {(M,w) \ M halts on w}

* Describe an algorithm that decides L’, using an algorithm that decides L as a black box.
Typically your reduction will have the following form:

Given an arbitrary string x, construct a special string y,
such that y € L if and only if x € L’.

In particular, if L = HALT, your reduction will have the following form:

Given the encoding (M, w) of a Turing machine M and a string w,
construct a special string y, such that
y € L if and only if M halts on input w.

* Prove that your algorithm is correct. This proof almost always requires two separate steps:

- Prove thatif x € L' then y € L.
— Prove thatif x ¢ L’ then y & L.

Very important: Name every object in your proof, and always refer to objects by their names.
Never refer to “the Turing machine” or “the algorithm” or “the code” or “the input string” or
(gods forbid) “it” or “this”, even in casual conversation, even if you're “just” explaining your
intuition, even when you’re “just” thinking about the reduction to yourself.

Prove that the following languages are undecidable.
1. ACCEPTILLINI := {(M) | M accepts the string T LLINI}
2. ACCEPTTHREE := {(M) \ M accepts exactly three strings}
3. ACCEPTPALINDROME := {(M) | M accepts at least one palindrome}
4. AcCEPTONLYPALINDROMES := {(M) | Every string accepted by M is a palindrome}

A solution for problem 1 appears on the next page; don’t look at it until you've thought a bit
about the problem first.

CS/ECE 374 A Lab 13% — April 20 Spring 2018

Solution (for problem 1): For the sake of argument, suppose there is an algorithm DECIDE-
AccepTILLINT that correctly decides the language AccepTILLINI. Then we can solve the
halting problem as follows:

DecipEHALT({(M, w)):
Encode the following Turing machine M’:
M'(x):
run M on input w
return TRUE

if DEciDEACCEPTILLINI((M'))
return TRUE

else
return FALSE

We prove this reduction correct as follows:

= Suppose M halts on input w.
Then M’ accepts every input string x.
In particular, M’ accepts the string TLLINT.
So DECIDEACCEPTILLINI accepts the encoding (M’).

So DEcIDEHALT correctly accepts the encoding (M, w).

&= Suppose M does not halt on input w.
Then M’ diverges on every input string x.
In particular, M’ does not accept the string TLLINI.
So DECIDEACCEPTILLINI rejects the encoding (M’).
So DEcIDEHALT correctly rejects the encoding (M, w).

In both cases, DECIDEHALT is correct. But that’s impossible, because HarT is undecidable.
We conclude that the algorithm DEcIDEAcCEPTILLINI does not exist. [|

As usual for undecidablility proofs, this proof invokes four distinct Turing machines:

* The hypothetical algorithm DECIDEACCEPTILLINI.
e The new algorithm DeciDEHALT that we construct in the solution.
e The arbitrary machine M whose encoding is part of the input to DECIDEHALT.

* The special machine M’ whose encoding DEcIDEHALT constructs (from the encoding
of M and w) and then passes to DECIDEACCEPTILLINT.

CS/ECE 374 A Lab 14 — April 25 Spring 2018

Rice’s Theorem. Let £ be any set of languages that satisfies the following conditions:
e There is a Turing machine Y such that AccepT(Y) € L.
* There is a Turing machine N such that AccepT(N) & L.

The language AccepTIN(L) := {(M) | AccepT(M) € L} is undecidable.

You may find the following Turing machines useful:
* Mpccrpr ACCEPLS every input.
* Mggjrcr FEjECts every input.
* My, infinite-loops on every input.

Prove that the following languages are undecidable using Rice’s Theorem:
1. ACCEPTREGULAR := {(M) ’ AccepT(M) is regular}
2. ACCEPTILLINT := {(M) | M accepts the string ILLINI}
3. ACCEPTPALINDROME := {(M) | M accepts at least one palindrome}
4. ACCEPTTHREE := {(M) \ M accepts exactly three strings}

5. ACCEPTUNDECIDABLE = {(M) \ AccepT(M) is undecidable}

To think about later. Which of the following languages are undecidable? How would you prove
that? Remember that we know several ways to prove undecidability:

* Diagonalization: Assume the language is decidable, and derive an algorithm with self-
contradictory behavior.

e Reduction: Assume the language is decidable, and derive an algorithm for a known
undecidable language, like HALT or SELFREJECT or NEVERACCEPT.

* Rice’s Theorem: Find an appropriate family of languages £, a machine Y that accepts a
language in £, and a machine N that does not accept a language in £.

e Closure: If two languages L and L’ are decidable, then the languages L N L' and L U L’
and L\ L’ and L ® L’ and L* are all decidable, too.

6. Accept{{e}}:= {(M) | M accepts only the string ¢; that is, AccepT(M) = {e}}
7. AccepT{@} := {(M) | M does not accept any strings; that is, AcCEpT(M) = @}
8. ACCEPTQ := {(M) | AccepT(M) is not an acceptable language}
9. ACCEPT=REJECT := {(M) | AccerT(M) = REJECT(M) }

10. ACCEPT#REJECT := {(M) | AccepT(M) # REJECT(M) }

11. ACCEPTUREJECT := {(M) | AccepT(M) UREJECT(M) = E*}

CS/ECE 374 A Midterm 1 (version 6) Questions Spring 2018

Write your answers in the separate answer booklet.

Please return this question sheet and your cheat sheet with your answers.

1. For each statement below, check “Yes” if the statement is always true and “No” otherwise.
Each correct answer is worth +1 point; each incorrect answer is worth —'4 point; checking
“I don’t know” is worth + Y4 point; and flipping a coin is (on average) worth +%4 point. You
do not need to prove your answer is correct.

Read each statement very carefully. Some of these are deliberately subtle.

(a)
(b)
(©
(d
(e
®
€

()

@)
Q)

Every infinite language is regular.

If L is not regular, then for every string w € L, there is a DFA that accepts w.
If L is context-free and L has a finite fooling set, then L is regular.

If L is regular and L' N L = &, then L is regular.

The language {01170% | i + j + k > 374} is not regular.

The language {01170 | i + j — k > 374} is not regular.

Let M = (Q, {0, 1},s,A,5) be an arbitrary DFA, and let M’ = (Q, {0, 1},s,A,8") be
the DFA obtained from M by changing every O-transition into a 1-transition and
vice versa. More formally, M and M’ have the same states, input alphabet, starting
state, and accepting states, but 6'(q,0) = 6(q,1) and 6’(q,1) = &(q,0). Then
LIM)NL(M) =@.

Let M = (Q,%,s,A,8) be an arbitrary NFA, and M’ = (Q/, %,s,A’,5’) be any NFA
obtained from M by deleting some subset of the states. More formally, we have
Q' €Q,A=ANnQ,and &'(q,a) = 6(q,a)NQ’ for all g € Q’. Then L(M’) C L(M).

For every regular language L, the language {O|W| | we L} is also regular.

For every context-free language L, the language {O|W| | we L} is also context-free.

2. For any language L, define

STRIPINITOS(L) = {w | 0w e L for some j > O}

Less formally, STRIPINTTOS(L) is the set of all strings obtained by stripping any number of
initial Os from strings in L. For example, if L is the one-string language {00011010}, then

STrIPINITOS(L) = {00011010,0011010,011010,11010}.

Prove that if L is a regular language, then STriPINITOS(L) is also a regular language.

CS/ECE 374 A Midterm 1 (version 6) Questions Spring 2018

3. For each of the following languages L over the alphabet > = {0, 1}, give a regular expression
that represents L and describe a DFA that recognizes L.

(@) {0™wl"| n>1and we x*}
(b) All strings in 0*10* whose length is a multiple of 3.

4. The parity of a bit-string is 0 if the number of 1 bits is even, and 1 if the number of 1 bits
is odd. For example:

parity(e) =0 parity(0010100)=0 parity(00101110100) =1
(a) Give a self-contained, formal, recursive definition of the parity function. In particular,

do not refer to # or other functions defined in class.

(b) Let L be an arbitrary regular language. Prove that the language EvenParity(L) :=
{w e L | parity(w) = 0} is also regular.

(c) Let L be an arbitrary regular language. Prove that the language AddParity(L) :=
{w e parity(w) | w € L} is also regular. For example, if L contains the string 11100
and 11000, then AddParity(L) contains the strings 111001 and 110000.

5. Let L be the language {@ilek | i=jorj= k}.

(a) Prove that L is not a regular language.

(b) Describe a context-free grammar for L.

CS/ECE 374 A Midterm 1 (version £) Questions Spring 2018

Write your answers in the separate answer booklet.

Please return this question sheet and your cheat sheet with your answers.

1. For each statement below, check “Yes” if the statement is always true and “No” otherwise.
Each correct answer is worth +1 point; each incorrect answer is worth —'4 point; checking
“I don’t know” is worth + Y4 point; and flipping a coin is (on average) worth +%4 point. You
do not need to prove your answer is correct.

Read each statement very carefully. Some of these are deliberately subtle.

(a)
(b)
(©
(d
(e
®
(&

()

@)
Q)

No infinite language is regular.

If L is regular, then for every string w € L, there is a DFA that rejects w.
If L is context-free and L has a finite fooling set, then L is not regular.
If L is regular and L' N L = @&, then L’ is not regular.

The language {01170 | i + j + k > 374} is regular.

The language {01170 | i + j —k > 374} is regular.

Let M = (Q, {0, 1},s,A,5) be an arbitrary DFA, and let M’ = (Q, {0, 1},s,A,8") be
the DFA obtained from M by changing every O-transition into a 1-transition and
vice versa. More formally, M and M’ have the same states, input alphabet, starting
state, and accepting states, but 6'(q,0) = 6(q,1) and 6’(q,1) = &(q,0). Then
L(M)uL(M")={0,1}*.

Let M = (Q,%,s,A,8) be an arbitrary NFA, and M’ = (Q/, %,s,A’,5’) be any NFA
obtained from M by deleting some subset of the states. More formally, we have
Q' €Q,A=ANnQ,and &'(q,a) = 6(q,a)NQ’ for all g € Q’. Then L(M’) C L(M).

For every non-regular language L, the language {O|W| | we L} is also non-regular.

For every context-free language L, the language {O|W| | we L} is also context-free.

2. For any language L, define

STRIPFINALOS(L) = {w | wO™ € L for some n > 0}

Less formally, STRIPFINALOS(L) is the set of all strings obtained by stripping any number of
final Os from strings in L. For example, if L is the one-string language {01101000}, then

STRIPFINALOS(L) = {01101, 011010, 0110100, 01101000}.

Prove that if L is a regular language, then STRIPFINALOS(L) is also a regular language.

CS/ECE 374 A Midterm 1 (version £) Questions Spring 2018

3. For each of the following languages L over the alphabet > = {0, 1}, give a regular expression
that represents L and describe a DFA that recognizes L.

(@) {@”wl” | n>1landwe Z+}
(b) All strings in 0*1*0* whose length is even.

4. The parity of a bit-string is 0 if the number of 1 bits is even, and 1 if the number of 1 bits
is odd. For example:

parity(e) =0 parity(0010100)=0 parity(00101110100) =1
(a) Give a self-contained, formal, recursive definition of the parity function. In particular,

do not refer to # or other functions defined in class.

(b) Let L be an arbitrary regular language. Prove that the language OddParity(L) :=
{we L | parity(w) = 1} is also regular.

(c) Let L be an arbitrary regular language. Prove that the language AddParity(L) :=
{parity(w) -w | w € L} is also regular. For example, if L contains the strings 01110
and 01100, then AddParity(L) contains the strings 101110 and 001100.

5. Let L be the language {Oilek | 2i=kori= Zk}.

(a) Prove that L is not a regular language.

(b) Describe a context-free grammar for L.

CS/ECE 374 A Midterm 2¢> Questions Spring 2018

Write your answers in the separate answer booklet.

Please return this question sheet and your cheat sheet with your answers.

1. Clearly indicate the following structures in the directed graph below, or write NONE if the
indicated structure does not exist. Don’t be subtle; to indicate a collection of edges, draw a
heavy black line along the entire length of each edge.

(a) A depth-first tree rooted at x.
(b) A breadth-first tree rooted at y.
(c) A shortest-path tree rooted at z.
(d) The shortest directed cycle.

2. Suppose you are given a directed graph G where some edges are red and the remaining
edges are blue. Describe an algorithm to find the shortest walk in G from one vertex s to
another vertex t in which no three consecutive edges have the same color. That is, if the
walk contains two red edges in a row, the next edge must be blue, and if the walk contains
two blue edges in a row, the next edge must be red.

For example, if you are given the graph below (where single arrows are red and double
arrows are blue), your algorithm should return the integer 7, because the shortest legal
walk from s to t is s=a—b=>d—c=>a—b—-c.

3. Let G be an arbitrary (not necessarily acyclic) directed graph in which every vertex v has
an integer label £(v). Describe an algorithm to find the longest directed path in G whose
vertex labels define an increasing sequence. Assume all labels are distinct.

For example, given the following graph as input, your algorithm should return the
integer 5, which is the length of the increasing path 1-2—-4—-6—-7-8.

CS/ECE 374 A Midterm 2¢> Questions Spring 2018

4. Suppose you have an integer array A[1..n] that used to be sorted, but Swedish hackers
have overwritten k entries of A with random numbers. Because you carefully monitor your
system for intrusions, you know how many entries of A are corrupted, but not which entries
or what the values are.

Describe an algorithm to determine whether your corrupted array A contains an
integer x. Your input consists of the array A, the integer k, and the target integer x. For
example, if A is the following array, k = 4, and x = 17, your algorithm should return TRUE.
(The corrupted entries of the array are shaded.)

[2:3:99:7:11:13117:19i25:29:31:—5:41:43:47:53:8 :61:67:71|

Assume that x is not equal to any of the the corrupted values, and that all n array
entries are distinct. Report the running time of your algorithm as a function of n and k. A
solution only for the special case k = 1 is worth 5 points; a complete solution for arbitrary k
is worth 10 points. [Hint: First consider k = 0; then consider k = 1.]

5. Suppose you give one of your interns at Twitbook an undirected graph G with weighted
edges, and you ask them to compute a shortest-path tree rooted at a particular vertex. Two
weeks later, your intern finally comes back with a spanning tree T of G. Unfortunately, the
intern didn’t record the shortest-path distances, the direction of the shortest-path edges, or
even the source vertex (which you and the intern have both forgotten).

Describe and analyze an algorithm to determine, given a weighted undirected graph G
and a spanning tree T of G, whether T is in fact a shortest-path tree in G. Assume all edge
weights are non-negative.

For example, given the inputs shown below, your algorithm should return TRUE for the
example on the left, because T is a shortest-path tree rooted at the upper right vertex of G,
but your algorithm should return FaLsE for the example on the right.

CS/ECE 374 A Midterm 20 Questions Spring 2018

Write your answers in the separate answer booklet.

Please return this question sheet and your cheat sheet with your answers.

1. Clearly indicate the following structures in the directed graph below, or write NONE if the
indicated structure does not exist. Don’t be subtle; to indicate a collection of edges, draw a
heavy black line along the entire length of each edge.

(a) A depth-first tree rooted at x.
(b) A breadth-first tree rooted at y.
(c) A shortest-path tree rooted at z.
(d) The shortest directed cycle.

2. Let G be a directed graph, where every vertex v has an associated height h(v), and for
every edge u—v we have the inequality h(u) > h(v). Assume all heights are distinct. The
span of a path from u to v is the height difference h(u) —h(v).

Describe and analyze an algorithm to find the minimum span of a path in G with at
least k edges. Your input consists of the graph G, the vertex heights h(-), and the integer k.
Report the running time of your algorithm as a function of V, E, and k.

For example, given the following labeled graph and the integer k = 3 as input, your
algorithm should return the integer 4, which is the span of the path 8—-7—-6—-4.

3. Suppose you have an integer array A[1..n] that used to be sorted, but Swedish hackers
have overwritten k entries of A with random numbers. Because you carefully monitor your
system for intrusions, you know how many entries of A are corrupted, but not which entries
or what the values are.

Describe an algorithm to determine whether your corrupted array A contains an
integer x. Your input consists of the array A, the integer k, and the target integer x. For
example, if A is the following array, k = 4, and x = 17, your algorithm should return TRUE.
(The corrupted entries of the array are shaded.)

[2:3:99:7:11:113:17:19:25:29:31:—5:41:43:47:53:8 :61:67:71|

Assume that x is not equal to any of the the corrupted values, and that all n array
entries are distinct. Report the running time of your algorithm as a function of n and k. A
solution only for the special case k = 1 is worth 5 points; a complete solution for arbitrary k
is worth 10 points. [Hint: First consider k = 0; then consider k = 1.]

CS/ECE 374 A Midterm 20 Questions Spring 2018

4. Suppose you are given a directed graph G in which every edge is either red or blue, and a
subset of the vertices are marked as special. A walk in G is legal if color changes happen
only at special vertices. That is, for any two consecutive edges u—v—w in a legal walk, if
the edges u—v and v—w have different colors, the intermediate vertex v must be special.

Describe and analyze an algorithm that either returns the length of the shortest legal
walk from vertex s to vertex t, or correctly reports that no such walk exists.!

For example, if you are given the following graph below as input (where single arrows
are red, double arrows are blue), with special vertices x and y, your algorithm should return
the integer 8, which is the length of the shortest legal walk s—=x—a—b—-x=>y=b=c=t.
The shorter walk s—a—b=>c=>t is not legal, because vertex b is not special.

5. Let G be a directed graph with weighted edges, in which every vertex is colored either red,
green, or blue. Describe and analyze an algorithm to compute the length of the shortest
walk in G that starts at a red vertex, then visits any number of vertices of any color, then
visits a green vertex, then visits any number of vertices of any color, then visits a blue
vertex, then visits any number of vertices of any color, and finally ends at a red vertex.
Assume all edge weights are positive.

1If you've read China Miéville’s excellent novel The City & the City, this problem should look familiar. If you haven’t
read The City & the City, I can’t tell you why this problem should look familiar without spoiling the book.

CS/ECE 374 A Midterm 2&# Questions Spring 2018

Write your answers in the separate answer booklet.

Please return this question sheet and your cheat sheet with your answers.

1. Clearly indicate the following structures in the directed graph below, or write NONE if the
indicated structure does not exist. Don’t be subtle; to indicate a collection of edges, draw a
heavy black line along the entire length of each edge.

(a) A depth-first tree rooted at x.
(b) A breadth-first tree rooted at y.
(c) A shortest-path tree rooted at z.
(d) The shortest directed cycle.

2. After a few weeks of following your uphill-downhill walking path to work, your boss
demands that you start showing up to work on time, so you decide to change your walking
strategy. Your new goal is to walk to the highest altitude you can (to maximize exercise),
while keeping the total length of your walk from home to work below some threshold (to
make sure you get to work on time). Describe and analyze an algorithm to compute your
new favorite route.

Your input consists of an undirected graph G, where each vertex v has a height h(v)
and each edge e has a positive length £(e), along with a start vertex s, a target vertex t,
and a maximum length L. Your algorithm should return the maximum height reachable
by a walk from s to t in G, whose total length is at most L.

[Hint: This is the same input as HW8 problem 1, but the problem is completely different.
In particular, the number of uphill/downhill switches in your walk is irrelevant.]

3. Suppose you have an integer array A[1..n] that used to be sorted, but Swedish hackers
have overwritten k entries of A with random numbers. Because you carefully monitor your
system for intrusions, you know how many entries of A are corrupted, but not which entries
or what the values are.

Describe an algorithm to determine whether your corrupted array A contains an
integer x. Your input consists of the array A, the integer k, and the target integer x. For
example, if A is the following array, k = 4, and x = 17, your algorithm should return TRUE.
(The corrupted entries of the array are shaded.)

[2:3:99:7:11:13:17:19:25:29:31:—5:41:43:47:53:8 :61:67:71|

Assume that x is not equal to any of the the corrupted values, and that all n array
entries are distinct. Report the running time of your algorithm as a function of n and k. A
solution only for the special case k = 1 is worth 5 points; a complete solution for arbitrary k
is worth 10 points. [Hint: First consider k = 0; then consider k = 1.]

CS/ECE 374 A Midterm 2&# Questions Spring 2018

4. Let G be a directed graph, where every vertex v has an associated height h(v), and for
every edge u—v we have the inequality h(u) > h(v). Assume all heights are distinct. The
span of a path from u to v is the height difference h(u) —h(v).

Describe and analyze an algorithm to find the maximum span of a path in G with at
most k edges. Your input consists of the graph G, the vertex heights h(-), and the integer k.
Report the running time of your algorithm as a function of V, E, and k.

For example, given the following labeled graph and the integer k = 3 as input, your
algorithm should return the integer 8, which is the span of the downward path 9-6—5-1.

[Hint: This is a very different question from problem 2.]

5. Suppose you are given a directed graph G where some edges are red and the remaining
edges are blue, along with two vertices s and t. Describe an algorithm to compute the
length of the shortest walk in G from s to t that traverses an even number of red edges and
an even number of blue edges. If the walk traverses the same edge multiple times, each
traversal counts toward the total for that color.

For example, if you are given the graph below (where single arrows are red and double
arrows are blue), your algorithm should return the integer 6, because the shortest legal
walk from s to t is ssa—b=>d=>a—b—t.

CS/ECE 374 A < Spring 2018

 Final Exam [] &
May 8, 2018

Real name:

Gradescope email:

e Don’t panic!

e If you brought anything except your writing implements and your two double-sided
814" x 11" cheat sheets, please put it away for the duration of the exam. In particular, please

turn off and put away all medically unnecessary electronic devices.

* Please clearly print your real name, your university NetID, your Gradescope name, and
your Gradescope email address in the boxes above. We will not scan this page into

Gradescope.

* Please also print only the name you are using on Gradescope at the top of every page
of the answer booklet, except this cover page. These are the pages we will scan into

Gradescope.

* Please do not write outside the black boxes on each page; these indicate the area of the

page that the scanner can actually see.

* Please read the entire exam before writing anything. Please ask for clarification if any

question is unclear.

¢ The exam lasts 180 minutes.

 If you run out of space for an answer, continue on the back of the page, or on the blank
pages at the end of this booklet, but please tell us where to look. Alternatively, feel free

to tear out the blank pages and use them as scratch paper.

e As usual, answering any (sub)problem with “I don’t know” (and nothing else) is worth 25%
partial credit. Yes, even for problem 1. Correct, complete, but suboptimal solutions are

always worth more than 25%. A blank answer is not the same as “I don’t know”.
* Please return your cheat sheets and all scratch paper with your answer booklet.

* Good luck! And thanks for a great semester!

Beware of the man who works hard to learn something,
learns it, and finds himself no wiser than before.

He is full of murderous resentment of people who are ignorant
without having come by their ignorance the hard way.

— Bokonon

CS/ECE 374 A < Spring 2018 | Gradescope name:
Final Exam] Problem 1

For each of the following questions, indicate every correct answer by marking the “Yes” box, and indicate
every incorrect answer by marking the “No” box. Assume P # NP. If there is any other ambiguity or
uncertainty, mark the “No” box. For example:

% No | 2+2=4

Yes X xX+y=5

Yes X 3SAT can be solved in polynomial time.

% No Jeff is not the Queen of England.

% No If P = NP then Jeff is the Queen of England.

There are 40 yes/no choices altogether. Each correct choice is worth 4+ point; each incorrect choice is
worth —% point. TO indicate “I don’t know”, write IDK to the left of the Yes/No boxes; each IDK is worth

+1/8 point.

(a) Which of the following statements is true for every language L C {0, 1}*?

Yes No
Yes No
Yes No
Yes No
Yes No
Yes No
Yes No
Yes No
Yes No

L is infinite.

L* contains the empty string €.

L* is decidable.

If L is regular then (L*)* is regular.

If L is the intersection of two decidable languages, then L is decidable.

If L is the intersection of two undecidable languages, then L is undecid-
able.

If L is the complement of a regular language, then L* is regular.
If L has an infinite fooling set, then L is undecidable.

L is decidable if and only if its complement L is undecidable.

(b) Which of the following statements is true for every directed graph G = (V, E)?

Yes No
Yes No
Yes No
Yes No
Yes No

E#@.
Given the graph G as input, Floyd-Warshall runs in O(E®) time.
If G has at least one source and at least one sink, then G is a dag.

We can compute a spanning tree of G using whatever-first search.

If the edges of G are weighted, we can compute the shortest path from
any node s to any node t in O(E log V') time using Dijkstra’s algorithm.

(c) Which of the following languages over the alphabet {0, 1} are regular?

Yes No
Yes No
Yes No
Yes No
Yes No

{o™10™ | m < n}

{0™10™ | m+n > 374}

Binary representations of all perfect squares
{xy { yxisa palindrome}

{(M) | M accepts a finite number of non-palindrornes}

(d) Which of the following languages are decidable?

Yes No
Yes No
Yes No
Yes No
Yes No

Binary representations of all perfect squares
{xy e {0, 1}* \ yxisa palindrome}
{(M) | M accepts the binary representation of every perfect square}

{(M) | M accepts a finite number of non-palindromes}

The set of all regular expressions that represent the language {0, 1}*.
(This is a language over the alphabet {@,€,0,1,*,+, (,)}.)

1 (continued)

(e) Which of the following languages can be proved undecidable using Rice’s Theorem?

Yes || No {(M) | M accepts a finite number of strings}

Yes || No {(M) | M accepts both (M) and (M)R}

Yes || No {(M) | M accepts exactly 374 palindromes}

Yes || No {(M) | M accepts some string w after at most |w|? steps}

(f) Suppose we want to prove that the following language is undecidable.
CHALMERS := {(M) | M accepts both STEAMED and HAMS}
Professor Skinner suggests a reduction from the standard halting language
HALT := {(M}#w | M halts on inputs W}.

Specifically, suppose there is a Turing machine Ch that decides CHALMERS. Professor Skinner claims
that the following algorithm decides HALT.

DecipEHALT({M) #w):
Encode the following Turing machine:
AURORABOREALIS(x):
if x = STEAMED or x = HAMS or x = ALBANY
run M on input w
return FALSE
else
return TRUE

return Ch({AURORABOREALIS))

Which of the following statements is true for all inputs (M) #w?

Yes || No If M accepts w, then AURORABOREALIs accepts CLAMS.

Yes || No If M rejects w, then AURORABOREALIS rejects UTICA.

Yes || No If M rejects w, then AURORABOREALIS halts on every input string.
Yes || No If M accepts w, then Ch accepts (AURORABOREALIS).

DecipEHALT decides the language HaLT. (That is, Professor Skinner’s

Yes No . .
reduction is actually correct.)
Yes || No DEcIDEHALT actually runs (or simulates) M.
v N We could have proved CHALMERS is undecidable using Rice’s theorem
es o

instead of this reduction.

1 (continued)

(g) Consider the following pair of languages:

¢ 3COLOR := {G \ G is a 3-colorable undirected graph}

* TREE := {G | G is a connected acyclic undirected graph}

(For concreteness, assume that in both of these languages, graphs are represented by adjacency

matrices.) Which of the following must be true, assuming P#ANP?

Yes No
Yes No
Yes No
Yes No
Yes No

TrREE U 3COLOR is NP-hard.

TrREE N 3COLOR is NP-hard.

3CoLOR is undecidable.

There is a polynomial-time reduction from 3CoLOR to TREE.

There is a polynomial-time reduction from TREE to 3COLOR.

1 (continued)

CS/ECE 374 A < Spring 2018 | Gradescope name:
Final Exam] Problem 2

A wye is an undirected graph that looks like the capital letter Y. More formally, a wye consists of three
paths of equal length with one common endpoint, called the hub.

This grid graph contains a wye whose paths have length 4.

Prove that the following problem is NP-hard: Given an undirected graph G, what is the largest wye that
is a subgraph of G? The three paths of the wye must not share any vertices except the hub, and they
must have exactly the same length.

CS/ECE 374 A < Spring 2018 | Gradescope name:

Final Exam] Problem 3

Fix the alphabet 3 = {0, 1}. Recall that a run in a string w € ¥* is a maximal non-empty substring in
which all symbols are equal. For example, the string 000001000111111101 consists of exactly six
runs: 00000100011111110=00000°1°000 11111110 1.

(a) Let L be the set of all strings in * where every run has odd length. For example, L contains the
string 000100000, but L does not contain the string 00011.

Describe both a regular expression for L and a DFA that accepts L.

(b) Let L’ be the set of all strings in * that have the same number of even-length runs and odd-length
runs. For example, L” does not contain the string 900011101, because it has three odd-length runs
but only one even-length run, but L’ does contain the string 0000111011, because it has two runs
of each parity.

Prove that L’ is not regular.

CS/ECE 374 A < Spring 2018 | Gradescope name:

Final Exam] Problem 4

Suppose we want to split an array A[1..n] of integers into k contiguous intervals that partition the sum
of the values as evenly as possible. Specifically, define the cost of such a partition as the maximum, over
all k intervals, of the sum of the values in that interval; our goal is to minimize this cost. Describe and
analyze an algorithm to compute the minimum cost of a partition of A into k intervals, given the array A
and the integer k as input.

For example, given the array A =[1,6,—1,8,0,3,3,9,8,8,7,4,9,8,9,4,8,4,8,2] and the integer
k = 3 as input, your algorithm should return the integer 37, which is the cost of the following partition:

37 36 35
> ——
[1,6,-1,8,0,3,3,9,8 |8,7,4,9,8|9,4,8,4,8,2 |

The numbers above each interval show the sum of the values in that interval.

CS/ECE 374 A < Spring 2018 | Gradescope name:
Final Exam] Problem 5

(a) Fix the alphabet 3 = {0, 1}. Describe and analyze an efficient algorithm for the following problem:
Given an NFA M over ¥, does M accept at least one string? Equivalently, is L(M) # &?

(b) Recall from Homework 10 that deciding whether a given NFA accepts every string is NP-hard. Also
recall that the complement of every regular language is regular; thus, for any NFA M, there is

another NFA M’ such that L(M’) = ©* \ L(M). So why doesn’t your algorithm from part (a) imply
that P=NP?

CS/ECE 374 A < Spring 2018 | Gradescope name:
Final Exam] Problem 6

A number mage is an n x n grid of positive integers. A token starts in the upper left corner; your goal is
to move the token to the lower-right corner. On each turn, you are allowed to move the token up, down,
left, or right; the distance you may move the token is determined by the number on its current square.
For example, if the token is on a square labeled 3, then you may move the token three steps up, three
steps down, three steps left, or three steps right. However, you are never allowed to move the token off
the edge of the board.

Describe and analyze an efficient algorithm that either returns the minimum number of moves
required to solve a given number maze, or correctly reports that the maze has no solution.

3[5(7]4]6 OEnsk
s[3[1]5]3 5 | O
28314 2|8]3l] 4] 4
als|7]2]3 NBEIEIE
3[1]3]2]% N E==AE4P4

A 5 x 5 number maze that can be solved in eight moves.

(scratch paper)

(scratch paper)

(scratch paper)

(scratch paper)

10

Some useful NP-hard problems. You are welcome to use any of these in your own NP-hardness proofs,
except of course for the specific problem you are trying to prove NP-hard.

CircuUITSAT: Given a boolean circuit, are there any input values that make the circuit output TRUE?

3SaT: Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does
the formula have a satisfying assignment?

MAXINDEPENDENTSET: Given an undirected graph G, what is the size of the largest subset of vertices in G
that have no edges among them?

MaxCLIQUE: Given an undirected graph G, what is the size of the largest complete subgraph of G?

MiNVERTEXCOVER: Given an undirected graph G, what is the size of the smallest subset of vertices that
touch every edge in G?

MINSETCOVER: Given a collection of subsets S;,S,,...,S,, of a set S, what is the size of the smallest subcol-
lection whose union is §?

MINHITTINGSET: Given a collection of subsets S;,S,,...,S,, of aset S, what is the size of the smallest subset
of S that intersects every subset S;?

3CoLoR: Given an undirected graph G, can its vertices be colored with three colors, so that every edge
touches vertices with two different colors?

HamirToNIANPATH: Given graph G (either directed or undirected), is there a path in G that visits every
vertex exactly once?

HamiLToNIANCYCLE: Given a graph G (either directed or undirected), is there a cycle in G that visits every
vertex exactly once?

TRAVELINGSALESMAN: Given a graph G (either directed or undirected) with weighted edges, what is the
minimum total weight of any Hamiltonian path/cycle in G?

LoNGEsSTPATH: Given a graph G (either directed or undirected, possibly with weighted edges), what is the
length of the longest simple path in G?

STEINERTREE: Given an undirected graph G with some of the vertices marked, what is the minimum number
of edges in a subtree of G that contains every marked vertex?

SuBseETSUM: Given a set X of positive integers and an integer k, does X have a subset whose elements sum
to k?

PARTITION: Given a set X of positive integers, can X be partitioned into two subsets with the same sum?

3PARTITION: Given a set X of 3n positive integers, can X be partitioned into n three-element subsets, all
with the same sum?

INTEGERLINEARPROGRAMMING: Given a matrix A € Z™% and two vectors b € Z" and ¢ € Z¢, compute
max{c-x |Ax < b,x >0, x € Z%}.

FEASIBLEILP: Given a matrix A € Z™? and a vector b € Z", determine whether the set of feasible integer
points max{x € Z% | Ax < b, x > 0} is empty.

DrauGHTS: Given an n X n international draughts configuration, what is the largest number of pieces that
can (and therefore must) be captured in a single move?

SUPERMARIOBROTHERS: Given an n X n Super Mario Brothers level, can Mario reach the castle?

STEAMEDHAMS: Aurora borealis? At this time of year, at this time of day, in this part of the country, localized
entirely within your kitchen? May | see it?

CS/ECE 374 A < Spring 2018

 Final Exam 73 &
May 8, 2018

Real name:

Gradescope email:

e Don’t panic!

e If you brought anything except your writing implements and your two double-sided
814" x 11" cheat sheets, please put it away for the duration of the exam. In particular, please

turn off and put away all medically unnecessary electronic devices.

* Please clearly print your real name, your university NetID, your Gradescope name, and
your Gradescope email address in the boxes above. We will not scan this page into

Gradescope.

* Please also print only the name you are using on Gradescope at the top of every page
of the answer booklet, except this cover page. These are the pages we will scan into

Gradescope.

* Please do not write outside the black boxes on each page; these indicate the area of the

page that the scanner can actually see.

* Please read the entire exam before writing anything. Please ask for clarification if any

question is unclear.

¢ The exam lasts 180 minutes.

 If you run out of space for an answer, continue on the back of the page, or on the blank
pages at the end of this booklet, but please tell us where to look. Alternatively, feel free

to tear out the blank pages and use them as scratch paper.

e As usual, answering any (sub)problem with “I don’t know” (and nothing else) is worth 25%
partial credit. Yes, even for problem 1. Correct, complete, but suboptimal solutions are

always worth more than 25%. A blank answer is not the same as “I don’t know”.
* Please return your cheat sheets and all scratch paper with your answer booklet.

* Good luck! And thanks for a great semester!

Beware of the man who works hard to learn something,
learns it, and finds himself no wiser than before.

He is full of murderous resentment of people who are ignorant
without having come by their ignorance the hard way.

— Bokonon

CS/ECE 374 A < Spring 2018 | Gradescope name:
Final Exam 7 j Problem 1

For each of the following questions, indicate every correct answer by marking the “Yes” box, and indicate
every incorrect answer by marking the “No” box. Assume P # NP. If there is any other ambiguity or
uncertainty, mark the “No” box. For example:

% No | 2+2=4

Yes X xX+y=5

Yes X 3SAT can be solved in polynomial time.

% No Jeff is not the Queen of England.

% No If P = NP then Jeff is the Queen of England.

There are 40 yes/no choices altogether. Each correct choice is worth 4% point; each incorrect choice is
worth —%4 point. TO indicate “I don’t know”, write IDK to the left of the Yes/No boxes; each IDK is worth

+1/8 point.

(a) Which of the following statements is true for every language L C {0, 1}*?

Yes No
Yes No
Yes No
Yes No
Yes No
Yes No
Yes No
Yes No
Yes No

L is finite.

L* contains the empty string €.

L* is decidable.

If L is regular then X* \ L* is regular.

If L is the intersection of two decidable languages, then L is decidable.

If L is the intersection of two undecidable languages, then L is undecid-
able.

If L* is the complement of a regular language, then L is regular.
If L is undecidable, then every fooling set for L is infinite.

L is decidable if and only if its complement L is undecidable.

(b) Which of the following statements is true for every directed graph G = (V, E)?

Yes No
Yes No
Yes No
Yes No
Yes No

E#@.
Given the graph G as input, Floyd-Warshall runs in O(E®) time.
If G has at least one source and at least one sink, then G is a dag.

We can compute a spanning tree of G using whatever-first search.

If the edges of G are weighted, we can compute the shortest path from
any node s to any node t in O(E log V') time using Dijkstra’s algorithm.

(c) Which of the following languages over the alphabet {0, 1} are regular?

Yes No
Yes No
Yes No
Yes No
Yes No

{0™10™ | m>n}

{0™10™ | m—n > 374}

Binary representations of all integers divisible by 374
{xy { yxisa palindrome}

{(M) | M accepts a finite number of non-palindrornes}

(d) Which of the following languages are decidable?

Yes No
Yes No
Yes No
Yes No
Yes No

Binary representations of all integers divisible by 374

{xy e {0, 1}* \ yxisa palindrome}

{(M) | M accepts the binary representation of every integer divisible by 374}

{(M) | M accepts a finite number of non-palindromes}

The set of all regular expressions that represent the language {0, 1}*.
(This is a language over the alphabet {@,€,0,1,*,+, (,)}.)

1 (continued)

(e) Which of the following languages can be proved undecidable using Rice’s Theorem?

Yes || No {(M) | M accepts an infinite number of strings}

Yes || No {(M) | M accepts either (M) or (M)R}

Yes || No {(M) | M accepts 001100 but rejects llOOll}

Yes || No {(M) | M accepts some string w after at most |w|? steps}

(f) Suppose we want to prove that the following language is undecidable.
CHALMERS := {(M) | M accepts both STEAMED and HAMS}
Professor Skinner suggests a reduction from the standard halting language
HALT := {(M}#w | M halts on inputs W}.

Specifically, suppose there is a Turing machine Ch that decides CHALMERS. Professor Skinner claims
that the following algorithm decides HALT.

DecipEHALT({M) #w):
Encode the following Turing machine:
AURORABOREALIS(x):
if x = STEAMED or x = HAMS or x = ALBANY
run M on input w
return TRUE
else
return FALSE

return Ch({AURORABOREALIS))

Which of the following statements is true for all inputs (M) #w?

Yes || No If M accepts w, then AURORABOREALIs accepts CLAMS.

Yes || No If M rejects w, then AURORABOREALIS rejects UTICA.

Yes || No If M hangs on w, then AURORABOREALIS accepts every input string.
Yes || No If M accepts w, then Ch accepts (AURORABOREALIS).

DecipEHALT decides the language HaLT. (That is, Professor Skinner’s

Yes No . .
reduction is actually correct.)
Yes || No DEcIDEHALT actually runs (or simulates) M.
v N We could have proved CHALMERS is undecidable using Rice’s theorem
es o

instead of this reduction.

1 (continued)

(g) Consider the following pair of languages:

¢ 3COLOR := {G \ G is a 3-colorable undirected graph}

* TREE := {G | G is a connected acyclic undirected graph}

(For concreteness, assume that in both of these languages, graphs are represented by adjacency

matrices.) Which of the following must be true, assuming P#ANP?

Yes No
Yes No
Yes No
Yes No
Yes No

TrREE U 3COLOR is NP-hard.

TrREE N 3COLOR is NP-hard.

3CoLOR is undecidable.

There is a polynomial-time reduction from 3CoLOR to TREE.

There is a polynomial-time reduction from TREE to 3COLOR.

1 (continued)

CS/ECE 374 A < Spring 2018 | Gradescope name:
Final Exam 73 Problem 2

A wye is an undirected graph that looks like the capital letter Y. More formally, a wye consists of three
paths of equal length with one common endpoint, called the hub.

This grid graph contains a wye whose paths have length 4.

Prove that the following problem is NP-hard: Given an undirected graph G, what is the largest wye that
is a subgraph of G? The three paths of the wye must not share any vertices except the hub, and they
must have exactly the same length.

CS/ECE 374 A < Spring 2018 | Gradescope name:
Final Exam 73 Problem 3

Fix the alphabet 3 = {0, 1}. Recall that a run in a string w € ¥* is a maximal non-empty substring in
which all symbols are equal. For example, the string 000001000111111101 consists of exactly six
runs: 00000100011111110=00000°1°0001111111 0 1.

(a) Let L be the set of all strings in %* that contains at least one run whose length is divisible by 3. For
example, L contains the string 00111111000, but L does not contain the string 1000011.

Describe both a regular expression for L and a DFA that accepts L.

(b) Let L’ be the set of all strings in * that have the same number of even-length runs and odd-length
runs. For example, L” does not contain the string 900011101, because it has three odd-length runs
but only one even-length run, but L’ does contain the string 0000111011, because it has two runs
of each parity.

Prove that L’ is not regular.

CS/ECE 374 A < Spring 2018 | Gradescope name:
Final Exam 73 Problem 4

Suppose we want to split an array A[1..n] of integers into k contiguous intervals that partition the sum
of the values as evenly as possible. Specifically, define the quality of such a partition as the minimum,
over all k intervals, of the sum of the values in that interval; our goal is to maximize quality. Describe
and analyze an algorithm to compute the maximum quality of a partition of A into k intervals, given the
array A and the integer k as input.

For example, given the array A =[1,6,—1,8,0,3,3,9,8,8,7,4,9,8,9,4,8,4,8,2] and the integer
k = 3 as input, your algorithm should return the integer 35, which is the quality of the following partition:

37 36 35
> ——
[1,6,-1,8,0,3,3,9,8 |8,7,4,9,8|9,4,8,4,8,2 |

The numbers above each interval show the sum of the values in that interval.

CS/ECE 374 A < Spring 2018 | Gradescope name:
Final Exam 7 Jj Problem 5

(a) Fix the alphabet 3 = {0, 1}. Describe and analyze an efficient algorithm for the following problem:
Given a DFA M over %, does M reject any string? Equivalently, is L(M) # %*?

(b) Recall from Homework 10 that the corresponding problem for NFAs is NP-hard. But any NFA can be
transformed into equivalent DFA using the incremental subset construction. So why doesn’t your
algorithm from part (a) imply that P=NP?

CS/ECE 374 A < Spring 2018 | Gradescope name:
Final Exam 73 Problem 6

A number mage is an n x n grid of positive integers. A token starts in the upper left corner; your goal is
to move the token to the lower-right corner. On each turn, you are allowed to move the token up, down,
left, or right; the distance you may move the token is determined by the number on its current square.
For example, if the token is on a square labeled 3, then you may move the token three steps up, three
steps down, three steps left, or three steps right. However, you are never allowed to move the token off
the edge of the board.

Describe and analyze an efficient algorithm that either returns the minimum number of moves
required to solve a given number maze, or correctly reports that the maze has no solution.

3[5(7]4]6 OEnsk
s[3[1]5]3 5 | O
28314 2|8]3] 4] 4
als|7]2]3 NBEIEIE
3[1]3]2]% N E==1E4P4

A 5 X 5 number maze that can be solved in eight moves.

(scratch paper)

(scratch paper)

(scratch paper)

(scratch paper)

10

Some useful NP-hard problems. You are welcome to use any of these in your own NP-hardness proofs,
except of course for the specific problem you are trying to prove NP-hard.

CircuUITSAT: Given a boolean circuit, are there any input values that make the circuit output TRUE?

3SaT: Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does
the formula have a satisfying assignment?

MAXINDEPENDENTSET: Given an undirected graph G, what is the size of the largest subset of vertices in G
that have no edges among them?

MaxCLIQUE: Given an undirected graph G, what is the size of the largest complete subgraph of G?

MiNVERTEXCOVER: Given an undirected graph G, what is the size of the smallest subset of vertices that
touch every edge in G?

MINSETCOVER: Given a collection of subsets S;,S,,...,S,, of a set S, what is the size of the smallest subcol-
lection whose union is §?

MINHITTINGSET: Given a collection of subsets S;,S,,...,S,, of aset S, what is the size of the smallest subset
of S that intersects every subset S;?

3CoLoR: Given an undirected graph G, can its vertices be colored with three colors, so that every edge
touches vertices with two different colors?

HamirToNIANPATH: Given graph G (either directed or undirected), is there a path in G that visits every
vertex exactly once?

HamiLToNIANCYCLE: Given a graph G (either directed or undirected), is there a cycle in G that visits every
vertex exactly once?

TRAVELINGSALESMAN: Given a graph G (either directed or undirected) with weighted edges, what is the
minimum total weight of any Hamiltonian path/cycle in G?

LoNGEsSTPATH: Given a graph G (either directed or undirected, possibly with weighted edges), what is the
length of the longest simple path in G?

STEINERTREE: Given an undirected graph G with some of the vertices marked, what is the minimum number
of edges in a subtree of G that contains every marked vertex?

SuBseETSUM: Given a set X of positive integers and an integer k, does X have a subset whose elements sum
to k?

PARTITION: Given a set X of positive integers, can X be partitioned into two subsets with the same sum?

3PARTITION: Given a set X of 3n positive integers, can X be partitioned into n three-element subsets, all
with the same sum?

INTEGERLINEARPROGRAMMING: Given a matrix A € Z™% and two vectors b € Z" and ¢ € Z¢, compute
max{c-x |Ax < b,x >0, x € Z%}.

FEASIBLEILP: Given a matrix A € Z™? and a vector b € Z", determine whether the set of feasible integer
points max{x € Z% | Ax < b, x > 0} is empty.

DrauGHTS: Given an n X n international draughts configuration, what is the largest number of pieces that
can (and therefore must) be captured in a single move?

SUPERMARIOBROTHERS: Given an n X n Super Mario Brothers level, can Mario reach the castle?

STEAMEDHAMS: Aurora borealis? At this time of year, at this time of day, in this part of the country, localized
entirely within your kitchen? May | see it?

