< Page:A History of Mathematics (1893).djvu
This page has been proofread, but needs to be validated.
INDEX.
411
Euler, 248–254; ref. to, 77, 96, 179, 180, 239, 241, 246, 250, 258, 259, 261, 262, 264, 265, 267, 268, 273, 278, 279, 280, 287, 314, 317, 334, 364, 365, 367, 374, 386, 387, 401.
Eulerian integrals, 280.
Factor-tables, 368.
Fagnano, 241.
Fahri des Al Karhi, 111.
Faraday, 398.
Favaro, XII.
Faye, 377.
Ferro, Scipio, 142.
Fibonacci. See Leonardo of Pisa.
Finæus, 159.
Fine, XII.
Fink, XII.
Fitzgerald, 394.
Flächenabbildung, 313.
Flamsteed, 218.
Flexure, theory of, 389.
Forbes, 397.
Four-point problem, 341.
|
Fourier's theorem, 282.
Fractions, Babylonian, 7; Egyptian, 13; Greek, 26, 64, 65; Roman, 78; Hindoo, 94; Middle Ages, 120, 124; decimal, 159, 160; sexagesimal, 7, 57, 65, 67, 126; duodecimal, 124, 126; continued, 159, 197, 252, 270. See Arithmetic.
Frantz, XIII.
Fresnel, 392.
Frézier, 286.
Fricke, 354.
Friction, theory of, 382.
Frost, 315.
Fuchsian groups, 345.
Functions, definition of, 356; theory of, 268, 269, 345, 356–362; arbitrary, 262, 283. See Elliptic functions, Abelian functions, Hyperelliptic functions, Theta functions, Beta function, Gamma function, Omega function, Sigma function, Bessel's function, Potential.
Funicular polygons, 299.
Galois, 329.
Gamma function, 249.
Garbieri, 324.
Gauss, 363–367; ref. to, 77, 158, 247, 248, 251, 264, 276, 291, 294, 302, 303, 304, 313, 314, 315, 317, 320, 324, 325, 239, 330, 333, 335, 343, 348, 350, 351, 357, 362, 373, 398.
Gauss' Analogies, 366.
Geber. See Gabir ben Aflah.
Geber's theorem, 116.
Gellibrand, 165.
Genocchi, 365.
|
This article is issued from Wikisource. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.